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ABSTRACT. Given a square box Λn Ď Z2 of side-length Ln with L, n ą 1, we study hi-
erarchical random fields tφx : x P Λnuwith law proportional to e

1
2 βpϕ,∆nφqś

xPΛn
νpdφxq,

where β ą 0 is the inverse temperature, ∆n is a hierarchical Laplacian on Λn, and ν is a
non-degenerate 1-periodic measure on R. Our setting includes the integer-valued Gauss-
ian field (a.k.a. DG-model or Villain Coulomb gas) and the sine-Gordon model. Relying
on renormalization group analysis we derive sharp asymptotic formulas, in the limit as
n Ñ 8, for the covariance xφxφyy and the fractional charge xe2πiαpφx´φyqy in the subcrit-
ical β ă βc :“ π2{ log L, critical β “ βc and slightly supercritical β ą βc regimes. The
field exhibits logarithmic correlations throughout albeit with a distinct β-dependence of
the variance and fractional-charge exponents in the sub/supercritical regimes. Explicit
logarithmic corrections appear at the critical point.

1. INTRODUCTION AND RESULTS

1.1 The model and assumptions.

The aim of this paper is to study a class of random fields on Z2 with periodically modu-
lated values. The general setting of these models is as follows: Fix an integer L ě 2 and,
for each integer n ě 1, let Λn :“ t0, . . . , Ln ´ 1u2 be a box of side-length Ln in Z2. Then
consider a family tφx : x P Λnu of real-valued random variables with joint law

Pn,βpdφq :“
1

Znpβq
e

1
2 βpφ,∆nφq

ź

xPΛn

νpdφxq, (1.1)

where β ą 0 is the inverse temperature, Znpβq is a normalization constant, p¨, ¨q denotes
the canonical inner product in `2pΛnq and ∆n is a Laplacian or, in probabilistic terms, the
generator of a Markov chain on Λn. The modulation comes via ν which is assumed to
be a 1-periodic locally-finite positive Borel measure on R.

Throughout we focus on hierarchical models, for which the Markov chain defined
by ∆n jumps from x to y at a rate that depends only on the coefficients in base-L expan-
sion of the coordinates of x and y. To state this precisely, set b :“ L2 and identify Λn with
the set of sequences px1, . . . , xnq P t0, . . . , b ´ 1un. For x “ px1, . . . , xnq P Λn, let Bkpxq
denote the set of y “ py1, . . . , ynq such that yi “ xi for i “ 1, . . . , n´ k. Then take ∆n to be
a hierarchical Laplacian on Λn that acts on f : Λn Ñ R as

∆n f pxq :“ ´cn`1 f pxq `
n
ÿ

k“1

ÿ

yPBkpxq

ck
“

f pyq ´ f pxq
‰

, (1.2)
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where tcku
n`1
k“1 is a sequence of positive numbers subject to specific decay conditions;

see Assumption 1.1 below. The positivity ensures that ∆n is strictly negative definite
on `2pΛnqwhich is needed for Znpβq to be finite.

A well studied example of above field is the hierarchical Gaussian Free Field (GFF)
for which ν is the Lebesgue measure on R. An example of our prime interest in this
work is the hierarchical integer-valued Gaussian model, a.k.a. DG-model, for which ν is
the counting measure on Z. The two models are interpolated by a continuous family of
sine-Gordon models defined by

νpdφq :“ e´κr1´cosp2πφqsdφ, (1.3)

where κ ą 0 is a parameter. Indeed, the GFF corresponds to κ “ 0 while the DG-model
arises via the weak limit as κ Ñ8 under the scaling of ν by p2πκq1{2.

The models (1.1) turn out to be dual to Coulomb gas systems whenever the Fourier
coefficients of ν are non-negative. A remarkable fact is that two-dimensional Coulomb
gas models, and thus also our fields, undergo a BKT phase transition at some βc (named
after Berezinskii [13], Kosterlitz and Thouless [44]) as soon as ν is distinct from the
Lebesgue measure; see Section 2.1 for more discussion. Various aspects of this transi-
tion have previously been addressed in hierarchical models (e.g., by Benfatto, Gallavotti
and Nicolò [11], Marchetti and Perez [49], Benfatto and Renn [12], Guidi and Marchet-
ti [39]) albeit subject to limitations that generally exclude the DG-model. Our aim here
is to provide a robust treatment of the transition and establish heretofore uncontrolled
aspects of the critical and near-critical behavior.

Similarly to references [11,12,39,49], our analysis relies on the renormalization-group
technique whose implementation requires some regularity of the coefficients tcku

n`1
k“1 .

We collect these requirements in:

Assumption 1.1 There exists a positive sequence tdkukě0 satisfying
ř

kě0 dk ă 8 such that,
for each n ě 1, the sequence tcku

n`1
k“1 takes the form

cn`1 “

ˆ n
ÿ

j“0

bjσ2
j

˙´1

(1.4)

and

ck “
1
bk

«

ˆ k´1
ÿ

j“0

bjσ2
j

˙´1

´

ˆ k
ÿ

j“0

bjσ2
j

˙´1
ff

, k “ 1, . . . , n, (1.5)

for a strictly positive sequence tσ2
k u

n
k“0 satisfying

ˇ

ˇσ2
k ´ 1

ˇ

ˇ ď dmintk,n´ku, k “ 0, . . . , n. (1.6)

Moreover, we have infněkě0 σ2
k ą 0.

In addition, we also need a bit of regularity of the measure ν:

Assumption 1.2 ν is a 1-periodic Borel measure on R whose Fourier coefficients defined by
apqq :“

´
r0,1q e´2πiqzνpdzq are real-valued, strictly positive and satisfy

ap´qq “ apqq, q P Z, (1.7)
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along with

sup
qě0

apq` 1q
apqq

ă 8. (1.8)

In particular, ν is reflection symmetric and 1-periodic but not 1{p-periodic for any p ě 2.

Note that, while the analysis by way of the renormalization technique is easiest when
tσ2

k u
n
k“0 are all equal to a positive constant (which we take to be 1), permitting more

general coefficients allows us to remain flexible in what specific operator we take for a
hierarchical Laplacian; see Remark 3.2. The formulation using tdkukě0 is done to ensure
uniformity. Observe also that (1.6) along with dk Ñ 0 imply that ck, for both k and n´ k
large, decays proportionally to k ÞÑ b´2k. The term cn`1 scales only as b´n due to its role
of a “mass”; see again Remark 3.2. (The same asymptotic arises if we think of cn`1 as
an aggregate killing rate

ř

kąn ckbk for a Markov chain on Z2 with conductances tckukąn
given as in (1.5).)

As to the conditions on measure ν, here the DG model corresponds to apqq “ 1 for
each q P Z while for the sine-Gordon model (1.3) we get

apqq “
8
ÿ

`“0

pκ{2q2``|q|

p`` |q|q!`!
, q P Z. (1.9)

In particular, these models satisfy the conditions (1.7–1.8). The GFF is excluded but so is
unfortunately the hard-core Coulomb gas that corresponds to

νpdφq :“ r1` 2κ cosp2πφqsdφ, (1.10)

where κ P r0, 1{2s. While our conclusions (to be stated next) definitely fail for the GFF,
we still expect them to apply to the model (1.10).

1.2 Covariance structure.

Our first result concerns the asymptotic covariance structure of the field. Recall that b de-
notes the “branching number” of the hierarchical model which in the description based
on a box in Z2 relates to the base scale L of Λn as b “ L2. The representation of elements
of Λn as sequences leads to a hierarchical metric on Λn defined for any two distinct
vertices x “ px1, . . . , xnq and y “ py1, . . . , ynq by

dpx, yq :“ b
1
2 pn´mintj“0,...,n : xj‰yjuq (1.11)

with the convention x0 “ y0 :“ 0, and by dpx, yq :“ 0 when x “ y. Under the natural
embedding of Λn into Z2 we have dpx, yq ě }x ´ y}8 for all x, y P Λn with both sides
comparable for generic x and y.

As a consequence of the hierarchical structure of ∆n, all of our models undergo a
phase transition at the same value of the inverse temperature; namely, at

βc :“
2π2

log b
. (1.12)

We will henceforth write x´yn,β to denote expectation with respect to Pn,β. Our result on
the covariance structure of Pn,β is then as follows:
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Theorem 1.3 (Covariance structure) There exists a map σ2 : R` Ñ R` with

σ2pβq

#

“ 1{β, if β ď βc,
ă 1{β, if β ą βc,

(1.13)

such that the following holds for all models satisfying Assumptions 1.1–1.2 with tdkukě0 decay-
ing exponentially when β ą βc: There exists ε ą 0 and, for all β ą 0 with 1{β ą 1{βc ´ ε,
all n ě 1 and all x, y P Λn,

xφxφyyn,β “

$

’

’

’

&

’

’

’

%

σ2pβq logb1{2

´diampΛnq

1` dpx, yq

¯

`Op1q, if β ‰ βc,

1
βc

logb1{2

´diampΛnq

1` dpx, yq

¯

´ c̄ log
´ log diampΛnq

logr2` dpx, yqs

¯

`Op1q, if β “ βc,

(1.14)
where

c̄ :“
8π2

β2
c

bpb3 ´ 1q
pb´ 1q3pb` 1q2

(1.15)

and Op1q are quantities bounded uniformly in n ě 1 and x, y P Λn.

The above shows that models (1.1) subject to Assumptions 1.1–1.2 exhibit logarithmic
decay of correlations at all β ą 0 (with 1{β ą 1{βc ´ ε). This makes them qualitatively
similar to the GFF, for which the covariances behave exactly as in the β ă βc regime
above. The connection to GFF at β ă βc is very tight; indeed, in our earlier work [16]
we showed that one can couple Pn,β to the law of GFF so closely that the two fields are
within order-unity of each other at most (and at typical) points.

For β ą βc, (1.13) shows that the overall scale of the fluctuations is strictly smaller
than what GFF would give and, indeed, Pn,β is far from the law of GFF both in terms
of global scaling properties as well as other correlations (see Theorem 1.4 below). A
reader looking for exponential decay for β ą βc should note that the Laplacian (1.2)
is long range with the matrix coefficient for the pair x and y decaying proportionally
to dpx, yq´4 (see Section 2.3) so exponential decay is not to be expected.

The difference in the overall variance scale arises from the fact that, at β ą βc, the
field “feels” the 1-periodicity of ν at all spatial scales. Technically, this is seen in renor-
malization group iterations that draw the system towards a “non-trivial” fixed point —
meaning one that does not correspond to GFF — rather than the “trivial” one as happens
for β ď βc. The quantity σ2pβq admits a formula, see (4.47), that makes the inequality in
(1.13) quite apparent. We even get the asymptotic expansion

σ2pβq “
1
β
´

32π4

β4
c

bpb3 ´ 1q
pb´ 1q3pb` 1q2

pβ´ βcq `O
`

pβ´ βcq
3{2˘, β Ó βc, (1.16)

see Remark 4.8. In particular, β ÞÑ σ2pβq is not differentiable at βc. The apparent nu-
merical closeness of (1.15) to the coefficient of β´ βc in (1.16) is not a coincidence; see
Remark 4.9 for an explanation.

The behavior at βc is yet different as an iterated-log correction arises in the covari-
ance structure. This can be attributed to the fact that, while the renormalization group
iterations still draw the model towards the “trivial” fixed point, the convergence is poly-
nomially slow and a residue of 1-periodicity of ν survives to the macroscopic scale. We
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expect that the iterated-log correction is reflected in the extremal behavior of the field.
For instance, the maximum maxxPΛn φx, which for β ă βc scales exactly as that of the
GFF (see [16, Corollary 2.2]), should have a different second-order (i.e., order log n) term
at β “ βc. Controlling the maximum at (and beyond) the critical β seems to be an inter-
esting open problem; see Remark 4.10 for further discussion.

As far as we know, the asymptotic covariance structure of the models (1.1) has not
been studied previously. We suspect that this is because the standard approach based
on incorporating observables into the renormalization-group flow does not fare too well
for extensive quantities; i.e., those that scale with the system size.

1.3 Fractional charge asymptotic.

The connection of our model with Coulomb gas naturally leads us to the so-called frac-
tional charge correlation xe2πiαpφx´φyqyn,β, where α is a parameter that, due to the un-
derlying 1-periodicity and also interpretation as an electric charge, is taken generally
real-valued; see Section 2.4. Here we get:

Theorem 1.4 (Fractional charge) There exists a map κ : p0, 1{2q ˆR` Ñ R` with

κpα, βq

#

“ 4π2

β α2, if β ď βc,

ă 4π2

β α2, if β ą βc,
(1.17)

such that the following is true for all models satisfying Assumptions 1.1–1.2 with tdkukě0 de-
caying exponentially when β ą βc and obeying

ř

jě1 dj logpjq ă 8 when β “ βc: For all
α0 P p0, 1{2q there exists ε ą 0 and, for all α P p0, α0s, all β ą 0 with 1{β ą 1{βc ´ ε and
all n ě 1, there exists Cn P p0,8q satisfying 0 ă infně1 Cn ď supně1 Cn ă 8 such that

@

e2πiαpφx´φyq
D

n,β “
“

Cn ` op1q
‰

$

&

%

dpx, yq´κpα,βq, if β ‰ βc,

dpx, yq´κpα,βqrlog dpx, yqsτpαq, if β “ βc,
(1.18)

holds for all x, y P Λn with x ‰ y, where

τpαq :“ 2
b3 ´ 1

pb´ 1qpb` 1q3

„

b´ 1
b1`2α ´ 1

`
b´ 1

b1´2α ´ 1
´ 2



(1.19)

and where op1q Ñ 0 in the limit as mintdpx, yq, diampΛnq{dpx, yqu Ñ 8.

The n-dependence of Cn stems from potential variability in n of the sequence tσ2
k u

n
k“0.

The quantity κpα, βq is determined, albeit somewhat implicitly, by (5.113). As discussed
in Remark 5.13, we have the asymptotic form

κpα, βq “
4π2

β
α2 ´

4π2

β2
c

τpαqpβ´ βcq `O
`

pβ´ βcq
2˘, β Ó βc, (1.20)

where τpαq is as in (1.19). It is easy to check that τpαq ą 0 once α ‰ 0, which is how we
prove the inequality in (1.17). (As κpα, βq ě 0, the fact that τpαq diverges as |α| increases
to 1{2 only attests the lack of uniformity.) Again, the apparent numerical closeness of the
critical and near-critical asymptotic is not a coincidence; see Remark 5.13.

In the language of Coulomb gas models, logxe2πiαpφx´φyqyn,β represents the energetic
cost of inserting a charge α at x and a charge ´α at y into a system of integer-valued
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charges kept at thermal equilibrium. Inserting just a single charge α at x has energetic
cost logxe2πiαφxyn,β for which our proof similarly shows

@

e2πiαφx
D

n,β “
“

C1n ` op1q
‰

$

&

%

N´κpα,βq{2, if β ‰ βc,

N´κpα,βq{2rlog Nsτpαq{2, if β “ βc,
(1.21)

where we abbreviated N :“ diampΛnq and where op1q Ñ 0 as N Ñ 8; see Remark 5.14.
The drop in the value of κpα, βqmarked by the inequality in (1.17) is indicative of a charge
screening taking place above βc which (unlike for the lattice model) is only partial due to
the long-range structure of the hierarchical Laplacian. See again Section 2.4.

We note that some aspects of the above result are already known. For instance, the
subcritical regime β ă βc appears as an upper bound in Marchetti and Perez [49, The-
orem 4.3], albeit assuming that ν is suitably close to the Lebesgue measure when β is
close to βc. For β Á βc, [49, Theorem 5.1] shows existence and stability of a non-trivial
renormalization-group fixed point and, for the model with ν corresponding to the fixed
point, compute the leading order expansion of the fractional charge exponent as β Ó βc,
albeit somewhat less explicitly than (1.20). (The paper [49] works in the language of
Coulomb gasses, so translations described in Section 2.4 are needed to identify their
result with ours.)

Another relevant paper is that by Benfatto and Renn [12] who (while working in our
framework) established existence of a non-trivial renormalization fixed point for β Á βc
and studied the integer-charge correlations; namely, truncated correlations of 1-periodic
functions f of the field for the model with ν corresponding to the renormalization fixed
point. In this case they proved that (for such generic f )

@

f pφxq f pφyq
D

n,β ´
@

f pφxq
D

n,β

@

f pφyq
D

n,β — dpx, yq´2 (1.22)

as dpx, yq Ñ 8 regardless of β Á βc. This coincides with the behavior of the massive
hierarchical GFF. It will be of interest to find an argument that proves the same for more
general initial ν.

1.4 Summary and main ideas.

Theorems 1.3 and 1.4 capture the character of the phase transition in Z-modulated hi-
erarchical fields by way of asymptotic form of two important correlation functions. The
main novelty is uniformity in the underlying model, and thus universality, which we
achieve (in Theorems 3.4–3.6) by relying on Fourier representation of the exponential
of the renormalized potentials, rather than the potentials themselves. This avoids ar-
guments based on linearization, whose accuracy deteriorates close to the critical point,
and/or significant restrictions on the model taken in earlier work. Our control thus
extends all the way to and even slightly beyond the critical point revealing heretofore
unattended aspects of the critical behavior.

Our conclusions for the subcritical and critical regimes apply solely under Assump-
tions 1.1 and 1.2. In the supercritical regime we restrict to β´ βc small, but we think of
this as a mere technicality whose purpose is to keep (already very long) proof of Theo-
rem 3.6 to a manageable length. The restriction to exponentially decaying tdkukě0 and
the minor restriction in the critical case in Theorem 1.4 are imposed to allow for a com-
fortable control of the error terms. Another technical restriction (for all β) comes in the
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assumption that the Fourier coefficients of ν obey Assumption 1.2. This is natural for the
connection with Coulomb gas but not necessarily so for the field itself. We take this as a
price to pay for the precision of our conclusions.

As was just noted, our proofs hinge on tracking the “flow” of the Fourier coefficients
of effective potentials under renormalization-group iterations. A key observation, stated
in Lemma 3.7 which itself draws on [16, Lemma 4.2], is that the iterations preserve the
structure in Assumption 1.2 and, in fact, improve the estimate on the ratios in (1.8).
For β ď βc this leads to a full asymptotic analysis while, for β ą βc, we at least eventually
dominate the ratios by a quantity of order

a

β´ βc. Assuming that to be small, a suitable
fixed-point argument then extracts the desired limit behavior.

The proofs of Theorems 1.3 and 1.4 rely on the observation that the Gibbs measure
(1.1) can be viewed as the law of a tree-indexed Markov chain after n steps. The transi-
tion probabilities of this (time-inhomogeneous) chain are simple functions of the effec-
tive potentials, see (3.15), and so one can extract a good amount of information about
the chain just from the asymptotic behavior of the effective potentials. The details un-
fortunately still require some lengthy calculations.

1.5 Outline.

The remainder of this paper is organized as follows. First, in Section 2, we discuss
the broader context of the above models while providing additional (or missing) de-
tails for various remarks made in the text above. In Section 3 we then introduce the
renormalization-group approach and state the corresponding convergence theorems;
see Theorems 3.4–3.6 in Section 3.2. Sections 4 and 5 are devoted to the proofs of our
main results (namely, Theorems 1.3 and 1.4) based on these convergence theorems. The
final section (Section 6) supplies the proof of Theorem 3.6 on supercritical renormali-
zation-group flow which, unlike Theorems 3.4–3.5, could not be efficiently reduced to
estimates proved in our previous work [16].

2. CONNECTIONS AND REFERENCES

We proceed to discuss the broader context of our work; specifically, connections to lattice
interface models, the BKT transition, Coulomb gas systems and hierarchical models.
This will also give us the opportunity to cite additional relevant literature.

2.1 Lattice interface models.

The Gibbsian distributions of the kind (1.1) arise as models of fluctuating interfaces in
statistical mechanics, albeit with the “harmonic” energy term 1

2pφ,´∆nφq often general-
ized to the “anharmonic” expression of the form

1
2

ÿ

x,yPΛn

Vx,ypφx ´ φyq (2.1)

for some collection of potentials tVxy : x, y P Λnu — typically, convex, translation in-
variant and decaying sufficiently fast with |x ´ y|; see e.g., Velenik [53], Funaki [36] or
Sheffield [51]. In this language our setting corresponds to

Vx,ypηq :“ cpx, yqη2 (2.2)
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for a collection tcpx, yq “ cpy, xq : x, y P Λnu of non-negative quantities called conduc-
tances, due to a natural connection of this problem to resistor-network theory (see, e.g.,
Biskup [14] for a review).

There are two canonical choices for the “single-spin” measure ν: the Lebesgue mea-
sure on R and the counting measure on Z. In the former case, the field corresponding
to (2.2) is the Gaussian Free Field (GFF) associated with the generator

L f pxq :“
ÿ

yPΛn

cpx, yqr f pyq ´ f pxqs (2.3)

of a Markov chain defined by the conductances tcpx, yq : x, y P Λnu. Here, often but not
always, cpx, yq “ 1 when x and y neighbors and zero otherwise.

The GFF is special among above models for the fact that many relevant quantities are
explicitly computable. A continuum version of the GFF also arises as the limit process at
large spatial scales for many of the above models. This was first shown for models with
uniformly strictly convex potentials by Naddaf and Spencer [50] and Giacomin, Olla
and Spohn [38] and later extended to various cases beyond; e.g., Biskup and Spohn [20],
Brydges and Spencer [26], Cotar, Deuschel and Müller [27], Ye [54], Adams, Buchholtz,
Kotecký and Müller [1, 2], Dario [28, 29] and Armstrong and Wu [5].

The integer-valued models (i.e., for ν being the counting measure on Z) exhibit richer
behavior and are thus less well understood. One clear distinction is that any perturba-
tion of a ground state costs a uniformly positive amount of energy. A Peierls-type argu-
ment then shows that, for β very large, a sample from the corresponding Gibbs measure
deviates from a ground state configuration only by localized perturbations whose den-
sity decreases exponentially with their size. In particular, two-point correlations decay
exponentially and we have

sup
ně1

sup
x,yPΛn

xpφx ´ φyq
2yn,β ă 8, (2.4)

for all β large.
As it turns out, for Z-valued fields over Zd with d ě 3, the salient part of the previous

conclusion is not limited to large β. Indeed, the interface is expected to be localized in the
sense (2.4) for all β ą 0; see, e.g., Bricmont, Fontaine and Lebowitz [10] for a proof for
the SOS model (where Vx,ypηq :“ |η| for nearest neighbors and zero otherwise). On the
other hand, in spatial dimension d “ 1 the interface is always delocalized in the sense that
the limnÑ8xpφx ´ φyq

2yn,β grows linearly with |x´ y|.

2.2 Roughening transition for 2D interfaces.

The behavior of integer-valued models and even just Z-modulated ones, for which ν is
a 1-periodic measure, in spatial dimension d “ 2 is special and has been the source of
much interest and effort of mathematical physicists and probabilists alike. Indeed, here
one expects both types of behavior to arise depending on the value of β. Specifically,
localization in the sense (2.4) should occur for β ą βc and delocalization for β ă βc,
where βc is a positive and finite critical value. The phase transition at βc is referred to as
roughening; see e.g. [10] for a discussion of this phenomenon.
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The roughening transition bears a close connection to another remarkable transition
in two-dimensional models; namely, the Berezinskii-Kosterlitz-Thouless (BKT) phase tran-
sition predicted independently by Berezinskii [13] and Kosterlitz and Thouless [44] for,
e.g., the XY-model on Z2. A common point is a power-law decay of correlations on one
side of βc in contrast to exponential decay on the other side. In the XY-model the power-
law decay occurs at β large as a “residue” of long-range order which does occur in these
models in d ě 3 but is impossible in d “ 2 due to the Mermin-Wagner phenomenon. In
Z-modulated interface models a power-law decay takes place at β small where it reflects
on the discrete nature of the fields being washed out at large spatial scales.

The first mathematical treatment of a BKT phase transition was achieved by Fröhlich
and Spencer [35] who proved that, in the DG-model as well as sine-Gordon and other
models of this type, the fractional charge correlations,

x, y ÞÑ xe2πiαpφx´φyqyn,β (2.5)

with α small, exhibit power-law decay in |x´ y| when n " |x´ y| " 1 at high tempera-
tures; i.e., for β small. (The decay is exponential when β is large.) The argument of [35]
was later extended throughout the “asymptotic subcritical regime” by Marchetti and
Klein [48] although this is not the same as controlling the model up to the conjectural
critical value βc. Alternative presentations appeared in PhD thesis of Braga [21] and a
recent paper by Kharash and Peled [43].

Fröhlich and Spencer’s result (see [43, Theorem 1.1]) implies that φ is logarithmically-
correlated at small β while it exhibits exponential decay of correlations at large β. A
different point of view has been pursued by Lammers [45] and Aizenman, Harel, Peled
and Shapiro [4] who focus on the asymptotic properties of the variance function

x ÞÑ
@

φ2
x
D

n,β (2.6)

in the limit as n Ñ 8. By way of monotonicity arguments they established existence of
a threshold β̃c P p0,8q such that, for x deep inside Λn,

lim
nÑ8

xφ2
xyn,β

#

ă 8, if β ą β̃c,
“ 8, if β ă β̃c.

(2.7)

Still, the transition at β̃c has yet to be linked to the (conjectural) threshold βc for polyno-
mial decay-rate of the fractional charge.

The extreme ends of the two phases have in the meantime been studied by perturba-
tive methods. As mentioned earlier, the very low-temperature regime (β " 1) can be an-
alyzed by contour expansions. (Notably, an interesting remnant of the GFF-connection
persists in the behavior of the maximum; see Lubetzky, Martinelli and Sly [46].) Im-
portant inroads have also been made into the high-temperature regime (β ! 1) using
the renormalization group method, where the field is expected to scale to a continuum
Gaussian Free Field, albeit at some effective inverse temperature. For the sine-Gordon
model (1.3) with small κ this was shown by Dimock and Hurd [31] and for the DG-model
by Bauerschmidt, Park and Rodriguez [7, 8].

The behavior at βc is yet different. Indeed, the convergence to continuum Gaussian
Free Field is expected to persist but only with additional logarithmic corrections pop-
ping up in correlation functions. The only context in which this seems to have been
controlled mathematically is the remarkable work of Falco [33, 34] who determined
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the asymptotic form of the fractional charge for the lattice sine-Gordon model (1.3)
at β “ βcpκq for κ ą 0 small.

2.3 Hierarchical models.

The present work focuses on Z-modulated interface models with interactions having
a hierarchical structure. Hierarchical models were originally introduced by Dyson [32]
as systems that are friendly to coarse-graining arguments. They soon became a testing
ground for the study of critical behavior (e.g., Bleher and Sinai [23, 24]). For similar
reasons, they also served well in the analysis of interacting fields using the real-space
renormalization group method; see e.g., Brydges [25].

Mathematicians often resort to hierarchical models when the actual model of inter-
est is just too hard but one still wishes to make serious predictions about its behavior.
This was the case in, e.g., the classical studies of “triviality” of the four-dimensional
ϕ4 and Ising models (Gawȩdzki and Kupiainen [37], Hara, Hattori and Watanabe [40])
whose lattice counterparts have now been established as well, albeit along rather dif-
ferent lines. The trend to test a hierarchical setting first continues; see e.g., Hutchcroft’s
recent work [41, 42] on hierarchical critical percolation. The present paper is a similar
attempt for two-dimensional Z-modulated interface models.

Our hierarchical models fall under the umbrella of GFF-like interface systems dis-
cussed after (2.1) but with the conductances of the associated Markovian generator (2.3)
taking constant values on annuli Bkpxqr Bk´1pxq; namely,

cpx, yq :“ ck for k :“ logb1{2 dpx, yq (2.8)

whenever x ‰ y. For tckukě1 as in (1.5) of Assumption 1.1, calculations show ck — b´2k

and so we have

cpx, yq — dpx, yq´4 (2.9)

at large separations of x and y. (Recall that dpx, yq is comparable with }x´ y}8 at typi-
cal vertices of Λn.) It is worth noting that long-range conductance/percolation models
over Z2 with this kind of decay are known to exhibit interesting scaling phenomena;
e.g., in the scaling of the graph-theoretical distance (Bäumler [9]) and, conjecturally,
in superdiffusive behavior of random walks on such percolation graphs. The polyno-
mial decay built into the interaction naturally amplifies the critical properties of two-
dimensional hierarchical interface models.

2.4 Duality with Coulomb gas.

As noted earlier, the Z-modulated interface models are dual to Coulomb gas models,
which describe systems of charged particles interacting via Coulomb forces. A configu-
ration of such a system is an assignment tqx : x P Λnu of Z-valued electrostatic charges
to vertices of Λn. The Coulomb electrostatic energy is then given by 1

2pq, p´∆nq
´1qq and

the equilibrium distribution of the charge configuration at inverse temperature β is thus
given by the Gibbs law

rPn,βpdqq :“
1

rZnpβq
e

β
2 pq,∆´1

n qq
ź

xPΛn

ωpdqxq, (2.10)
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where ω is an a priori measure on charge configurations at each vertex. Physical reasons
dictate that ω is concentrated on Z and obeys ωp´dqq “ ωpdqq.

The link between (1.1) and (2.10) is facilitated by the so-called sine-Gordon transforma-
tion (also known as Siegert transformation after [52]) which amounts to the following:
For any f : Λn Ñ R a calculation shows

@

e2πipφ, f qD

n,β “

ˆ
ZΛn

e
β1

2 pq` f , ∆´1
n pq` f qq

ź

xPΛn

ωpdqxq, (2.11)

where
β1 :“ 4π2{β (2.12)

while
ωpdqq :“ apqq#pdqq (2.13)

for tapqquqPZ the Fourier coefficients of ν and # the counting measure on Z. Writ-
ing x´y„n,β1 for expectation with respect to rPn,β1 , this becomes

@

e2πipφ, f qD

n,β “ e
β1

2 p f , ∆´1
n f q@eβ1pq,∆´1

n f qD„
n,β1 , (2.14)

where we noted that taking f :“ 0 in (2.11) gives rZnpβ
1q “ 1. In particular, the mea-

sures Pn,β and rPn,β1 determine each other.
Through the above connection, the DG-model is dual to the so-called Villain gas, which

corresponds to apqq “ 1 for all q P Z and both ν and ω being the counting measure on Z.
For the sine-Gordon models (1.3) we get (1.9) while for the hard-core Coulomb gas (1.10)
we get ap0q :“ 1, ap˘1q :“ κ P r0, 1{2s and apqq “ 0 for q ‰ ´1, 0,`1. (This is interpreted
as a rule that at most one particle can appear at each vertex, giving the model its name.)
Note that, by (2.12), the high-temperature regime of the fields corresponds to the low-
temperature regime of the Coulomb gas, and vice versa.

The connection of our models to the Coulomb gas is a central motivation for the con-
sideration (and reason for the name) of the fractional charge correlation (2.5). Indeed,
setting f :“ αδx ´ αδy in (2.11) gives

@

e2πiαpφx´φyq
D

n,β “

ˆ
ZΛn

e
β1

2 pq`αδx´αδy, ∆´1
n pq`αδx´αδyqq

ź

xPΛn

ωpdqxq. (2.15)

The negative of the quantity in the exponent,
1
2
`

q` αδx ´ αδy, p´∆nq
´1pq` αδx ´ αδyq

˘

, (2.16)

has the interpretation of the Coulomb energy of the charge configuration q` αδx ´ αδy;
namely, the fluctuating “background” distribution q with a “static” charge α inserted
at x and a “static” charge ´α inserted at y.

A power-law decay of the fractional charge correlation is indicative of a logarithimic
growth of this energy as the separation of x and y increases to infinity, while an expo-
nential decay to a non-zero constant (which is what is expected in lattice models) makes
the energy gain bounded. The change in the behavior for β1 small is explained by the so-
called Debye screening which is a mechanism through which the ambient charges shield
the monopole at x from the monopole at y to make their existence at large separation
less costly than if these monopoles were placed in a vacuum.
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As is well known (see Brydges [25, Section 3.1]), the Debye screening is far less pro-
nounced in the hierarchical models than what is expected in lattice models. Indeed, as
shown in Theorem 1.4, for β ą βc the energy still increases logarithmically but now with
a smaller overall scale than for the β ă βc, where it behaves as in a vacuum. An addi-
tional iterated-log correction to the energy appears at β “ βc similarly as shown in the
lattice sine-Gordon model with small κ by Falco [33, 34].

3. RENORMALIZATION GROUP FLOW

We are now ready to commence the proofs of Theorems 1.3–1.4. As noted earlier, we rely
on the renormalization-group method that works particularly well in the hierarchical
setting. Here we review the steps that turn the model (1.1) to the form amenable to
analysis by this method and state the relevant conclusions. The β ď βc-part of these
can largely be drawn from our earlier work [16] so we give the needed proofs here. The
proofs for β ą βc are deferred to Section 6.

3.1 Representation as a tree-indexed Markov chain.

The (x-space) renormalization-group analysis of a Gibbs measure of the form (1.1) typi-
cally consists of repeated applications of two steps: a coarse-graining step and a renor-
malization step. In the coarse-graining step we partition the system into disjoint blocks
and integrate the configuration on each block conditional on a suitable “representative”
value. The renormalization step then casts the integrated Gibbs weight (which is a func-
tion of the “representative” values) as the Gibbs weight for a new energy function with
suitably adjusted, or “renormalized,” potentials or coefficients. The hope is that the re-
sulting “flow” of the energy functions captures the large-scale correlations of the original
Gibbs measure.

For the coarse-graining step in the hierarchical models (1.1) we use blocks that are just
balls Bkpxq in the ultrametric distance (1.11). Note that two such balls are either equal or
disjoint and so Λn partitions into bn´k of such disjoint balls which we will refer to as k-
blocks. The choice of the “representative value” relies on a “finite-range” decomposition
of the inverse Laplacian ∆´1

n stated in:

Lemma 3.1 Given n ě 1, suppose that tcku
n`1
k“1 is related to a positive sequence tσ2

k u
n
k“0 as in

(1.4–1.5). Writing Qk f pxq :“ b´k ř
yPBkpxq f pyq for the orthogonal projection of f : Λn Ñ R on

its averages over k-blocks, we then have

p´∆nq
´1 “ σ2

0 Q0 `

n
ÿ

k“1

σ2
k bkQk. (3.1)

Proof. We start by recalling facts from the proof of [16, Lemma 3.1]: The family of op-
erators tQk ´ Qk`1 : k “ 0, . . . , nu, subject to the convention Qn`1 :“ 0, are orthogonal
projections on orthogonal subspaces of `2pΛnq such that Q0 “

řn
k“0pQk ´ Qk`1q is the

identity. As a consequence, any operator Ln on `2pΛnq of the form

Ln :“ ´u´1
n Q0 `

n
ÿ

k“1

pu´1
k´1 ´ u´1

k qpQk ´Q0q (3.2)
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for some constants tuku
n
k“0 inverts to

L´1
n :“ ´u0Q0 ´

n
ÿ

k“1

puk ´ uk´1qQk, (3.3)

see [16, Eqs. (3.11–3.13)], provided that u0 ą 0 and uk ą uk´1 for k “ 1, . . . , n.
Now observe that the operator ∆n from (1.2) takes the form (3.2) if

u´1
n “ cn`1 (3.4)

and
u´1

k´1 ´ u´1
k “ bkck, k “ 1, . . . , n, (3.5)

while (3.3) matches (3.1) if

uk “

k
ÿ

j“0

bjσ2
j , k “ 0, . . . , n. (3.6)

As a calculation shows, under (1.4–1.5) we get (3.4–3.6) as desired. �

Remark 3.2 In the literature (see, e.g., [6, Section 1.3]) the massive hierarchical Laplacian
is sometimes presented in the form

´m2Q0 ´

n´1
ÿ

k“0

L´2kpQk ´Qk`1q, (3.7)

where m2 is the “mass-squared” and where we write the coefficient using the scale L.
Noting that the right-hand side of (3.2) rewrites as´

řn
k“0 u´1

k pQk´Qk`1q, the form (3.7)
agrees with (3.2) provided we set u´1

k :“ m2 ` L´2k for k “ 0, . . . , n´ 1 and u´1
n :“ m2.

(Observe that (3.4) then gives cn`1 “ m2.) This in turn matches (3.6) with b :“ L2

provided that

σ2
k “

L´4kpL2 ´ 1q
pm2 ` L´2kqpm2 ` L2´2kq

, k “ 1, . . . , n´ 1, (3.8)

with the “boundary” cases given as

σ2
0 “

1
m2 ` 1

and σ2
n “

L2´4n

m2pm2 ` L2´2nq
. (3.9)

Assuming that m2{L´2n is bounded between two positive constants uniformly in n ě 1,
a calculation shows that, for k “ 1, . . . , n´ 1,

σ2
k ´ p1´ L´2q “ OpL´2pn´kqq (3.10)

while σ2
0 “ 1`OpL´2nq and σ2

n “ Op1q and so, modulo scaling by 1´ L´2, the oper-
ator (3.7) thus conforms to Assumption 1.1 with tdkukě0 decaying exponentially. This
example is actually the prime motivation for the setting in Assumption 1.1.

The representation (3.1) allows us to view e
1
2 βpϕ,∆n ϕq in (1.1) as a convolution of n` 1

probability densities of Gaussian fields on Λn with covariances σ2
0 Q0, σ2

1 bQ1,. . . , σ2
nbnQn,

respectively. (A caveat is that these densities are singular because the field with co-
variance Qk is constant on each k-block.) Adding the integral over φ with respect to
the product measure

ś

xPΛn
νpdφxq, we then perform one integral after another, starting
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from that for φ itself and proceeding to the field with covariance σ2
0 Q0, then to the field

with covariance σ2
1 bQ1, etc. The “representative” value of a block is, at each step, the

sum of the Gaussian fields yet to be integrated. (This field is constant on each k-block so
we just take the value at any point in the k-block.)

As a consequence (see [16, Section 3.3]), after k integrals have been performed and
the result has been expressed as a field on Λn´k, the resulting “renormalized” Gibbs
measure admits a density with respect to the law of the Gaussian field ϕpkq on Λn´k with
covariance σ2

k Q0 ` σ2
k`1bQ1 ` ¨ ¨ ¨ ` σ2

nbn´kQn´k that is proportional to

exp
!

´
ÿ

xPΛn´k

bvk´1pϕ
pkq
x q

)

. (3.11)

Here tvku
n
k“0 is a sequence of potentials defined, for k “ 0, . . . , n´ 1, recursively by

e´vk`1pzq :“
ˆ

e´bvkpz`ζqµσ2
k`1{β

pdζq (3.12)

where µσ2 denotes the law of N p0, σ2q, with the “initial value” set as

e´v0pzq :“
ˆ

e´
1
2 βσ´2

0 pz´ζq2 νpdζq. (3.13)

The 1-periodicity of ν implies that all vk’s are 1-periodic. The renormalization group
flow is thus encoded by the sequence tvku

n
k“0 of functions of one variable. (This sequence

depends on n but we suppress that from the notation.)
The primary output of the above procedure is a representation of the normalization

constant of the Gibbs measure (1.1) as

Znpβq “
β
|Λn|

2
a

detp´∆nq
` 2πσ2

0
β

˘

|Λn|
2

e´vnp0q, (3.14)

where the numerator, resp., the denominator in the prefactor are the quantities that nor-

malize φ ÞÑ e
β
2 pφ,∆nφq, resp., φ ÞÑ e´

β
2 σ´2

0
ř

xPΛn φ2
x into probability densities. (Note that the

ν-dependence is now hidden inside vn.) In order to control expectations of relevant local
observables, standard treatments of rigorous renormalization group proceed by incor-
porating the observable into suitably modified potentials whose “flow” then needs to be
controlled alongside tvku

n
k“0.

In our earlier work [16] we instead took a different approach that is based on rep-
resenting the full Gibbs measure (1.1) via a tree-indexed Markov chain. Consider a b-ary
rooted tree Tn of depth n with the root denoted by $ and note that, keeping the same
root, Tn naturally embeds Tk for each k “ 0, . . . , n. Let m : Tn r t$u Ñ Tn be the map
assigning to x the nearest vertex on the unique path from x to the root. For k “ 0, . . . , n,
define the probability kernels

pkpdϕ|ϕ1q :“

#

evkpϕ
1q´bvk´1pϕq µσ2

k {β
p´ϕ1 ` dϕq, if k ě 1,

ev0pϕ
1q´

β
2 σ´2

0 pϕ´ϕ1q2 νpdϕq, if k “ 0.
(3.15)

Now generate a family of random variables

tϕx : x P Tnu (3.16)
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as follows: Sample ϕ$ from pnp¨| 0 q. Then, for each k “ 1, . . . , n, assuming that the
values of ϕ on Tk´1 have already been sampled, draw ϕx for each x P Tk r Tk´1 from
pn´kp¨|ϕmpxqq, independently for different x. We then have:

Lemma 3.3 Under the canonical identification of Λn with the leaves of Tn, the restriction of
the family (3.16) to Λn is distributed according to Pn,β from (1.1).

Proof. This is a restatement of [16, Lemma 3.2] modulo the fact that there the proof was
performed only for tσ2

k u
n
k“0 equal to one. We leave the modifications to the reader. �

Note that the definition implies that the values of (3.16) along any path from the root
to a leaf-vertex is an ordinary (time-inhomogeneous) Markov chain with transition prob-
abilities (3.15). This will be very useful in our later calculations.

3.2 Results for renormalization group iterations.

Our ability to control the above tree-indexed Markov chain depends very strongly on
our ability to control the differences vkpϕ

1q ´ bvk´1pϕq for large values of k (and n). In
high-temperature approaches to this problem (see, e.g., Bauerschmidt and Bodineau [6])
this is done by linearization of (3.12). However, linearization becomes inefficient if we
want to work uniformly up to βc, or even beyond, so in [16] we instead followed the
flow of the Fourier coefficients of e´vk , defined for k “ 0, . . . , n by

akpqq :“
ˆ 1

0
e´vkpzq´2πiqz dz. (3.17)

As shown in [16, Lemma-4.1], in light of (3.12) these coefficients iterate as

ak`1pqq :“
ÿ

`1,...,`bPZ
`1`¨¨¨``b“q

„ b
ź

i“1

akp`iq



θ
q2

k`1, q P Z, (3.18)

where

θk :“ e´
2π2

β σ2
k (3.19)

and where the “initial” value is set as

a0pqq :“

d

2πσ2
0

β
apqq θ

q2

0 for apqq :“
ˆ
r0,1q

e´2πiqzνpdzq. (3.20)

As also noted in [16, Lemma-4.1] (whose proof only needs that 0 ď θk`1 ă 1), the
conditions in Assumption 1.2 ensure that akpqq ą 0 for all k ě 0 and q P Z and that
takpqquqPZ P `1pZq for all k “ 0, . . . , n. (As for the vk’s, the ak’s also depend on n but we
do not mark that explicitly in the notation.)

We will now state our results concerning the iterations (3.12) and (3.18). Our first
theorem concerns the subcritical β:

Theorem 3.4 (Subcritical flow) Suppose that Assumptions 1.1–1.2 hold. For each b ě 2 and
each β ą 0 with β ă βc there exist η ą 0 and C ą 0 such that for all n ě k ě 0,

0 ă
akpqq
akp0q

ď Ce´ηpk|q|`q2q, q P Z. (3.21)
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Moreover, the vk’s are C8-functions with

sup
z,z1PR

ˇ

ˇvk`1pzq ´ bvkpz1q
ˇ

ˇ ď Ce´ηk (3.22)

for all n ą k ě 0, and

sup
zPR

max
 

|v1kpzq|, |v
2
kpzq|

(

ď Ce´ηk (3.23)

for all n ě k ě 0.

The next result provides a similar statement at βc, where control of the iterations is
more subtle than in the subcritical cases.

Theorem 3.5 (Critical flow) Suppose that Assumptions 1.1–1.2 hold and assume β “ βc.
For each b ě 2 there exist η ą 0 and C ą 0 such that for all n ě k ě 0,

0 ă
akpqq
akp0q

ď
Ce´ηq2

p1`
?

kq|q|
, q P Z. (3.24)

Moreover, the vk’s are C8-functions with

sup
z,z1PR

ˇ

ˇvk`1pzq ´ bvkpz1q
ˇ

ˇ ď
C

?
1` k

(3.25)

for all n ą k ě 0, and

sup
zPR

max
 

|v1kpzq|, |v
2
kpzq|

(

ď
C

?
1` k

(3.26)

for all n ě k ě 0. Furthermore, we have

akp1q
akp0q

“
1
?

k

„

b3 ´ 1
pb´ 1q2pb` 1q3

1{2

`Opk´1q `O
ˆ

k´1{2
ÿ

jěmint
?

k,n´ku

dj

˙

, (3.27)

where tdjujě0 is the sequence from Assumption 1.1. Consequently,

v1kpzq “
4π
?

k

„

b3 ´ 1
pb´ 1q2pb` 1q3

1{2

sinp2πzq `
op1q
?

k
(3.28)

where op1q Ñ 0 as mintk, n´ ku Ñ 8, uniformly in z P R.

The asymptotic (3.28) implies that t|v1k|
2un

k“0 is not summable uniformly in n which,
as we will see in Section 4, is the root cause of the doubly-logarithmic correction to
the covariance structure at β “ βc. The logarithmic correction to the fractional charge
asymptotic at β “ βc can in turn be traced to (3.27).

Our final theorem in this section deals with supercritical β. The statement only applies
to β slightly over βc. Denote

θ :“ e´
2π2

β (3.29)

and observe that β ą βc is equivalent to bθ ą 1. We then have:
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Theorem 3.6 (Supercritical flow) Suppose Assumption 1.1 holds. For each b ě 2 there
exists ε ą 0 and, for all β ą 0 with 1 ă bθ ă 1` ε, there exist η ą 0, C ą 0 and a sequence
tλ‹pqquqPZ with λ‹p0q “ 1 and

0 ă λ‹pqq “ λ‹p´qq ď
`

2b1{2
?

bθ ´ 1
˘|q|, q P Z, (3.30)

for which the following is true: For all initial ν subject to Assumption 1.2 there exists k0 ě 0
such that for all n and k with mintk, n´ ku ě k0 and all q P Z,

akpqq ď akp0q
`

2b1{2
?

bθ ´ 1
˘|q| (3.31)

and
ˇ

ˇ

ˇ

ˇ

akpqq
akp0q

´ λ‹pqq
ˇ

ˇ

ˇ

ˇ

ď C|q|
„

e´ηk `

k
ÿ

j“0

e´ηpk´jq dmintj,n´ju



(3.32)

hold with tdjujě0 denoting the sequence from Assumption 1.1. Moreover, the vk’s are C8-
functions with tv1kukě0 and tv2kukě0 uniformly bounded and, defining v‹ : R Ñ R by

e´v‹pzq :“

˜

ÿ

q1,...,qbPZ
q1`¨¨¨`qb“0

b
ź

i“1

λ‹pqiq

¸´ 1
b´1

ÿ

qPZ

λ‹pqqe2πiqz, (3.33)

we have vkpzq ´ bvk´1pz1q Ñ v‹pzq ´ bv‹pz1q and v1kpzq Ñ v1‹pzq as mintk, n ´ ku Ñ 8,
uniformly on z, z1 P R. (The existence of v1‹ is ensured by (3.30).) In addition, assuming tdkukě0
decays exponentially fast there exist η1 ą 0 and C1 ą 0 such that

sup
z,z1PR

ˇ

ˇ

ˇ
vkpzq ´ bvk´1pz1q ´

“

v‹pzq ´ bv‹pz1q
‰

ˇ

ˇ

ˇ
ď C1e´η1mintk,n´ku (3.34)

and
sup
zPR

ˇ

ˇv1kpzq ´ v1‹pzq
ˇ

ˇ ď C1e´η1mintk,n´ku (3.35)

hold for all n ě k ě 0.

We emphasize that tλ‹pqquqPZ and thus also v‹ do not depend on ν; indeed, they rep-
resent a “nontrivial” fixed point of the renormalization group flow. This means that v‹
is a non-zero solution to

e´v‹pzq “

ˆ
e´bv‹pz`ζqµ1{βpdζq, (3.36)

where, we recall, µ1{β is the law of N p0, 1{βq. As our proofs show (see Theorem 6.1), such
a fixed point is unique and attractive to all the 1-periodic measures whose Fourier coef-
ficients are positive and obey (1.7–1.8). (These assumptions are crucial; indeed, under
bθp2

ď 1, functions that are 1{p-periodic are still attracted to the “trivial” fixed point.)
We do not have explicit expressions for v‹ or tλ‹pqquqPZ. The best we can offer is a
characterization of their b Ñ8 limit; see Remark 6.15.

3.3 Proof of Theorem 3.4.

The above convergence statements for the subcritical and critical regimes require only
relatively minor adaptations of the results already proved in [16], and so we prove them
right away. The main new obstacle is the fact that [16] assumed σ2

k “ 1 for all k ě 0 while
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for us the equality holds only asymptotically. We will suppose that Assumptions 1.1–1.2
hold throughout and stop referencing these in the statements of lemmas.

We will start with Theorem 3.4. First we recall an observation from [16] that drives
many of the subsequent arguments:

Lemma 3.7 For all β ą 0, n ą k ě 0 and q ě 0,
ak`1pq` 1q

ak`1pqq
ď b θk`1

pq`1q2´q2
sup
`ě0

akp`` 1q
akp`q

. (3.37)

Proof. This is a restatement of [16, Lemma 4.2] with θ allowed to depend on k. �

As a consequence we obtain:

Lemma 3.8 For all β ą 0, n ě k ě 0 and q P Z,

akpqq
akp0q

ď θ
q2

k

ˆ

ĉ
k´1
ź

j“0

pbθjq

˙|q|

, (3.38)

where ĉ :“ sup`ě0
ap``1q

ap`q for ` ÞÑ ap`q being the Fourier coefficients of ν.

Proof. Denote ck :“ sup`ě0
akp``1q

akp`q
. Then (3.37) along with pq` 1q2´ q2 ě 1 for q ě 0 gives

ck`1 ď pbθk`1qck with c0 ď ĉθ0. Iterating, we get ck ď b´1ĉ
śk

j“0pbθjq for all n ě k ě 0.
Plugging this in (3.37) and iterating yields the claim. �

We are now ready to give:
Proof of Theorem 3.4. Suppose 0 ă β ă βc. We start with (3.21), which for σ2

k equal to one
was shown already in [16, Lemma 4.3]. Assumption 1.1 shows θmax :“ supněkě0 θk ă 1
and

śk´1
j“0 bθj ď θ´c̃pbθqk where c̃ :“ 2

ř

jě0 dj . Using (3.38) we then get

akpqq
akp0q

ď θ
q2

max
“

ĉθ´c̃pbθqk
‰|q|. (3.39)

Setting, with some waste for a later convenience, e´η :“ maxt
?

bθ,
?

θmaxu, we get (3.38)

with C :“ supqě0 θ
q2{2
maxrĉθ´c̃sq. The positivity follows from iterations of (3.18) and the

assumption that the Fourier coefficients of ν are strictly positive.
Concerning (3.22), we observe that, by takpqquqPZ P `

1pZq,

e´vkpzq “
ÿ

qPZ

akpqqe2πiqz (3.40)

with the left-hand side continuous and, by (3.12), strictly positive for all z P R. Hence,
the vk’s are also continuous. The bound (3.21) gives

ˇ

ˇe´vkpzq ´ akp0q
ˇ

ˇ ď 2akp0q
ÿ

qě1

Ce´ηpkq`q2q ď
2Ce´kη

1´ e´kη
akp0q. (3.41)

For k so large that maxt1, Cue´kη ď 1{8 we get

sup
zPR

ˇ

ˇ akp0q´1e´vkpzq ´ 1
ˇ

ˇ ď 3Ce´ηk ď
1
2

. (3.42)
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Once k is so large that the quantity in the large parentheses in (3.38) is less than e´ηk, this
now implies (3.22) along the same argument that proved [16, Eq. (3.40)]. The remaining k
and n are handled directly by noting that, under Assumption 1.1, e´vk is bounded above
and below by positive constants that depend only on k. Hence |vk| is bounded uniformly
in n with n ě k and so (3.22) follows by relabeling C.

For the corresponding bound on the derivatives of vk, first note that (3.21) permits us
to differentiate the series in (3.40) term-by-term to get

v1kpzq “ ´evkpzq
ÿ

qPZ

p2πiqqakpqqe2πiqz. (3.43)

Using (3.42) along with the uniform boundedness of akp0qevk for each k we conclude
that the v1k are continuous and bounded on R, uniformly in n ě k ě 0. It thus suffices to
prove (3.23) for k sufficiently large. Here we invoke the bound (3.21) to get

ˇ

ˇv1kpzq
ˇ

ˇ ď akp0qevkpzq
ÿ

qě1

4πqCe´ηkq ď akp0qevkpzq 4πCe´ηk

p1´ e´ηkq2
. (3.44)

Since akp0qevkpzq ď 2 whenever (3.42) is in force, the right-hand side is at most 32πCe´ηk

as soon as e´ηk ď 1{8. This proves (3.23) for the first derivative. For the bound on the
second derivative we differentiate (3.43) one more time and apply a similar reasoning,
along with the bound on the first derivative. We leave the details to the reader. �

3.4 Bounds on Fourier coefficients.

For the critical case, we first need to establish estimates on the Fourier coefficients akpqq.
We start with a bound that drove the analysis of the critical case in [16]:

Lemma 3.9 For all β ą 0 and n ą k ě 0,

ak`1p1q
ak`1p0q

ď θk`1

akp1q
akp0q

1`
ˆ

b
2

˙

´ akp1q
akp0q

¯2
` pb´ 1qθk`1 sup

`ě0

akp`` 1q
akp`q

. (3.45)

Proof. This is a restatement of [16, Lemma 4.5] with θ allowed to depend on k. �

Next we show that the supremum on the right of (3.45) exhibits polynomial decay:

Lemma 3.10 Assume β “ βc. Then there exists a constant C ą 0 such that for all n ě k ě 0,

sup
`ě0

akp`` 1q
akp`q

ď
C

?
1` k

. (3.46)

Proof. We will adapt the proofs of [16, Lemma 4.6] and [16, Theorem 3.5] to allow σ2
k

depend on n and k. Abbreviate the supremum in (3.46) as ck and let αk be the unique
number in p0, 1q such that

αk “
1

1`
`b

2

˘

c2
kα2

k

. (3.47)
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Next we will prove that k ÞÑ ck is bounded. Indeed, at β “ βc we have θk “ b´σ2
k and

so bθk “ b1´σ2
k . The argument from the proof of Lemma 3.8 along with the inequality

c0 ď θ0ĉ ď bθ0ĉ implied by (3.20) then show

ck ď ĉ exp
"

plog bq
k
ÿ

j“0

|1´ σ2
j |

*

(3.48)

with the sum is bounded uniformly in n ě k ě 0 thanks to Assumption 1.1. This along
with αk ď 1 implies infněkě0 αk ě r1`

`b
2

˘

psupněkě0 ckq
2s´1 ą 0.

We will now repeat the argument from the proof of [16, Lemma 4.6] to get an iterative
bound on ck. We start by the inequality

ak`1p1q
ak`1p0q

ď
θk`1 ck

1`
`b

2

˘

ck
2αk

2
` pb´ 1qθk`1ck (3.49)

which, for akp1q{akp0q ą αkck, is obtained by bounding the denominator in (3.45) from be-
low by 1`

`b
2

˘

α2
kc2

k and then applying akp1q{akp0q ď ck in the numerator. For akp1q{akp0q ď
αkck, we instead drop the denominator in (3.45) altogether, invoke akp1q{akp0q ď αkck in
the numerator and then observe that, by (3.47), right-hand side of (3.49) equals pb´ 1`
αkqθk`1ck. With (3.49) in hand, observe that Lemma 3.7 also gives

ak`1pq` 1q
ak`1pqq

ď b θk`1
pq`1q2´q2

ck (3.50)

with pq` 1q2 ´ q2 ě 3 for q ě 1. Noting again that the right-hand side of (3.49) can been
written as pb´ 1` αkqθk`1ck, we get

ck`1 ď
θk`1 ck

1`
`b

2

˘

ck
2αk

2
` pb´ 1qθk`1ck (3.51)

as soon as mintk, n´ ku is so large that bθk`1
3 ď pb´ 1` αk`1qθk.

To deal with k dependence of θk and αk in (3.51), denote

c̃k :“ ck exp
"

logp1{θq
k
ÿ

j“0

pσ2
j ´ 1q

*

, (3.52)

and abbreviate

ᾱ :“
ˆ

b
2

˙

`

inf
někě0

α2
k
˘

exp
"

´4 logp1{θq
ÿ

jě0

dj

*

. (3.53)

The bound (3.51) then gives

c̃k`1 ď
θ c̃k

1` ᾱc̃k
2 ` pb´ 1qθc̃k (3.54)

once k and n´ k exceed some k0 ě 1.
Now observe that setting θ :“ 1{b reduces (3.54) to the conclusion of [16, Lemma 4.6].

The proof of [16, Theorem 3.5] then applies, resulting in the bound c̃k ď C1p1`
?

kq´1{2.
Noting that ck{c̃k is bounded uniformly in n ě k ě 0 by Assumption 1.1 then gives (3.46)
once mintk, n´ ku ě k0. Thanks to supněkě0 ck ă 8, the extension to small k is achieved
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by choosing C sufficiently large. The extension to k close to n is in turn supplied by
Lemma 3.7 along with Assumption 1.1. �

The next lemma shows that the supremum in (3.46) is actually order k´1{2 and, in fact,
so is even the ratio akp1q{akp0q:

Lemma 3.11 Assume β “ βc. There exists a constant C1 ą 0 such that for all n ě k ě 0,

akp1q
akp0q

ě
C1

?
1` k

. (3.55)

Proof. Let ck continue to denote the supremum in (3.46). We first prove suitable bounds
on ak`1p1q and ak`1p0q using (3.18). Indeed, neglecting all but the terms with just one `i
non-zero in (3.18) yields the lower bound

ak`1p1q ě bθk`1akp1qakp0qb´1. (3.56)

For an upper bound on ak`1p0q, we note that the sum in (3.18) contains a term with all
zeros, then terms with exactly two indices equal to ˘1 (and all other equal to zero), and
then the remaining terms in which either three indices are non-zero or two are non-zero
but at least one is at least two in absolute value. Invoking the bound akp`q ď c|`|k akp0q
while assuming, thanks to Lemma 3.10, that k is so large that ck ď 1{2, the contribution
of the last two cases is estimated by

“

bpb´ 1q ` bpb´ 1qpb´ 2q
‰

c3
k

ˆ

1` 2
ÿ

mě1

cm
k

˙b

akp0qb. (3.57)

Here the prefactors dominate the number of ways the above sets of indices can appear in
the given ordering of the b-tuple `1, . . . , `b in (3.18) and the term in the large parentheses
dominates the sum over the remaining indices after the restriction on `1 ` ¨ ¨ ¨ ` `b has
been dropped. Hence we get

ak`1p0q ď akp0qb ` bpb´ 1qakp1q2akp0qb´2 ` α1c3
kakp0qb, (3.58)

where α1 :“ bpb´ 1q23b. Abbreviating

λk :“
akp1q
akp0q

, (3.59)

from (3.56) and (3.58) we then get

λk`1 ě
bθk`1λk

1` bpb´ 1qλ2
k ` α1c3

k
ě

bθk`1

1` α1c3
k

λk

1` bpb´ 1qλ2
k

. (3.60)

At β “ βc we have bθk`1 “ b1´σ2
k`1 . Denote

λ̃k :“ λk

k
ź

j“1

1` α1c3
j´1

bθj
“ λk

k
ź

j“1

1` α1c3
j´1

b1´σ2
j

, (3.61)

and observe that λk{λ̃k is bounded from above and below uniformly in n ě k ě 1 thanks
to Assumption 1.1 and

ś

jě1
`

1` j´3{2
˘

ă 8. Abbreviating r :“ bpb´ 1q supněkě0 λk{λ̃k,
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the inequality (3.60) then gives

λ̃k`1 ě
λ̃k

1` rλ̃2
k

. (3.62)

This now readily yields λ̃´2
k`1 ď λ̃´2

k ` r1 for k ě 1 and r1 :“ 2r ` r2 supněkě1 λ̃2
k ă 8.

Hence we get that λ̃´2
k {k is bounded uniformly in n ě k ě k0, for some k0 ě 1. This,

along with λk{λ̃k being bounded from below gives (3.55) for k sufficiently large. The
extension to k ă k0 is routine from the positivity of akp1q{akp0qwhich by Assumption 1.1
and (3.60) holds uniformly in n satisfying n ě k. �

3.5 Proof of Theorem 3.5.

Moving to the proof of Theorem 3.5, we now cast the iterations of tλkukě0 from (3.59)
in a form that is amenable to asymptotic analysis. This will require tracking also the
second-order Fourier coefficients in the form

γk :“
akp2q
akp0q

(3.63)

which, as suggested by (3.46) and (3.55), decays proportionally to λ2
k . Here we get:

Lemma 3.12 Assume β “ βc. For each n ě 1 there exist positive sequences trku
n´1
k“0 , tsku

n´1
k“0

and ttku
n´1
k“0 that are bounded uniformly in n such that

λk`1 “ bθk`1
λk ` pb´ 1qλkγk `

1
2pb´ 1qpb´ 2qλ3

k ` rkλ4
k

1` bpb´ 1qλ2
k ` skλ3

k

γk`1 “ b4θ4
k`1

b´3γk `
1
2 b´3pb´ 1qλ2

k ` tkλ3
k

1` bpb´ 1qλ2
k ` skλ3

k

(3.64)

hold true for all n ą k ě 0, where λk is as in (3.59).

Proof. Note that, by Lemmas 3.10–3.11, when β “ βc the quantity λk is proportional to ck

while akpqq{akp0q is bounded by c|q|k . Using this we now write (3.58) as equality

ak`1p0q
akp0qb

“ 1` bpb´ 1qλ2
k ` skλ3

k , (3.65)

where tsku
n´1
k“0 is a positive sequence that is bounded uniformly in n ě 1. Similarly, since

the only integer-valued b-tuples p`1, . . . , `bqwith `1` ¨ ¨ ¨ ` `b “ 1 and |`1| ` ¨ ¨ ¨ ` |`b| ă 4
are permutations of p1, 0, . . . , 0q, p´1, 2, 0, . . . , 0q and p1, 1,´1, 0, . . . , 0q, we get

ak`1p1q
akp0qb

“ θk`1

´

bλk ` bpb´ 1qλkγk `
1
2 bpb´ 1qpb´ 2qλ3

k ` brkλ4
k

¯

(3.66)

for a positive sequence trku
n´1
k“0 that is bounded uniformly in n ě 1. Dividing (3.66) by

(3.65) then yields the first equality in (3.64).
For the second equality in (3.64) we first observe that the only integer-valued b-tuples

p`1, . . . , `bqwith `1 ` ¨ ¨ ¨ ` `b “ 2 and |`1| ` ¨ ¨ ¨ ` |`b| ă 4 are permutations of p2, 0, . . . , 0q
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and p1, 1, 0, . . . , 0q. This implies

ak`1p2q
akp0qb

“ θ4
k`1

`

bγk `
1
2 bpb´ 1qλ2

k ` b4tkλ4
k
˘

(3.67)

for a positive sequence ttku
n´1
k“0 that is bounded uniformly in n ě 1. Dividing this by

(3.65) then gives the desired claim. �

We are now finally ready to give:
Proof of Theorem 3.5. Assume β “ βc. Let us start with the bounds (3.24–3.26). First, using
(3.46) in (3.37) and iterating yields

akpqq
akp0q

ď θ
q2

k

´ bC
?

1` k

¯|q|
(3.68)

whenever k ě 1. (For k “ 0 we note that a0pqq{a0p0q ď θ
q2

0 ĉ, for ĉ as in Lemma 3.8.) Since

Assumption 1.1 implies that θ
q2{2
k pbCq|q| is bounded uniformly in n ě k ě 0 and q P Z,

this is sufficient for (3.24). The bound (3.25) is then proved using the same argument
as in [16, Theorem 3.4]. For the bound (3.26), we plug (3.68) in (3.43) using the same
argument as for the subcritical case.

The main point of the proof is the asymptotic (3.27) and (3.28). For the latter we isolate
the terms |q| “ 1 from the rest of the sum in (3.43) to get

v1kpzq “ 4πevkpzqakp0qλk sinp2πzq ´
ÿ

|q|ě2

evkpzqakp0q2πiq e2πiqz akpqq
akp0q

. (3.69)

Proceeding as in (3.42) using (3.24) instead of (3.21), we get uniform convergence of
akp0q´1e´vkpzq to 1 with decay rate p1` kq´1{2, which leads to

ˇ

ˇv1kpzq ´ 4πλk sinp2πzq
ˇ

ˇ ď
C
k

(3.70)

for some constant C P p0,8q uniformly in z P R. To get (3.28) it thus suffices to prove
the asymptotic (3.27).

We will prove (3.27) by iterating the top line in (3.64) but for that we first have to show
that γk{λ

2
k is, for k large, close to a constant. Here (3.64) expresses γk`1{λ

2
k`1 as

pbθk`1q
2
´

b´3 γk

λ2
k
`

1
2

b´3pb´ 1q ` tkλk

¯ 1` bpb´ 1qλ2
k ` skλ3

k
`

1` pb´ 1qγk `
1
2pb´ 1qpb´ 2qλ2

k ` rkλ3
k

˘2

(3.71)
which in light of γk{λ

2
k being bounded from above gives

γk`1

λ2
k`1

“
`

pbθk`1q
2 ` t1kλk

˘

ˆ

b´3 γk

λ2
k
`

1
2

b´3pb´ 1q
˙

(3.72)

for a sequence tt1ku
n´1
k“0 that is bounded uniformly in n ě 1. Since the prefactor is close

to 1 for mintk, n´ ku large, set δk :“ pbθk`1q
2 ` t1kλk ´ 1 and observe that then

ˇ

ˇ

ˇ

ˇ

γk`1

λ2
k`1

´
1
2

b´ 1
b3 ´ 1

ˇ

ˇ

ˇ

ˇ

ď
1` δk

b3

ˇ

ˇ

ˇ

ˇ

γk

λ2
k
´

1
2

b´ 1
b3 ´ 1

ˇ

ˇ

ˇ

ˇ

` δk. (3.73)
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Iteration shows
ˇ

ˇ

ˇ

ˇ

γk

λ2
k
´

1
2

b´ 1
b3 ´ 1

ˇ

ˇ

ˇ

ˇ

ď

k
ÿ

j“1

δk´j

j´1
ź

i“1

1` δk´i

b3 `

ˆ k
ź

j“0

1` δj

b3

˙ˇ

ˇ

ˇ

ˇ

γ0

λ2
0
´

1
2

b´ 1
b3 ´ 1

ˇ

ˇ

ˇ

ˇ

. (3.74)

Using λk “ Opk´1{2q and bθk ´ 1 “ Op|σ2
k ´ 1|qwe get δk “ Opk´1{2q `Op|σk`1

2´ 1|q and
so 1` δk ď exptck´1{2 ` c|σ2

k`1 ´ 1|u for some constant c ą 0. It follows that, for some
constants c1, c2 ą 0,

j´1
ź

i“1

1` δk´i

b3 ď b´3pj´1q exp
"

c
j´1
ÿ

i“0

pk´ iq´1{2 ` c
n
ÿ

i“0

|σ2
i ´ 1|

*

ď c1b´3pj´1q exptc2 j{k1{2u,

(3.75)
where in the second inequality we invoked Assumption 1.1 for the second sum and
noticed that the first sum is bounded by a constant times j{k1{2. The product is thus
checked to decay at least as Opb´2jqwhich then allows us to simplify (3.74) as

γk

λ2
k
“

1
2

b´ 1
b3 ´ 1

`Opk´1{2q `O
ˆ k
ÿ

j“0

b´2j|σ2
k´j ´ 1|

˙

. (3.76)

Here the implicit constants are uniform in n ě k ě 0.
Moving to the proof of (3.27), we temporarily denote

λ̃k :“ λk

k
ź

j“0

pbθjq
´1 (3.77)

and observe that the first line in (3.64) can concisely be written as

λ̃k`1 “
λ̃k

b

1` ρkλ2
k

, (3.78)

where

ρk :“
1

λ2
k

«

ˆ

1` bpb´ 1qλ2
k ` skλ3

k

1` pb´ 1qγk `
1
2pb´ 1qpb´ 2qλ2

k ` rkλ3
k

˙2

´ 1

ff

. (3.79)

The reason for writing the iteration this way is because (3.78) can now be cast as

1
λ̃2

k`1
“

1
λ̃2

k
` ρk

k
ź

j“0

pbθjq
2. (3.80)

Iterating we then get

1
λ2

k
“

1
λ2

0

ˆ k
ź

j“1

pbθjq
´2
˙

`

k´1
ÿ

`“0

ˆ k
ź

j“``1

pbθjq
´2
˙

ρ`, (3.81)

where we already returned to the original variables.
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In order to extract the leading asymptotic of the sum in (3.81), we note that (3.76)
along with λk “ Opk´1{2q show

ρk “
pb´ 1q2pb` 1q3

b3 ´ 1
`Opk´1{2q `O

ˆ k
ÿ

j“0

b´2j|σ2
k´j ´ 1|

˙

. (3.82)

Denote by ρ‹ the first quantity on the right. Plugging (3.82) in (3.81) while noting that,
thanks to Assumption 1.1,

śk
j“``1pbθjq

´2 is bounded uniformly in n ě k ą ` ě 0 we get

λ´2
k “ Op1q `

k´1
ÿ

`“0

k
ź

j“``1

pbθjq
´2ρ‹ `Opk1{2q `O

ˆ k´1
ÿ

j“0

|σ2
j ´ 1|

˙

. (3.83)

The last term is again Op1q by Assumption 1.1 so we just need to control the middle
term. Here we separate the terms with ` ď

?
k at the cost of another Opk1{2q correction.

In the remaining terms we note that
k
ź

j“``1

pbθjq
´2 “

k
ź

j“``1

b2pσ2
j ´1q

“ 1`O
ˆ

ÿ

jě
?

k

dj

˙

`O
ˆ

ÿ

jěn´k

dj

˙

, (3.84)

where tdjujě0 is the sequence from Assumption 1.1. Using this in (3.83) and inverting
the two negative powers then proves (3.27). Plugging this in (3.70) gives also (3.28). �

Unlike Theorems 3.4–3.5 whose proofs borrowed from results proved in our earlier
work, Theorem 3.6 will have to be proved from “scratch” using different ideas. The
details will be given in Section 6.

4. ASYMPTOTIC COVARIANCE STRUCTURE

We are now ready to commence the actual proof of Theorem 1.3. We rely heavily on the
convergence of the renormalization-group iterations established in the earlier sections
along with the representation of the field as a tree-indexed Markov chain. We again
suppose that Assumptions 1.1–1.2 hold throughout.

4.1 Markov-chain representation.

In Lemma 3.3 we showed that Pn,β is the law on the leaves of a tree-indexed Markov
chain. Along any branch of the tree, that tree-indexed Markov chain is just an ordinary
Markov chain with transition probabilities (3.15). As it turns out, the proof of Theo-
rem 1.3 can be reduced to properties of this chain.

In order to match the labeling of the vk’s, we will label the Markov chain backwards;
i.e., from the leaves to the root. A run of the chain is thus a sequence of real-valued
random variables tφkuk“n,...,0 such that, for all Borel A Ď R,

Ppφn P Aq “ pnpA | 0 q (4.1)

and
Ppφk P A |Fk`1q “ pkpA|φk`1q, (4.2)

where pkp¨|¨q is as in (3.15) and

Fk :“ σpφi : i “ k, . . . , nq. (4.3)



26 M. BISKUP, H. HUANG

The above is consistent with setting the “initial” state of the chain to φn`1 :“ 0 and
using Fn`1 to denote the trivial σ-algebra.

We will use E to denote expectation with respect to P and, for x, y P Λn, write kpx, yq
for the depth of the nearest common ancestor of x and y in the underlying b-ary tree
structure on Tn. Explicitly, for distinct x “ px1, . . . , xnq and y “ py1, . . . , ynq in Λn we set

kpx, yq :“ n´mintj “ 0, . . . , n : xj ‰ yju “ logb1{2 dpx, yq (4.4)

with the convention x0 “ y0, and put kpx, yq :“ 0 when x “ y. To reduce clutter we
sometimes use the same letter for both the field values and the states of the chain as the
precise meaning will always be clear from context.

A key step in the proof of Theorem 1.3 then comes in:

Proposition 4.1 Let β ą 0 and assume that tv1ku
n
k“0 and tv2ku

n
k“0 are bounded uniformly

in n ě 1. Then for all n ě 1 and all x, y P Λn,

xφxφyyn,β “

n
ÿ

i“kpx,yq

ˆ

1
β
`

1
β2

b` 1
b´ 1

E
“

v1ipφi`1q
2 ´ v2i pφi`1q

‰

˙

`Op1q (4.5)

holds with Op1q that is bounded uniformly in n ě 1 and x, y P Λn.

To prove this proposition note that, for k :“ kpx, yq, the tree-indexed Markov chain
representation gives

xφxφyyn,β “ E
`

Epφ0|Fkq
2˘ (4.6)

and so all we need to do is to extract the asymptotic form of Epφ0|Fkq, uniformly in n ě
k ě 0. This leads to somewhat lengthy calculations for the underlying Markov chain,
part of which we relegate to:

Lemma 4.2 Let β ą 0 and n ě 1. Then for all k “ 0, . . . , n,

Epφk|Fk`1q “ φk`1 ´
σ2

k
β

v1kpφk`1q (4.7)

and, for all k “ 1, . . . , n,

E
`

v1k´1pφkq
ˇ

ˇFk`1
˘

“
1
b

v1kpφk`1q. (4.8)

Proof. Abbreviate βk :“ βσ´2
k and recall our notation µσ2 for the law of N p0, σ2q. We start

by computing some relevant Gaussian integrals. The first one of these isˆ
e´bvk´1pφ`ζqζ µ1{βk

pdζq “
1
βk

d
dφ

ˆ
e´bvk´1pφ`ζqµ1{βk

pdζq

“
1
βk

d
dφ

e´vkpφq “ ´
1
βk

v1kpφqe
´vkpφq

(4.9)

for k “ 1, . . . , n. Here we first performed a Gaussian integration by parts, then swapped
differentiation with respect to ζ by that with respect to φ and finally applied the re-
cursive relation between vk and vk´1. The second integral to compute uses the relation
between vk and vk´1 with the resultˆ

e´bvk´1pφ`ζqv1k´1pφ` ζq µ1{βk
pdζq “ ´

1
b

d
dφ

e´vkpφq “
1
b

v1kpφqe
´vkpφq (4.10)
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for all k “ 1, . . . , n. The above manipulations are justified by the fact that the vk’s are
periodic C8-functions and so no issues arise from swapping derivatives and integrals
and no boundary terms pop up during integration by parts.

Moving to statements above, for (4.8) we only need to use the top line in the defini-
tion (3.15) of the transition probability to get

E
`

v1k´1pφkq
ˇ

ˇFk`1
˘

“ evkpφk`1q

ˆ
e´bvk´1pφk`1`ζqv1k´1pφk`1 ` ζqµ1{βk

pdζq (4.11)

Using (4.10) we now obtain (4.8). For (4.7) we first treat k ě 1 where (4.9) combined with
the top line in (3.15) show

Epφk|Fk`1q “ evkpφk`1q

ˆ
e´bvk´1pφk`1`ζqpφk`1 ` ζqµ1{βk

pdζq

“ φk`1 ´
1
βk

v1kpφk`1q.
(4.12)

For k “ 0 we instead use the bottom line in (3.15) to get

Epφ0|F1q “ φ1 ` ev0pφ1q

ˆ
e´

β0
2 pφ´φ1q

2
pφ´ φ1qνpdφq

“ φ1 ` ev0pφ1q
1
β0

d
dφ1

ˆ
e´

β0
2 pφ´φ1q

2
νpdφq

“ φ1 ´
1
β0

v10pφ1q

(4.13)

by invoking the definition of v0 in the last step. �

Remark 4.3 We note that (4.8) shows that, for the model corresponding to the renormal-
ization fixed point, the associated potential is an eigenvector of the Markov transition
kernel restricted to the space of 1-periodic functions. This fact was key for the deriva-
tions in Benfatto and Renn; see [12, Eq. 4.22] and thereafter.

As a consequence of the identities (4.7–4.8) we then get:

Corollary 4.4 The sequence tMku
n`1
k“0 defined by M0 :“ φ0 and by

Mk :“ φk ´
1
β

ˆ k
ÿ

i“1

b1´iσ2
k´i

˙

v1k´1pφkq, k “ 1, . . . , n` 1, (4.14)

is a reverse martingale; i.e., EpMk|Fk`1q “ Mk`1 holds true a.s. for all k “ 0, . . . , n.

Proof. Write (4.14) as Mk :“ φk ´ skβ´1v1k´1pφkq where s0 :“ 0 to avoid having to in-
terpret v1´1. For tMku

n`1
k“0 to be a reverse martingale, the identities (4.7–4.8) dictate that

sk`1 “ b´1sk ` σ2
k for all k “ 0, . . . , n. This is satisfied by sk :“

řk
i“1 b1´iσ2

k´i. �
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Let us keep writing sk :“
řk

i“1 b1´iσ2
k´i. The fact that tMku

n`1
k“0 is a martingale with

M0 “ φ0 allows us to continue (4.6) as

xφxφyyn,β “ E
`

Epφ0|Fkq
2˘

“ EpM2
kq “ Epφ2

kq ´
2sk

β
E
`

φkv1k´1pφkq
˘

`
s2

k
β2 Epv1k´1pφkq

2˘.
(4.15)

To compute the expectation on the left, we need to iteratively compute the expectations
arising on the right. This is done in:

Lemma 4.5 Abbreviate βk :“ βσ´2
k . For all k “ 0, . . . , n,

E
`

φ2
k
ˇ

ˇFk`1
˘

“ φ2
k`1 `

1
βk
`

1
β2

k

“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

´
2
βk

φk`1v1kpφk`1q (4.16)

and, for all k “ 1, . . . , n, also

E
`

φkv1k´1pφkq
ˇ

ˇFk`1
˘

“
1
b

φk`1v1kpφk`1q ´
1
βk

1
b
“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

. (4.17)

Proof. We again start by computing some relevant integrals. The first of these uses similar
ideas as (4.9) with the resultˆ

e´bvk´1pφ`ζqζ2 µ1{βk
pdζq “

1
βk

e´vkpφq `
1
βk

d
dφ

ˆ
e´bvk´1pφ`ζqζ µ1{βk

pdζq

“
1
βk

e´vkpφq `
1
β2

k

d2

dφ2 e´vkpφq

“

´ 1
βk
`

1
β2

k

“

v1kpφq
2 ´ v2kpφq

‰

¯

e´vkpφq

(4.18)

for all k “ 1, . . . , n. Here we first interpreted one of the ζ’s as a term coming from the
derivative of the probability density of µ1{βk

and then used that to integrate by parts,
which reduces the computation to the integral in (4.9). Differentiating twice the formula
for e´v0 in turn showsˆ

e´
β0
2 pφ´φ1q

2
pφ´ φ1q

2νpdφq

“
1
β0

ˆ
e´

β0
2 pφ´φ1q

2
νpdφq `

1
β2

0

d2

dφ2

ˆ
e´

β0
2 pφ´φ1q

2
νpdφq

“

´ 1
β0
`

1
β2

0

“

v10pφq
2 ´ v20pφq

‰

¯

e´v0pφq.

(4.19)

To get (4.16) we now invoke φ2
k “ φ2

k`1` pφk ´ φk`1q
2` 2φk`1pφk ´ φk`1q and then apply

(4.18–4.19) to the second term and (4.7) to the third term.
The proof of (4.17) again starts by computing an integral; namely,ˆ

e´bvk´1pφ`ζqv1k´1pφ` ζqζ µ1{βk
pdζq

“ ´
1
b

d
dφ

ˆ
e´bvk´1pφ`ζqζ µ1{βk

pdζq “ ´
1
βk

1
b
“

v1kpφq
2 ´ v2kpφq

‰

e´vkpφq,
(4.20)
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where the last equality follows by plugging in an intermediate step from (4.18). This
shows that, for all k “ 1, . . . , n,

E
`

φkv1k´1pφkq
ˇ

ˇFk`1
˘

“ evkpφk`1q

ˆ
e´bvk´1pφk`1`ζq pφk`1 ` ζq v1k´1pφk`1 ` ζq µ1{βk

pdζq

“
1
b

φk`1v1kpφk`1q ´
1
βk

1
b
“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

,

(4.21)
where the first term arises via (4.10) and the second term via (4.20). �

We are now ready to give:
Proof of Proposition 4.1. We will keep using the above shorthands sk and βk whenever
convenient. The argument aims directly at an iterative computation of EpM2

kq. Here the
identities (4.16–4.17) give

E
`

M2
k
ˇ

ˇFk`1
˘

“ E
ˆ

”

φk ´
sk

β
v1k´1pφkq

ı2
ˇ

ˇ

ˇ

ˇ

Fk`1

˙

“ φ2
k`1 `

1
βk
`

1
β2

k

“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

´
2
βk

φk`1v1kpφk`1q

´
2sk

β

ˆ

1
b

φk`1v1kpφk`1q ´
1
βk

1
b
“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

˙

`
s2

k
β2 E

`

v1k´1pφkq
2 ˇ
ˇFk`1

˘

.

(4.22)

Next note that, by the definition of βk and the recursion sk`1 “ b´1sk ` σ2
k , the terms

containing φk`1v1kpφk`1q combine into the cross-term that arises from squaring the ex-
pression Mk`1 “ φk`1 ´ sk`1β´1v1kpφk`1q. This wraps (4.22) into

E
`

M2
k
ˇ

ˇFk`1
˘

“ M2
k`1`

σ2
k

β
`

σ2
k

β2

´

σ2
k `

2sk

b

¯

“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

`
1
β2

´

s2
kE
`

v1k´1pφkq
2 ˇ
ˇFk`1

˘

´ s2
k`1v1kpφk`1q

2
¯

.
(4.23)

Taking expectation and invoking the assumed uniform boundedness of tv1ku
n
k“0 and tv2ku

n
k“0,

we may replace σ2
k by 1 and sk by b

b´1 to get

EpM2
kq “ EpM2

k`1q `
1
β
`

1
β2

b` 1
b´ 1

E
“

v1kpφk`1q
2 ´ v2kpφk`1q

‰

`
1
β2

´ b
b´ 1

¯2´

E
`

v1k´1pφkq
2˘´ E

`

v1kpφk`1q
2˘
¯

`O
ˆ k
ÿ

i“0

b´i|σ2
k´i ´ 1|

˙

`Opb´kq,

(4.24)

where Opb´kq arises from the bound on the tail of the infinite series for the asymptotic
value of sk. Under Assumption 1.1, adding up the error terms over k “ 0, . . . , n shows
that these produce an Op1q correction under iteration. The same applies to the middle
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term as it leads to a telescoping sum which is bounded by the assumed uniform bound-
edness of tv1ku

n
k“0. Iterations of (4.24) then prove the desired claim. �

4.2 Technical lemmas.

In order to process the formula in Proposition 4.1 further we need a couple of technical
lemmas. First we note a way to simplify the right-hand side of (4.5).

Lemma 4.6 Let β ą 0 and assume that tv1ku
n
k“0 and tv2ku

n
k“0 are bounded uniformly in n ě 1.

Then for all n ě 1 and all k “ 0, . . . , n,

n
ÿ

i“k

E
“

v1ipφi`1q
2 ´ v2i pφi`1q

‰

“ ´b
n
ÿ

i“k

E
`

v1ipφi`1q
2˘`Op1q, (4.25)

where Op1q bounded uniformly in n and k subject to n ě k.

Proof. By the assumed boundedness of tv1ku
n
k“0 and tv2ku

n
k“0 it suffices to prove this for

k ě 1. Here the definition of vk from vk´1 gives

E
`

b2v1k´1pφkq
2 ´ bv2k´1pφkq

ˇ

ˇFk`1
˘

“ evkpφk`1q

ˆ
e´bvk´1pφk`1`ζq

“

b2v1k´1pφk`1 ` ζq2 ´ bv2k´1pφk`1 ` ζq
‰

µ1{βk
pdζq

“ evkpφk`1q
d2

dφ2
k`1

ˆ
e´bvk´1pφk`1`ζqµ1{βk

pdζq “ v1kpφk`1q
2 ´ v2kpφk`1q.

(4.26)

Taking expectation then shows

n
ÿ

i“k`1

E
“

v1ipφi`1q
2 ´ v2i pφi`1q

‰

“

n´1
ÿ

i“k

E
“

b2v1ipφi`1q
2 ´ bv2i pφi`1q

‰

. (4.27)

Relying again on the boundedness of tv1ku
n
k“0 and tv2ku

n
k“0, rearranging terms yields

pb2 ´ 1q
n
ÿ

i“k

E
`

v1ipφi`1q
2˘ “ pb´ 1q

n
ÿ

i“k

E
`

v2i pφi`1q
˘

`Op1q. (4.28)

Canceling b´ 1 on both sides then shows the claim. �

Next, in order to determine the asymptotic behavior of the sum on the right of (4.25),
we need to control the law of φk for large k. While this law does not converge by itself
due to the fact that the variance of φk stays of order k, the law of its fractional part (which
is all what we need to compute expectations of 1-periodic functions) does converge as
long as vk tends to a limit. In quantitative form, this is the subject of:

Lemma 4.7 Let β ą 0 and let v‹ be a 1-periodic continuous function such that (3.36) holds.
Let ν‹ be the Borel measure on r0, 1q defined by

ν‹pdzq :“
”

ˆ
r0,1s

e´pb`1qv‹pz1qdz1
ı´1

e´pb`1qv‹pzq1r0,1qpzqdz. (4.29)
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For k “ 1, . . . , n, abbreviate

An,k :“ pb` 1q sup
zPR

ˇ

ˇv‹pzq
ˇ

ˇ` sup
z,z1PR

ˇ

ˇvkpzq ´ bvk´1pz1q
ˇ

ˇ

`
β

2
maxtσ´2

k , 1u `
1
2

logp2π{βq ` log maxtσk, 1u
(4.30)

and

δk :“ sup
z,z1PR

ˇ

ˇ

ˇ

“

vkpzq ´ bvk´1pz1q
‰

´
“

v‹pzq ´ bv‹pz1q
‰

ˇ

ˇ

ˇ
` log maxtσk, σ´1

k u. (4.31)

Then for all k “ 1, . . . , n,

›

›Ppφk mod 1 P ¨q ´ ν‹
›

›

TV ď

n
ź

i“k

p1´ e´An,iq `

n
ÿ

j“k`1

p1´ e´δj´1q

j´2
ź

i“k

p1´ e´An,iq, (4.32)

where the last product is interpreted as 1 when j “ k` 1.

Proof. The proof proceeds by a coupling argument. First note that the assumptions
about v‹ ensure that

P‹pB | φq “ ev‹pφq
ˆ

e´bv‹pφ`ζq1Bpφ` ζ mod 1qµ1{βpdζq (4.33)

is a transition kernel on r0, 1q. Let pφ‹n, . . . , φ‹0q denote a run of Markov chain with tran-
sition probability P‹ and φ‹n drawn from ν‹ above. Write P‹ for the distribution of the
chain. Using that v‹ obeys (3.36) we now check that ν‹ is stationary for P‹. In particular,
we have P‹pφ‹k P ¨q “ ν‹ for all k “ 1, . . . , n.

Recall the following standard coupling of random variables X and Y taking values
in r0, 1qwith probability densities denoted as f , resp., g:

P
`

pX, Yq P B
˘

“

ˆ
1Bpx, xq f ^ gpxqdx

`

ˆ
B

r f pxq ´ f ^ gpxqsrgpyq ´ f ^ gpyqs
1´
´

f ^ gpzqdz
dx dy,

(4.34)

where f ^ gpxq :“ mint f pxq, gpxqu. If the pair is drawn using the first term, we will say
that X and Y get “coupled,” while if the pair is drawn using the second term, we say
that they get “uncoupled.”

We will now apply the above coupling recursively to generate a sequence

pφn`1
1, φn`1

‹q, . . . , pφ11, φ‹1q (4.35)

of r0, 1q ˆ r0, 1q-valued pairs of random variables as follows: Draw pφn`1
1, φn`1

‹q from
δ0 b ν‹. Then, given a sample of pφ1k`1, φ‹k`1q for some k “ 1, . . . , n, draw pφ1k, φ‹k q from
the above coupling measure with

f pzq :“ evkpφk`1q´bvk´1pzq 1
a

2π{βk

ÿ

jPZ

e´
βk
2 pz´φ1k`1`jq2 , (4.36)
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where βk :“ βσ´2
k , and

gpzq :“ ev‹pφ‹k`1q´bv‹pzq 1
a

2π{β

ÿ

jPZ

e´
β
2 pz´φ‹k`1`jq2 . (4.37)

As f is the probability density of pkp¨mod 1|φ1k`1q and g the probability density P‹p¨|φ
‹
k q,

this gives us a (Markovian) coupling of pφn`1 mod 1, . . . , φ1 mod 1q and a run of the
Markov chain with transition probability P‹ with initial law ν‹.

We will now use the explicit expression (4.34) to control the probabilities that pφ1k, φ‹k q
get “coupled” or get “uncoupled.” We start by deriving bounds on the terms entering
on the right of (4.34). First note that, for f and g as in (4.36–4.37), retaining only the j “ 0
term in the sums shows

f ^ gpzq ě e´An,k (4.38)

for all z P r0, 1q, regardless of the values of φ1k`1 and φ‹k`1. On the other hand, assuming
that φ1k`1 “ φ‹k`1, if σ2

k ě 1, then βk ď β and from (4.31) we get f pzq ě e´δk gpzq for
all z P r0, 1q. This implies f ^ gpzq ě e´δk gpzq leading to

gpzq ´ f ^ gpzq ď p1´ e´δkqgpzq (4.39)

for all z P r0, 1q. Similarly, still under φ1k`1 “ φ‹k`1, if σ2
k ď 1 then β ď βk and so

f pzq ď eδk gpzq for all z P r0, 1q. This now gives f ^ gpzq ě e´δk f pzq and so

f pzq ´ f ^ gpzq ď p1´ e´δkq f pzq (4.40)

holds for all z P r0, 1q. Using the fact that pφ1k, φ‹k q get “coupled” with probability equal
the the total “mass” of the first term on the right of (4.34) and get “uncoupled” with
probability equal to the total “mass” of the second part, the above observations readily
translate into the inequalities

rP
`

φ1k “ φ‹k
ˇ

ˇF‹k`1
˘

ě e´An,k a.s. (4.41)

and
rP
`

φ1k ‰ φ‹k
ˇ

ˇF‹k`1
˘

ď 1´ e´δk a.s. on tφ1k`1 “ φ‹k`1u, (4.42)

where we set F‹k :“ σpφ1i , φ‹i : i “ k, . . . , nqwrote rP for the coupling measure.
We now observe that the event that φ1k ‰ φ‹k entails one of two possibilities: either the

chains never got “coupled” up to and including the state indexed by k, or they did get
“coupled” at some index j “ k` 1, . . . , n but then got “uncoupled” and stayed so until
and including the state indexed by k. This means

rPpφ1k ‰ φ‹k q ď
rP
ˆ n
č

i“k

tφ1i ‰ φ‹i u

˙

`

n
ÿ

j“k`1

rP
ˆ

tφ1j “ φ‹j u X

j´1
č

i“k

tφ1i ‰ φ‹i u

˙

. (4.43)

Using (4.41), the first probability is bounded inductively by the product of 1´ e´An,i for i
ranging from k to n while (4.41–4.42) bounds the second probability by 1´ e´δj´1 times
the product of 1´ e´An,i for i ranging from k to j´ 2. Since Ppφ1k ‰ φ‹k q dominates the
total variation on the left (4.32), the claim follows. �
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4.3 Proof of Theorem 1.3.

We are now in a position to prove the conclusion concerning the covariance of the field.
We start with sub and supercritical cases that can be handled concurrently:
Proof of Theorem 1.3, β ‰ βc. Suppose b ě 2 and β ą 0 are such that either Theorem 3.4
or Theorem 3.6 applies, whichever is relevant. This in particular means existence of a
1-periodic continuously differentiable v‹ : R Ñ R and a P R such that (3.34–3.35) hold
with some some C1, η1 ą 0. (For β ă βc we have v‹ “ 0 for which this follows from
(3.22–3.23).) Morever, tv1ku

n
k“0 and tv2ku

n
k“0 are bounded uniformly in n ě 1.

The bounds (3.35) enable Proposition 4.1 and Lemma 4.6. In the notation of Lemma 4.7
the bound (3.32) implies

δk ď C1e´η1mintk,n´ku `
1
2

max
 

|σ2
k ´ 1|, |σ´2

k ´ 1|
(

(4.44)

while the uniform boundedness of tv1ku
n
k“0 and tv2ku

n
k“0 gives supněkě0 An,k ă 8. From

(3.35), the coupling inequality (4.32) and Assumption 1.1 we then get

sup
ně1

n
ÿ

k“0

ˇ

ˇ

ˇ
E
`

v1kpφk`1q
2˘´ E‹

`

v1‹pφq
2˘
ˇ

ˇ

ˇ
ă 8, (4.45)

where E‹ denotes expectation with respect to ν‹ and where the k “ 0 term is handled
using the uniform bound on v10 and v1‹. Since E‹pṽ1‹pφq2q does not depend on k, it follows
that the sum on the right of (4.25) equals

pn´ kqE‹pv1‹pφq
2q `Op1q. (4.46)

This implies the claim with

σ2pβq :“
1
β
´ b

1
β2

b` 1
b´ 1

´ 1
0 e´pb`1qv‹pφqv1‹pφq2 dφ´ 1

0 e´pb`1qv‹pφq dφ
(4.47)

which equals 1{β when β ď βc as v‹ “ 0 but is strictly less than that whenever v‹ is
non-trivial, as is the case for β ą βc. �

Remark 4.8 The computations in Section 6 (see, e.g., Lemma 6.8) show that

λ‹p1q “

d

2pb3 ´ 1q
pb` 1q2pb` 1q3

?
bθ ´ 1`Opbθ ´ 1q. (4.48)

This, along with the bounds (3.31) implies

v1‹pφq “ 4π

d

2pb3 ´ 1q
pb´ 1q2pb` 1q3

?
bθ ´ 1 sinp2πφq `Opbθ ´ 1q. (4.49)

It follows that, up to corrections of order pbθ ´ 1q3{2, the integrals in (4.47) reduce to
integrals with respect to the Lebesgue measure only. As

´ 1
0 sinp2πφq2dφ “ 1{2 we get

σ2pβq “
1
β
´ p4πq2

1
β2

c
b

b` 1
b´ 1

2pb3 ´ 1q
pb´ 1q2pb` 1q3

pbθ ´ 1q
1
2
`Op|bθ ´ 1|3{2q. (4.50)

A computation gives bθ ´ 1 “ 2π2

β2
c
pβ´ βcq `Oppβ´ βcq

2q. This now gives (1.16).
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With the above stated, the critical case requires only minor changes:
Proof of Theorem 1.3, β “ βc. Note that v‹ “ 0 in this case. Since pv1kq

2 decays as 1{k while
}vk}8 decays as 1{

?
k, we have

E
`

vkpφk`1q
2˘ “

ˆ
r0,1q

v1kpφq
2dφ`Opk´3{2q. (4.51)

In particular, in this case the finite-k corrections to the law yield only Op1q term. Writing
the right-hand side of (3.28) as 4πA sinp2πφq and using again that

´ 1
0 sinp2πφq2dφ “ 1{2,

the sum in (4.5) thus equals

1
βc
pn´ kq `

„

1
β2

c
b

b` 1
b´ 1

8π2A2


log
n
k
`Op1q. (4.52)

Plugging n :“ logb1{2pdiampΛnqq and k :“ logb1{2p2 ` dpx, yqq `Op1q and substituting
for A yields the claim. �

Remark 4.9 The previous proofs demonstrate the reason for the numerical closeness of
the coefficients in front of the second order term at βc and the near-critical expansion
of σ2pβq in (1.16). Indeed, both rely on the expansion v1kpφq “ p4πAεq sinp2πφq `Opε2q,
where ε :“ k´1{2 in the critical case and ε :“

a

2pbθ ´ 1q in the near-critical case and A
is the constant on the right of (3.27). Plugging this into (4.5) with the help of (4.25), we
also need that Epsinp2πφkq

2q “ 1{2`Opεq once k and n´ k are sufficiently large.

Remark 4.10 The covariance computation reveals a log-correlated structure that has, in
recent years, allowed control of the limit law of the maximum and the full extremal
process of the underlying field in a number of specific models of interest. Two examples
most relevant for the present work where this has been done are the Branching Random
Walk (Aı̈dekon [3], Madaule [47]) and the GFF on subdomains of Z2 (Bramson, Ding and
Zeitouni [22], Biskup and Louidor [17–19]; see also [15]). In [16] the present authors used
the tree-indexed Markov chain representation of the hierarchical DG-model to control
the maximum and the extremal process throughout the subcritical regime. This leaves
the question of what happens at, and beyond, βc.

Unfortunately, the covariance calculation is not sufficient to make reliable predictions
about the law of the maximum. Indeed, we need a sharp asymptotic of the proba-
bility that φx exceeds quantities of order n, and likely quite a bit more. While we
presently do not see how to extract this information from our calculations, we do be-
lieve that the maximum at β ą βc scales as for the Branching Random Walk with step
distribution N p0, σ2pβqq while, at β “ βc, the variance of the steps should be taken as
1{βc´ c̄ log n

n . In short, we conjecture that the model is well approximated by the Branch-
ing Random Walk with step distribution adjusted to match (1.14).

5. FRACTIONAL CHARGE ASYMPTOTIC

We now move to the computation of the asymptotic of the fractional charge correlation
stated in Theorem 1.4. We start with some general observations that apply to all β ą 0
and then prove the statement for subcritical, critical and supercritical β.
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5.1 General considerations.

The proof of Theorem 1.4 again relies on the Markov chain representation of the field;
see Section 3.1. As before, we will write φn`1, φn, . . . , φ0 for a run of the chain along the
path from the root to a generic leaf-vertex indexed so that φn is the value at the root and
φn`1 “ 0. We start by introducing the key iteration for the fractional-charge setting:

Lemma 5.1 Let α P R and, given tw1pqquqPN P `1pZq, define twkp¨qu
n`1
k“1 by the recursion

wk`1pqq :“
ak´1p0qb

akp0q

ÿ

`1,...,`bPZ
`1`¨¨¨``b“q

ˆ b´1
ź

i“1

ak´1p`iq

ak´1p0q

˙

wkp`bq θ
pq`αq2

k . (5.1)

Then twkpqquqPZ P `
1pZq for all k “ 1, . . . , n` 1 and so we can set

fkpzq :“ ak´1p0qevk´1pzq
ÿ

qPZ

wkpqqe2πiqz. (5.2)

Moreover, with Fk as in (4.3),

E
`

e2πiαφk fkpφkq
ˇ

ˇFk`1
˘

“ e2πiαφk`1 fk`1pφk`1q (5.3)

then holds for all k “ 1, . . . , n. In short, te2πiαφk fkpφkqu
n`1
k“1 is a reverse martingale.

Proof. Using that takpqquqPZ P `1pZq for all k “ 0, . . . , n we check that twk`1pqquqPZ P

`1pZq whenever twkpqquqPZ P `1pZq, so the main part to prove is (5.3). Continuing to
abbreviate βk :“ βσ´2

k , let k “ 1, . . . , n and observe

E
`

e2πiαφk fkpφkq
ˇ

ˇFk`1
˘

“ evkpφk`1q

ˆ
e´bvk´1pφk`1`ζqe2πiαpφk`1`ζq fkpφk`1 ` ζqµ1{βk

pdζq

“ ak´1p0qe2πiαφk`1evkpφk`1q

ˆ

ˆ
e´pb´1qvk´1pφk`1`ζqe2πiαζ

ÿ

`bPN

wkp`bq e2πi`bpφk`1`ζqµ1{βk
pdζq.

(5.4)

The sum over `b can be exchanged with the integral thanks to twkpqquqPZ P `1pZq. In-
voking e´vk´1pzq “

ř

`PZ ak´1p`qe2πi`z along with the fact that
´

e2πirζµ1{βk
pdζq “ θr2

k for
any r P R, we then compute the resulting integral to be

ÿ

`bPZ

wkp`bq

ˆ
e´pb´1qvk´1pφk`1`ζqe2πiαζe2πi`bpφk`1`ζqµ1{βk

pdζq

“
ÿ

`1,...,`bPZ

ˆ b´1
ź

i“1

ak´1p`iq

˙

wkp`bqe2πip`1`¨¨¨``bqφk`1 θ
p`1`¨¨¨``b`αq2

k .

(5.5)

Writing the sum as two sums, one over q P Z and the other over `1, . . . , `b P Z subject
to `1 ` ¨ ¨ ¨ ` `b “ q, the definition of wk`1 reduces the expectation of interest to

E
`

e2πiαφk fkpφkq
ˇ

ˇFk`1
˘

“ e2πiαφk`1 akp0qevkpφk`1q
ÿ

qPZ

wk`1pqqe2πiqφk`1 . (5.6)
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This equals e2πiαφk`1 fk`1pφk`1q thus proving (5.3) as desired. �

Note that the case k “ 0 is excluded from the previous lemma in light of the condi-
tional law of φ0 given F1 being of a different form than the law of φk given Fk`1 for k ě 1.
To get the iteration started, we thus need:

Lemma 5.2 Suppose that f : R Ñ R admits the Fourier representation

f pzq “
ÿ

qPZ

wpqqe2πiqz (5.7)

such that twpqquqPZ P `
1pZq. Then for all α P R,

E
`

e2πiαφ0 f pφ0q
ˇ

ˇF1
˘

“ e2πiαφ1`v0pφ1q

d

2πσ2
0

β

ÿ

qPZ

w ˚ apqq θ
pq`αq2

0 e2πiqφ1 , (5.8)

where tapqquqPZ are the Fourier coefficients of ν; i.e., apqq :“
´
r0,1q e´2πiqzνpdzq, and w ˚ a is

the usual convolution,
w ˚ apqq :“

ÿ

`PZ

wpq´ `qap`q, q P Z. (5.9)

Proof. In light of twpqquqPZ P `1pZq it suffices to focus on f pzq :“ e2πiqz for some q P Z.
With β0 :“ βσ´2

0 , the bottom line in (3.15) then gives

E
`

e2πipq`αqφ0
ˇ

ˇF1
˘

“ ev0pφ1q`2πipq`αqφ1

ˆ
e2πipq`αqpφ´φ1q´

β0
2 pφ´φ1q

2
νpdφq. (5.10)

Using the 1-periodicity of ν we now check that the integral is a 1-periodic function of φ1.
The Gaussian decay of the integrand in turn permits us to swap any number of deriva-
tives with respect to φ1 with the integral which means that the integral is actually a C8-
function of φ1. It follows that one can express the integral as a uniformly convergent
Fourier series. Comparing the Fourier coefficients we get (5.8). �

To connect the above to the main objective of Theorem 1.4, we note:

Corollary 5.3 Let β ą 0 and α P R and let twku
n`1
k“1 be defined by (5.1) with

w1pqq :“

d

2πσ2
0

β

apqq
a0p0q

θ
pq`αq2

0 , q P Z, (5.11)

where tapqquqPZ denote for the Fourier coefficients of ν. Let t fku
n`1
k“1 be defined from twku

n`1
k“1 as

in (5.2). Then wkp¨q is strictly positive for all k “ 1, . . . , n` 1 and

xe2πiαpφx´φyqyn,β “ E
`

| fkpφkq|
2˘ (5.12)

holds with k :“ kpx, yq for all distinct x, y P Λn. (Here kpx, yq is as in (4.4).)

Proof. The strict positivity of wkp¨q is immediate from (5.11), (5.1) and the positivity
of ak’s so we only need to prove (5.12). Let x, y P Λn be distinct and set k :“ kpx, yq. The
tree-indexed Markov representation of the field tφxuxPΛn from Section 3.1 yields

xe2πiαpφx´φyqyn,β “ E
´

Epe2πiαφ0 |FkqEpe´2πiαφ0 |Fkq
¯

. (5.13)
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The first conditional expectation corresponds to the choice f :“ 1 in (5.8) for which
wpqq :“ δq,0. The identity (5.8) then gives Epe2πiαφ0 |F1q “ e2πiαφ1 f1pφ1q for f1 corre-
sponding to w1 from (5.11) via (5.2). Using (5.3) we obtain Epe2πiαφ0 |Fkq “ e2πiαφk fkpφkq.
Since the second expectation in (5.13) is the complex conjugate of the first, plugging this
in (5.13) yields (5.12). �

We remark that, besides k, the sequence twkpqquqPZ depends also on n through the
n-dependence of the sequence tσ2

k u
n
k“0. While we keep that dependence implicit, it may

need to be noted in statements where uniformity in n is required.

5.2 Below criticality.

Corollary 5.3 tells us that, for the asymptotic of the fractional charge at large separations
of x and y, we need to track the large-k asymptotic form of fk initiated from (5.11). As it
turns out, the cases of β ď βc are united by the fact that fk is completely dominated by
the coefficient wkp0q.

Lemma 5.4 Let β P p0, βcs, α P p´1{2, 1{2q and let w1 be as in (5.11). Then

lim
kÑ8

sup
něk

ÿ

q‰0

wkpqq
wkp0q

“ 0. (5.14)

Proof. We will prove that, under the stated conditions on β and α, there exist rC ą 0, rη ą 0
and k0 ě 2 such that

ÿ

q‰0

wkpqq
wkp0q

ď rC
k´k0
ÿ

j“2

e´rη j
ÿ

q‰0

ak´jpqq
ak´jp0q

(5.15)

holds for all k ě k0 ` 2, uniformly in n. For this we note that, reducing the sum in (5.1)
to the term with `1 “ ¨ ¨ ¨ “ `b´1 “ 0 shows

wk`1p0q ě
ak´1p0qb

akp0q
θα2

k wkp0q. (5.16)

Dividing each side of (5.1) by the corresponding side of this bound then gives

wk`1pqq
wk`1p0q

ď
ÿ

`1,...,`bPZ
`1`¨¨¨``b“q

ˆ b´1
ź

i“1

ak´1p`iq

ak´1p0q

˙

wkp`bq

wkp0q
θ
pq`αq2´α2

k . (5.17)

Now observe that for q ‰ 0 we have pq` αq2 ´ α2 “ q2 ` 2qα ě 1´ 2|α| and abbreviate

uk :“
ÿ

q‰0

ak´1pqq
ak´1p0q

. (5.18)

Summing (5.17) over q ‰ 0, we have two cases to consider on the right-hand side: ei-
ther `b “ 0, in which case at least one of `1, . . . , `b´1 must be non-zero, or `b ‰ 0 in which
case the remaining indices can, as an upper bound, be summed over as free. This yields

ÿ

q‰0

wk`1pqq
wk`1p0q

ď p1` ukq
b´2bθ

1´2|α|
k uk ` p1` ukq

b´1θ
1´2|α|
k

ÿ

q‰0

wkpqq
wkp0q

, (5.19)
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where the factor b in the first term dominates the number of choices of the first non-zero
term among `1, . . . , `b´1.

Now observe that Theorems 3.4 and 3.5 imply supněk uk Ñ 0 as k Ñ 8. In light
of |α| ă 1{2, Assumption 1.1 and supkďn θk ă 1, there exists k0 ě 1 such that

e´rη :“ sup
někěk0

p1` ukq
b´1θ

1´2|α|
k ă 1. (5.20)

Using this in (5.19) and iterating we get (5.15) by invoking twk0pqquqPZ P `1pZq which
is checked from (5.1), (5.11) and the boundedness of tapqquqPZ. With (5.15) in hand, we
then get (5.14) by using again supněk uk Ñ 0 as k Ñ8. �

Using very similar arguments, we also get:

Lemma 5.5 Let β P p0, βcs, α P p´1{2, 1{2q and let w1 be as in (5.11). Then

0 ă inf
někě1

wk`1p0q
wkp0qθα2

k

ď sup
někě1

wk`1p0q
wkp0qθα2

k

ă 8. (5.21)

Proof. For the lower bound in (5.21) we use (5.16) to get

wk`1p0q
wkp0qθα2

k

ě
ak´1p0qb

akp0q
. (5.22)

The quantity on the right is positive uniformly in n ě k ě 1 thanks to (3.21) (for β ă βc)
and (3.24) (for β “ βc) and the bound akp0q ď p

ř

qPZ ak´1pqqqb. For the upper bound in
(5.21) we relax the condition `1 ` ¨ ¨ ¨ ` `b “ q in (5.17) to get

wk`1p0q
wkp0qθα2

k

ď

ˆ

ÿ

`PZ

ak´1p`q

ak´1p0q

˙b´1
ÿ

qPZ

wkpqq
wkp0q

. (5.23)

The first sum is again bounded uniformly in n` 1 ě k ě 1 thanks to (3.21) and (3.24)
while the second sum is bounded thanks to (5.19). �

We are now ready for:
Proof of Theorem 1.4, β ă βc. We will derive an approximate recursion equation for the
sequence twkp0qun`1

k“1 . For this we separate the term with `1 “ ¨ ¨ ¨ “ `b “ 0 in (5.1) and
use arguments similar to those underlying the proof of (5.23) to bound the remaining
terms. This yields

ˇ

ˇ

ˇ

ˇ

wk`1p0q´
ak´1p0qb

akp0q
θα2

k wkp0q
ˇ

ˇ

ˇ

ˇ

ď

«

b
ˆ

ÿ

`PZ
`‰0

ak´1p`q

ak´1p0q

˙ˆ

ÿ

`PZ

ak´1p`q

ak´1p0q

˙b´2
ÿ

`PZ

wkp`q

wkp0q

ff

θα2

k wkp0q,
(5.24)

where the prefactor b accounts for the choice of the smallest index with `i ‰ 0. The last
two sum on the right are bounded uniformly in n ě k ě 1 as above while the exponen-
tial decay (3.21) in Theorem 3.4 shows that the first sum decays exponentially in k. By
the same reasoning, ak´1p0qb{akp0q differs from 1 by a factor that decays exponentially
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with k. It follows that for each β P p0, βcq there exists η ą 0 such that

wk`1p0q “ eOpe´ηkqθα2

k wkp0q, (5.25)

with the implicit constant in Ope´ηkq bounded uniformly in n ě k ě 1. Here we relied
on Lemma 5.5 in moving the error to the exponent for small k.

We now set n1 :“ tn{2u and let Cn :“ pwn1p0qθ´α2n1q2. In light of θα2

i “ θα2
θα2pσ2

i ´1q,
for k ď n1 we then have

wkp0qθ´α2k “
a

Cn exp

#

´

n1´1
ÿ

i“k

log
´ wi`1p0q

wip0qθα2

i

¯

` α2 logp1{θq
n1´1
ÿ

i“k

pσ2
i ´ 1q

+

(5.26)

The same identity with the limits of the sums interchanged applies also to k ě n1 (pro-
vided k ď n). Invoking (5.25) and Assumption 1.1, we get wkp0qθ´α2k “

?
Cn ` op1q

where op1q Ñ 0 as mintk, n´ ku Ñ 8. To see that tCnuně1 is bounded and uniformly
positive, take k :“ 1 in (5.26) and note that, by Assumption 1.1, w1p0q is positive and
bounded uniformly in n ě 1. With the help of Lemma 5.4 and some elementary facts
from Fourier analysis, we now conclude that

ˇ

ˇ fkpzq
ˇ

ˇ

2
“

“

Cn ` op1q
‰

θ2α2k (5.27)

holds with op1q Ñ 0 as mintk, n´ ku Ñ 8, uniformly in z P R. Plugging this in (5.12)
then proves (1.18) for β ă βc. �

5.3 At criticality.

In the critical and supercritical situations, a simple (albeit approximate) recursion linking
wkp0q to wk´1p0q is not enough to capture the actual decay. Indeed, as we will show,
wkp0q will receive non-trivial contributions from wk´jp0q with j ě 2 as well. To prepare
the needed formulas, we first condense (5.1) as

wk`1pqq “ θ
pq`αq2

k

ÿ

`PN

γkpq´ `qwkp`q, (5.28)

where, abusing our earlier notation, we set

γkpqq :“
ak´1p0qb

akp0q

ÿ

`1,...,`b´1PZ

`1`¨¨¨``b´1“q

b´1
ź

i“1

ak´1p`iq

ak´1p0q
. (5.29)

Note that, as many of the above objects, γk depends also on n but we keep that depen-
dence implicit. We now rewrite (5.28) as follows:

Lemma 5.6 For each n` 1 ě k ě 2 and p, q P Z let

Γk,1pp, qq :“ θ
pp`αq2

k´1 θ´α2
γk´1pp´ qq (5.30)

and for n` 1 ě k ě 3 and j “ 2, . . . , k´ 1, set

Γk,jpp, qq :“
ÿ

q1,...,qj´1PZrt0u
q0“p, qj“q

ˆ j´1
ź

i“0

θ
pqi`αq2

k´i´1 θ´α2
˙ j
ź

i“1

γk´ipqi´1 ´ qiq. (5.31)
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Then for all n` 1 ě k ě 2,

wkppq “
k´1
ÿ

j“1

Γk,jpp, 0qθα2 jwk´jp0q `
ÿ

qPZrt0u
Γk,k´1pp, qqθα2pk´1qw1pqq. (5.32)

Moreover, for all n` 1 ě k ě 2, all 1 ď j ă k and all p P Z,

ÿ

qPZ

Γk,jpp, qq ď θ´c̃`|p|p|p|´1qσ2
min`p1´2|α|qpj´1q

j
ź

i“1

ÿ

`PZ

γk´ip`q (5.33)

holds with c̃ :“ maxtα2, p1´ |α|q2u
řn

i“0 |σ
2
i ´ 1| and σ2

min :“ infi“0,...,n σ2
i .

Proof. We start by proving (5.32). As is checked directly from (5.28), this holds for k “ 2.
For general k ě 3, we plug (5.32) for wk´1p`q in

wkppq “ θ
pp`αq2

k´1 γk´1ppqwk´1p0q `
ÿ

`‰0

θ
pp`αq2

k´1 γk´1pp´ `qwk´1p`q (5.34)

which itself follows from (5.28). With the help of

θ
pp`αq2

k´1 γk´1ppq “ Γk,1pp, 0qθα2
(5.35)

and
ÿ

`‰0

θ
pp`αq2

k´1 γk´1pp´ `qΓk´1,jp`, qq “ θα2
Γk,j`1pp, qq (5.36)

we now prove (5.32) for k from (5.32) for k ´ 1 and thus show (5.32) to be valid for
all n` 1 ě k ě 2 by induction.

For the bound (5.33) recall that

pq` αq2 ě |q|2 ´ 2|α||q| ` α2 “ |q|p|q| ´ 1q ` |q|p1´ 2|α|q ` α2 (5.37)

For q0 :“ p and any q1, . . . , qj´1 ‰ 0 we thus get

j´1
ź

i“0

θ
pqi`αq2

k´i´1 θ´α2

ď

ˆ

θα2pσ2
k´1´1q

j´1
ź

i“1

θpσ
2
k´i´1´1qp1´2|α|`α2q

˙

θ|p|p|p|´1qσ2
k´1`p1´2|α|qpj´1q.

(5.38)

Plugging this in (5.31), using σ2
k´1 ě σ2

min and noting that the quantity in the large paren-
theses is bounded by θ´c̃, we get (5.33) by performing the sums over q1, . . . , qj. �

The main point of the bound (5.33) is that, for α P p´1{2, 1{2q and with Assumption 1.2
in force, the second sum on the right of (5.32) decays exponentially faster than the first
and can thus be regarded as an error whenever

θp1´2|α|q
ÿ

`PZ

γkp`q ă 1. (5.39)

The latter is true for mintk, n´ ku large up to, and even slightly above βc.
Formula (5.32) reduces the iterations to those of the sequence twkp0qun`1

k“1 . (That this
suffices at criticality has been shown in Lemma 5.4. We wrote (5.32) in more generality
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to prepare for supercritical situations.) Next we need good control of the asymptotic
behavior of the coefficients Γk,jp0, 0q. This comes in:

Lemma 5.7 Let β “ βc, α P p´1{2, 1{2q and let A :“ r b3´1
pb´1q2pb`1q3 s

1{2 be the constant on the
right of (3.27). For 0 ď k ď n set

ek :“
ÿ

jěmint
?

k,n´
?

ku

dj, (5.40)

where tdjujě0 is the sequence from Assumption 1.1. Then

Γk,1p0, 0q “ exp
 

´2pb´ 1qA2k´1 `Opk´2q `Opk´1ekq `Opdmintk´1,n´k`1uq
(

(5.41)

and, for j “ 2, . . . , k´ 1 and η defined by e´η :“ b´
1
2 p1´2|α|q,

Γk,jp0, 0q “
`

b´p1`2αqpj´1q`b´p1´2αqpj´1q˘pb´ 1q2A2 1
k

`Ope´η jk´2q `O
`

e´η jk´1pek´1 ` ek´jq
˘

(5.42)

where the error bounds are uniform in j, k and n such that 2 ď j ă k ď n ` 1 and in α on
compact subsets of p´1{2, 1{2q.

Proof. The proof will require the results in Theorem 3.5 to extract the asymptotic behavior
of the relevant coefficients γk. For Γk,1p0, 0q we only need γkp0q. Here we treat explicitly
the term corresponding to permutations of p1,´1, 0, . . . , 0q in the sum in (5.29) as well
as in the sum representing akp0q via ak´1p¨q and note that, by (3.24), the remaining terms
give contributions of order k´2. Applying also (3.27), Theorem 3.5 gives

γkp0q “
1` pb´ 1qpb´ 2qλ2

k `Opλ4
kq

1` bpb´ 1qλ2
k `Opλ4

kq

“ 1´ 2pb´ 1qλ2
k `Opλ4

kq

“ 1´ 2pb´ 1qA2k´1 `Opk´2q `Opk´1ekq

“ exp
 

´2pb´ 1qA2k´1 `Opk´2q `Opk´1ekq
(

,

(5.43)

where λk :“ akp1q{akp0q and where we used that e2
k “ Opekq and noted that the exponen-

tial form is legit thanks to γk´1p0q being positive uniformly in n ě k ě 1. From (5.43)
and θk´1 “ θσ2

k´1 we then readily get

Γk,1p0, 0q “ eOpσ2
k´1´1q exp

 

´2pb´ 1qA2k´1 `Opk´2q `Opk´1ekq
(

. (5.44)

With the help of (1.6) this shows (5.41).
For Γk,jp0, 0q with j “ 2, . . . , k´ 1 we will need the leading-order asymptotic of γkp1q

and suitable bounds on γkpqq with |q| ą 1. For γkp1q we treat explicitly the terms corre-
sponding to permutations of p1, 0, . . . , 0q in (5.29) and apply (3.27) to get

γkp1q “ pb´ 1qA
1
?

k
`Opk´1q `Opk´1{2ekq

“ pb´ 1qA
1
?

k
eOpk´1{2q`Opekq.

(5.45)
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For the remaining coefficients we invoke (3.24) with the result

γkpqq ď c
´ 1

1`
?

k

¯|q|
(5.46)

where c is a constant independent of q P Z and n ě k ě 1.
With (5.45–5.46) in hand, we now treat the pj´ 1q-tuples with q1 “ ¨ ¨ ¨ “ qj´1 “ ˘1 in

(5.31) (with p “ q “ 0) and, for the remaining terms, bound the prefactors using (5.38)
while noting that the q0, . . . , qj under the sum necessarily satisfy |q1 ´ q0| ` ¨ ¨ ¨ ` |qj ´

qj´1| ě 4. This yields

Γk,jp0, 0q “
“

hk,jpαq`hk,jp´αq
‰

γk´1p1qγk´jp1q
j´1
ź

i“2

γk´ip0q

`Op1qb´p1´2|α|qj
ÿ

p1,...,pj´1PZ

|p1|`¨¨¨`|pj´1|ě4

j
ź

i“1

γk´ippiq,
(5.47)

where pi represents qi ´ qi´1,

hk,jpαq :“ b´p1`2αqpj´1q´α2pσ2
k´1´1q

j´1
ź

i“1

b´p1`αq2pσ2
k´i´1´1q (5.48)

and where the symmetry γkp´`q “ γkp`qwas invoked to simplify the first term.
Let η ą 0 be as in the statement. Using (5.46) we now check that the second term on

the right of (5.47) is at most Ope´η jk´2q, uniformly in j “ 2, . . . , k´ 1. As to the first term,
collecting the error terms in (5.43), (5.45) and (5.48) shows

hk,jpαqγk´1p1qγk´jp1q
j´1
ź

i“2

γk´ip0q “ b´p1`2αqpj´1qpb´ 1q2
A2

k
eOpũk,jq, (5.49)

where

ũk,j :“ log
k

k´ j
`

j
ÿ

i“1

|σ2
k´i ´ 1| ` ek´1 ` ek´j ` pk´ 1q´1{2 ` pk´ jq´1{2

`

j
ÿ

i“1

1
k´ i

`

j
ÿ

i“1

1
pk´ iq2

`

j
ÿ

i“1

ek´i

k´ i
.

(5.50)

Now observe that the first, fifth, sixth, seventh and eighth term on the right are bounded
by a constant times j{k, while the second and the last term are bounded by ek´j ` ek´1.
It follows that

ũk,j “ Opek´1 ` ek´jq `Opj{kq. (5.51)

Borrowing part of the exponential decay from the prefactor b´p1`2αqpj´1q to absorb the
Opj{kq-term shows that the quantity in (5.49) equals

b´p1`2αqpj´1qpb´ 1q2
A2

k
`Opek´1 ` ek´jqk´1e´η j. (5.52)

Plugging this in (5.47), we get (5.42). �
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We will now show how to use the above to control the fractional-charge asymptotic
when β “ βc. Set τ̃ :“ 1

2 τpαq for τpαq from (1.19) and observe that we then have

τ̃` 2pb´ 1qA2 “

8
ÿ

j“2

`

b´p1`2αqpj´1q ` b´p1´2αqpj´1q˘pb´ 1q2A2 (5.53)

for A as above. Setting

rk :“ k´τ̃θ´α2kwkp0q, (5.54)

the proof of Theorem 3.5 will boil down to showing that rk is close to a positive and finite
n-dependent constant once k and n´ k are large. For this we first prove:

Lemma 5.8 Let β “ βc and suppose that the sequence tdjujě0 from Assumption 1.1 obeys
ř

jě1 dj logpjq ă 8. Then
0 ă inf

někě1
rk ď sup

někě1
rk ă 8. (5.55)

Proof. For A as above, denote

hj :“ pb´p1`2αqpj´1q ` b´p1´2αqpj´1qqpb´ 1q2A2 (5.56)

and, recalling e´η :“ b´
1
2 p1´2|α|q, abbreviate

sk :“ k´2 ` k´1ek ` dmintk´1,n´k`1u,

uk,j :“ e´η j“k´2 ` k´1pek´1 ` ek´jq
‰

.
(5.57)

Then use the asymptotic forms from Lemma 5.7 to cast (5.32) as

rk “
´

1´
1
k

¯τ̃
e´2pb´1qA2k´1`Opskqrk´1

`

k´1
ÿ

j“2

hj
1
k

´

1´
j
k

¯τ̃
rk´j `O

ˆ k´1
ÿ

j“2

uk,jrk´j

˙

`Ope´ηkq,
(5.58)

where the last error term arises from the aforementioned bound on the second sum in
(5.32). Now set Mk :“ maxj“1,...,k rj and invoke 1´ 1

k ď e´1{k and 1´ j
k ď 1 to get

Mk ď

„

e´rτ̃`2pb´1qA2sk´1
`

1
k

ÿ

jě2

hj ` c
´

sk `

k´1
ÿ

j“2

uk,j

¯



Mk´1 ` ce´ηk (5.59)

for some constant c ą 0 independent of n ě k ą j ě 2. The choice of τ̃ ensures (via (5.53))
that the sum of the first two terms in the square brackets equals 1`Opk´2q. To prove
uniform boundedness of tMku

n
k“1 it thus suffices to show that

řn
k“1 sk and

řn
k“1

řk´1
j“2 uk,j

are bounded uniformly in n. In light of Assumption 1.1, this reduces to uniform bound-
edness of

řn
k“1 k´1ek. Here we compute

n
ÿ

k“1

k´1ek ď 2
ÿ

kě1

1
k

ÿ

jě
?

k

dj ď 2
ÿ

jě1

dj
ÿ

1ďkďj2

1
k
ď 2

ÿ

jě1

dj logpj2q (5.60)

which we assumed to be finite.
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Concerning the lower bound, denote mk :“ minj“1,...,k rj and apply the inequality
wk´jp0q ě pk´ jqτ̃θα2pk´jqmk´1 in the first sum on the right of (5.32). Dropping the second
sum and invoking Lemma 5.7 along with the bound p1´ j

k q
τ̃ ě 1´ τ̃ j{k shows

mk ě

„

e´rτ̃`2pb´1qA2sk´1´c1sk `
1
k

k
ÿ

j“2

hj ´
τ̃

k2

ÿ

jě2

jhj ´ c1
k´1
ÿ

j“2

uk,j



mk´1 (5.61)

for some constant c1 ą 0. We now check that there is k0 ě 1 such that the the term in the
square bracket is uniformly positive for n ě k ě k0 and differs from 1 by a quantity that
is uniformly summable on k “ 1, . . . , n. It follows that mk ě c2mk0 for all n ě k ě k0. To
extend the bound to k ď k0 we call upon Lemma 5.5 which gives mk ě c3k´τ̃ for c3 ą 0
independent of n ě k ě 1. �

We are now ready for:
Proof of Theorem 1.4, β “ βc. We start by deriving a recursive bound on the difference
rk ´ rk´1. For this we only need to expand a bit on the arguments from the proof of
Lemma 5.8. Indeed, using that trku

n
k“1 is bounded, we can trim (5.58) to the form

rk “ rk´1 ´
1
k
“

τ̃` 2pb´ 1qA2‰rk´1 `
1
k

k´1
ÿ

j“2

hjrk´j `Opvkq, (5.62)

where vk :“ k´2 ` e´ηk ` sk `
řk´1

j“2 uk,j. For our choice of τ̃ and η, this gives

rk ´ rk´1 “
1
k

k´1
ÿ

j“2

hjprk´j ´ rk´1q `Opvkq. (5.63)

With the help of the triangle inequality and a simple interchange of two sums we get

|rk ´ rk´1| ď
1
k

k´2
ÿ

i“1

´

ÿ

jěi`1

hj

¯

|rk´i ´ rk´i´1| ` avk (5.64)

for a constant a ě 0 independent of n ě k ě 1. Setting

k0 :“

»

—

—

—

ÿ

iě1

eηi
´

ÿ

jěi`1

hj

¯

fi

ffi

ffi

ffi

, (5.65)

where the sum over i is finite for η as above, we assume that a is so that the bound

|rj ´ rj´1| ď a
j´2
ÿ

i“0

e´ηivj´i (5.66)

holds for all j “ 2, . . . , k0.
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We now claim that (5.66) is true for all j “ 1, . . . , n. Indeed, suppose k ě k0 is such
that (5.66) holds for j “ 2, . . . , k´ 1. Then plugging the bound in (5.64) yields

|rk ´ rk´1| ď avk `
a
k

k´2
ÿ

i“1

´

ÿ

jěi`1

hj

¯

k´2
ÿ

`“i

e´ηp`´iqvk´`

“ avk `
a
k

k´2
ÿ

`“1

„

ÿ̀

i“1

eηi
´

ÿ

jěi`1

hj

¯



e´η`vk´`.

(5.67)

Noting that the quantity in the square bracket is bounded by k0, the fact that k ě k0 then
implies (5.66) for j :“ k. This proves (5.66) for all j “ 2, . . . , n by induction.

With (5.66) in hand, we proceed similarly as in the subcritical situations. Indeed,
abbreviate n1 :“ tn{2u, set Cn :“ r2

n1 and note that, by Lemma 5.8, Cn this is positive and
finite uniformly in n ě 1. The inequality (5.66) implies

ˇ

ˇrk ´
a

Cn
ˇ

ˇ ď
a

1´ e´η

maxtk,n´ku
ÿ

j“mintk,n´ku

vj `
a

1´ e´η

k´1
ÿ

j“1

e´η jvk´j. (5.68)

The assumption
ř

jě1 dj logpjq ă 8 along with the bounds in the proof of Lemma 5.8
then give rk ´

?
Cn Ñ 0 as mintk, n´ ku Ñ 0. Using this in (5.54) along with 2τ̃ “ τpαq,

Lemma 5.4 and standard facts about Fourier series show
ˇ

ˇ fkpzq
ˇ

ˇ

2
“

“

Cn ` op1q
‰

kτpαqθα2k (5.69)

with op1q Ñ 0 as mintk, n´ ku Ñ 8 uniformly in z P R. Plugging k :“ kpx, yq we get
(1.18) for β “ βc. �

5.4 Above criticality.

Our last item of business in this section is the asymptotic of the fractional charge for β
slightly above βc. Throughout we assume that the sequence tdkukě0 in Assumption 1.1
exhibits exponential decay.

We will again rely on the representation from Lemma 5.6 for which we need to iden-
tify the asymptotic values of the coefficients Γk,jpp, 0q. Abbreviate Ξbpqq :“ tp`1, . . . , `bq P

Zb : `1 ` ¨ ¨ ¨ ` `b “ qu and, with tλ‹pqqunPZ as in Theorem 3.6, set

γ‹pqq :“

ř

¯̀PΞb´1pqq
śb´1

i“1 λ‹p`iq
ř

¯̀1PΞbp0q
śb

i“1 λ‹p`1iq
, (5.70)

where ¯̀ stands for p`1, . . . , `b´1q and ¯̀1 stands for p`11, . . . , `1bq. Note that, by (3.30), the
sums are finite for bθ ´ 1 small and γ‹ppq “ γ‹p´pq by λ‹pqq “ λ‹p´qq. Now let

Γ‹1ppq :“ γ‹ppq (5.71)

and, for j ě 2, let

Γ‹j ppq :“
ÿ

q1,...,qj´1PZrt0u
q0“p, qj“0

ˆ j´1
ź

i“0

θpqi`αq2´α2
˙ j
ź

i“1

γ‹pqi ´ qi´1q. (5.72)
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Theorem 3.6 then shows:

Lemma 5.9 For all α P p´1{2, 1{2q and δ P p0, 1´ 2|α|q there exists ε ą 0 and, for all β ą βc
with 1{β ą 1{βc ´ ε, there exist C ą 0 and η ą 0 such that

Γ‹j ppq ď C
?

bθ ´ 1 b´p1´2|α|´δqje´η|p|p|p|´1q (5.73)

holds for all j ě 2 and p P Z and
ˇ

ˇΓk,jpp, 0q ´ Γ‹j ppq
ˇ

ˇ ď Cb´p1´2|α|´δqje´η|p|p|p|´1qe´η mintk,n´ku (5.74)

holds for n ě k ą j ě 1 and p P Z.

Proof. We start by estimates for the weights γk and γ‹. For bθ ´ 1 sufficiently small, the
bounds (3.30–3.31) imply that, for some constant C1 ą 0,

max
"

ÿ

`PZ

γkp`q,
ÿ

`PZ

γ‹p`q

*

ď 1` C1
?

bθ ´ 1 (5.75)

holds uniformly in 1 ď k ď n. The assumption of exponential decay of tdkukě0 in turn
allows us to summarize the inequalities (3.31–3.32) as

ˇ

ˇ

ˇ

akpqq
akp0q

´ λ‹pqq
ˇ

ˇ

ˇ
ď C2e´η1maxtmintk,n´ku,|q|u. (5.76)

Hereby we get
ÿ

qPZ

ˇ

ˇγkpqq ´ γ‹pqq
ˇ

ˇ ď C3e´η1mintk,n´ku. (5.77)

We will assume that η1 ď 1
2 δ log b.

The reasoning underlying (5.33) gives

Γ‹j ppq ď θσ2
min|p|p|p|´1q`p1´2|α|qpj´1q

ˆ

ÿ

qPZrt0u
γ‹pqq

˙ˆ

ÿ

`PZ

γ‹p`q

˙j´1

, (5.78)

where we noted that qj ´ qj´1 ‰ 0 in (5.72). The first sum on the right is order
?

bθ ´ 1
by the same argument that proved (5.75). The second sum can be made less that bδ by
taking bθ ´ 1 small, proving (5.73) with e´η :“ θσ2

min .
In order to prove (5.74), we telescopically swap the k-dependent terms in the expres-

sion for Γk,jp0q for the corresponding terms in Γ‹j . Using (5.37) this gives
ˇ

ˇΓk,1pp, 0q ´ Γ‹1ppq
ˇ

ˇ

ď θ´α2`σ2
min|p|p|p|´1qˇ

ˇγk´1ppq ´ γ‹ppq
ˇ

ˇ`
ˇ

ˇθ
pp`αq2

k θ´α2
´ θpp`αq2 θ´α2 ˇ

ˇγ‹ppq.
(5.79)

For j ě 2, we in turn invoke (5.33) with the result
ˇ

ˇΓk,jpp, 0q ´ Γ‹j ppq
ˇ

ˇ ď θ´c̄`p1´2|α|qpj´1q`σ2
min|p|p|p|´1qB1 ` θ´c̄`p1´2|α|qpj´2qB2, (5.80)

where

B1 :“
j
ÿ

m“1

ˆ m´1
ź

i“1

ÿ

`PZ

γk´ip`q

˙ˆ

ÿ

`PZ

ˇ

ˇγk´mp`q ´ γ‹p`q
ˇ

ˇ

˙ˆ

ÿ

`PZ

γ‹p`q

˙j´m

(5.81)
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and

B2 :“
ˆ

ÿ

`PZ

γ‹p`q

˙j
«

ˇ

ˇθ
pp`αq2

k´1 θ´α2
´ θpp`αq2 θ´α2 ˇ

ˇ

` θpp`αq2´α2
j´1
ÿ

i“1

ÿ

qPZ

ˇ

ˇθ
pqi`αq2

k´i´1 θ´α2
´ θpq`αq2 θ´α2 ˇ

ˇ

ff (5.82)

The bounds (5.75–5.77) give

B1 ď C3eη1 je´η1mintk,n´ku jr1` C1
?

bθ ´ 1sj´1 (5.83)

If bθ ´ 1 is so small that 1` C1
?

bθ ´ 1 ď bδ{3, then the assumption η1 ď 1
2 δ log b along

with the fact that supjě1 jb´jδ{6 ă 8 bounds the first term on the right of (5.80) by a
quantity proportional to the right-hand side of (5.74).

The first term on the right of (5.79) is bounded via (5.77) so it remains to bound the
second terms in (5.79) and (5.80). Here the term involving γ‹ controlled with the help of
(5.75) so it remains to estimate the quantity in absolute value. The elementary inequality
|e´a ´ e´ã| ď e´minta,ãu|a´ ã| combine into

ˇ

ˇθ
pq`αq2

` θ´α2
´ θpq`αq2 θ´α2 ˇ

ˇ ď logp1{θq θmint1,σ2
` upq`αq2´α2

pq` αq2|σ2
` ´ 1|. (5.84)

Assumption 1.1 and the exponential decay of tdjujě0 give

|σ2
` ´ 1| ď rCe´rη mint`,n´`u (5.85)

for some rC, rη ą 0. In light of infně`ě1 σ2
` ą 0, this bounds the second term on the right

of (5.79) by a quantity proportional to the right the right hand side of (5.74).
The bounds (5.84–5.85) dominate the first term in the square bracket in (5.82) by a

constant times θ
1
2 mintσ2

min,1u|p|p|p|´1qe´rη mintk,n´ku, where “half” of the exponential decay
in |p| was used to control the term pp ` αq2. Similarly, the second term in the square
bracket in (5.82) is bounded by the same quantity as the first times jerη j. Summarizing,

B2 ď rC1θ
1
2 mintσ2

min,1u|p|p|p|´1qe´rη mintk,n´kur1` C1
?

bθ ´ 1sj
“

1` jerη j‰, (5.86)

where (5.75) was used for the γ‹-dependent prefactor. Assuming that rη ă δ{2 and bθ´ 1
so small that 1` C1

?
bθ ´ 1 ď bδ{6, the last two terms on the right are at most a constant

times bδj. Inserting this on the right of (5.80), we get the claim. �

Given α P p´1{2, 1{2q and β ą βc as in Lemma 5.9, define t‹ “ t‹pα, βq by

t‹ :“ inf
"

t ą 0 :
ÿ

jě1

Γ‹j p0qt
´j ď 1

*

. (5.87)

Clearly, t‹ P p0,8q and, by Fatou’s lemma,
ř

jě1 Γ‹j p0qt
´j
‹ ď 1. Key for our use of this

quantity is the fact that equality holds. Indeed, we have:

Lemma 5.10 For each α P p´1{2, 1{2q there exists ε̃ ą 0 such that
ÿ

jě1

Γ‹j p0qt
´j
‹ “ 1 (5.88)

holds true for all β ą βc with 1{β ą 1{βc ´ ε̃.
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Proof. The above Fatou argument gives Γ‹1p0qt
´1
‹ ď 1 and so t‹ ě γ‹p0q´1. By (3.30), we

have γ‹p0q Ñ 1 as bθ decreases to 1 and so, by the uniform exponential decay (5.73), t‹
lies in the region of continuity of t ÞÑ

ř

jě1 Γ‹j p0qt
´j for β close to βc. The equality (5.88)

must therefore hold at the infimum. �

We now follow the same blueprint as in the critical case. Define tr̃ku
n
k“1 by

r̃k :“ pt‹θα2
q´kwkp0q. (5.89)

This quantity depends also on n but we keep that dependence implicit. Our aim is to
show that r̃k is close to an n-dependent constant once mintk, n´ ku is sufficiently large.
As in this critical situations, for this we first prove:

Lemma 5.11 For each α P p´1{2, 1{2q there exists ε ą 0 such that for all β ą βc satisfying
1{β ą 1{βc ´ ε̃ we have

0 ă inf
někě1

r̃k ď sup
někě1

r̃k ă 8. (5.90)

Proof. Applying (5.89) in (5.32) yields

r̃k “

k´1
ÿ

j“1

Γk,jp0, 0qt´j
‹ r̃k´j `

ÿ

qPZrt0u
Γk,k´1p0, qqt´k

‹ θ´α2
w1pqq. (5.91)

An inspection of (5.11) shows that w1 is bounded. Since t‹ is close to one for bθ ´ 1
small, the uniform exponential decay (5.33) implies that the last term is Ope´η1kq for
some η1 ą 0. Invoking Lemma 5.9 to swap Γk,jp0, 0q for Γ‹j p0q gives

r̃k ď Ope´η1kq `

k´1
ÿ

j“1

Γ‹j p0qt
´j
‹ r̃k´j ` e´η mintk,n´ku

k
ÿ

j“1

b´p1´2|α|´δqt´j
‹ r̃k´j. (5.92)

Setting Mk :“ max1ďjďk r̃j, the same reasoning applied to the second sum along with the

bound
řk´1

j“1 Γ‹j p0qt
´j
‹ ď 1 yields Mk ď Ope´η1kq ` p1`Ope´η mintk,n´kuqqMk´1 with the

implicit constants uniform in n. This now gives the upper bound in (5.90).
For the complementary direction we first prove that tr̃kukě0 cannot decay exponen-

tially fast. Indeed, for this we pick δ ą 0 and note that Lemma 5.9 along with (5.88)
show that, for some ` ě 1 and k0 ą `,

ÿ̀

j“1

Γk,jp0, 0qt´j
‹ ě e´δ (5.93)

holds once mintk, n ´ ku ě k0. Now observe that plugging (5.89) for wjp0q in (5.32)
and retaining only the terms with j ď ` from the first sum (and dropping the second
sum) yields

r̃k ě
ÿ̀

j“1

Γk,jp0, 0qt´j
‹ r̃k´j. (5.94)

Setting mk :“ min1ďjďk r̃j we get mk ě e´δmk´1 once mintk, n´ ku ě k0. For k violating
this inequality, we in turn use that r̃k ě Γk,1p0qmk´1 and observe that the product of
mintΓk,1p0q, 1u for k “ 0, . . . , k0 and k “ n ´ k0, . . . , n is positive uniformly in n ě 1.
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Writing c for this product we conclude that mk ě ce´δpk´k0qr̃1. As δ ą 0 is arbitrary, we
have ruled out exponential decay.

We now redo the argument leading to (5.94) while invoking Lemma 5.9 and the bound-
edness of tr̃ku

n
k“1 proved earlier to get

r̃k ě

k´1
ÿ

j“1

Γ‹j p0qt
´j
‹ r̃k´j ´Ope´η mintk,n´kuq (5.95)

The boundedness of tr̃kukě1 along with the exponential decay (5.73) allows us to extend
the sum all the way to infinity at the cost of an Ope´η1kq error. From (5.88) we then get
mk ě mk´1 ´ ae´η mintk,n´ku for some constant a ą 0. But the fact that tmkukě1 does not
decay exponentially means that we can wrap this as mk ě p1´ ae´ηk{2qmk´1 once k is
sufficiently large. Any positive sequence satisfying this recursive bound is necessarily
bounded away from zero. �

Next we prove an iterative bound on the increments of tr̃ku
n
k“1:

Lemma 5.12 For each α P p´1{2, 1{2q there exists ε ą 0 and rC, rη ą 0 such that for all β ą βc
satisfying 1{β ą 1{βc ´ ε̃,

|r̃k ´ r̃k´1| ď
rCe´rη mintk,n´ku (5.96)

holds for all n ě k ě 2.

Proof. We start by using (5.74) in (5.91) along with (5.33), the boundedness of tr̃ku
n`1
k“1 and

the fact that t‹ is close to 1 when bθ ´ 1 is small to get

r̃k “ Ope´η mintk,n´kuq `

k´1
ÿ

j“1

Γ‹j p0qt
´j
‹ r̃k´j. (5.97)

Next we invoke (5.88) to rewrite this as

r̃k ´ r̃k´1 “ Ope´η mintk,n´kuq `

k´1
ÿ

j“2

Γ‹j p0qt
´j
‹ pr̃k´j ´ rk´1q, (5.98)

where we also noted that the j “ 1 term cancels on the right-hand side. Using the same
argument as in (5.64), this yields

|r̃k ´ r̃k´1| ď

k´2
ÿ

i“1

ˆ k´1
ÿ

j“i`1

Γ‹j p0qt
´j
‹

˙

|rk´i ´ rk´i´1| ` ae´η mintk,n´ku (5.99)

for some constant a ą 0 which we will for convenience assume exceeds e2η|r̃2 ´ r̃1|.
Next observe that, since t‹ is close to one for β close to βc, for all j ě 2 we have

Γ‹j p0qt
´j
‹ ď C1

?
bθ ´ 1 e´η1 j with C1 a constant and η1 close to p1´ 2|α|q log b. Assuming

C1
?

bθ ´ 1 ď 1{2 we thus get
řk

j“i Γ‹j p0qt
´j
‹ ď 2C1

?
bθ ´ 1 e´η1i for all i ě 2. Abbreviating

η2 :“ mintη, η1u, the bound

|r̃` ´ r̃`´1| ď 2ae´
1
2 η2mint`,n´`u, ` “ 2, . . . , k´ 1, (5.100)
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then iterates via (5.99) to

|r̃k ´ r̃k´1| ď 2aC1pbθ ´ 1q
k
ÿ

i“2

e´η1ie´
1
2 η2mintk´i,n´k`iu ` ae´η2mintk,n´ku

ď

ˆ

4C1
?

bθ ´ 1
1´ e´η1{2 ` 1

˙

ae´
1
2 η2mintk,n´ku,

(5.101)

where we also used e´
1
2 η2mintk´i,n´k`iu ď e´

1
2 η2pk´iq ` e´

1
2 η2pn´kq and applied η1 ě η2.

Noting that C1 and η1 do not depend on β, for bθ´1 so small that 4C1
?

bθ ´ 1 ď 1´ e´η1{2

we proved (5.100) for ` :“ k from (5.100) for ` ă k. Since (5.100) holds for ` :“ 2 by our
assumption on a, it holds for all ` ě 1 by induction. �

We are now ready for:
Proof of Theorem 1.4, β ą βc. For each n ě 1 abbreviate n1 :“ tn{2u. We start by noting
that the exponential decay (5.96) implies

|r̃k ´ r̃n1 | ď
rCerη

1´ e´rη
e´rη mintk,n´ku, 1 ď r ď n. (5.102)

Next we note that the identity (5.32) rewrites via (5.89) as

pt‹θα2
q´kwkppq “

k´2
ÿ

j“1

Γk,jpp, 0qt´j
‹ r̃k´j `

ÿ

qPZrt0u
Γk,k´1pp, qqt´k

‹ θ´α2
w1pqq. (5.103)

Denoting

r̃n1ppq :“ rn1
ÿ

jě1

Γ‹j ppqt
´j
‹ (5.104)

we thus get

ˇ

ˇpt‹θα2
q´kwkppq ´ r̃n1ppq

ˇ

ˇ ď

k´2
ÿ

j“1

ˇ

ˇΓ‹j pp, 0q ´ Γ‹j ppq
ˇ

ˇt´j
‹ r̃n´j ` rn1

ÿ

jěk´1

Γ‹j ppqt
´j
‹

`

k´2
ÿ

j“1

Γ‹j ppqt
´j
‹ |r̃k´j ´ r̃n1 | `

ÿ

qPZrt0u
Γk,k´1pp, qqt´k

‹ θ´α2
w1pqq.

(5.105)

Using that tr̃ku
n
k“0 is bounded uniformly in n, invoking the bounds (5.73–5.74) in the first

two terms, the decay (5.102) in the third term and the bound (5.33) in the last term along
with the fact that t‹ is close to one shows

ˇ

ˇpt‹θα2
q´kwkppq ´ r̃n1ppq

ˇ

ˇ ď C1e´η1|p|p|p|´1qe´η1mintk,n´ku (5.106)

for some C1, η1 ą 0 independent of n provided bθ ´ 1 is sufficiently small.
We now define

f‹pzq :“ eṽ‹pzq
ÿ

pPZ

ÿ

jě1

Γ‹j ppqt
´j
‹ e2πipz, (5.107)

where
e´ṽ‹pzq :“

ÿ

qPZ

λ‹pqqe2πiqz (5.108)
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and where the sum in (5.107) converges absolutely thanks to (5.73) and the fact that t‹ is
close to one. The definition of fk in (5.2) then shows
ˇ

ˇpt‹θα2
q´k fkpzq ´ rn1 f‹pzq

ˇ

ˇ ďrn1
ˇ

ˇe´v‹pzq ´ ak´1p0q´1e´vk´1pzq
ˇ

ˇak´1p0qevk´1pzq
ˇ

ˇ fnpzq
ˇ

ˇ

` ak´1p0qevk´1pzq
ÿ

pPZ

ˇ

ˇpt‹θα2
q´kwkppq ´ r̃n1ppq

ˇ

ˇ. (5.109)

Now observe that
ˇ

ˇe´v‹pzq ´ ak´1p0q´1e´vk´1pzq
ˇ

ˇ ď
ÿ

qPZ

ˇ

ˇ

ˇ

ak´1pqq
ak´1p0q

´ λ‹pqq
ˇ

ˇ

ˇ
(5.110)

which by (5.76) decays C1e´η1mintk,n´ku. Noting that rn1 is bounded, we get
ˇ

ˇ

ˇ
pt‹θα2

q´kE
`

fkpφkq
2q
˘

´ r2
n1E‹

`

f‹pφq2
˘

ˇ

ˇ

ˇ
ď C2e´η mintk,n´ku (5.111)

for some constant C2 ą 0.
Set Cn :“ r2

n1E‹
`

f‹pφq2q. Plugging (5.111) in Corollary 5.3, for all distinct x, y P Λn we
thus obtain

xe2πiαpφx´φyqyn,β “
“

Cn `Ope´η mintk,n´kuq
‰

pt‹θα2
q´2k (5.112)

where k :“ kpx, yq. Denoting

κpα, βq :“
4π2

β
α2 ´ 2 log t‹pα, βq (5.113)

we obtain (1.18). The sequence tCnuně1 is uniformly positive and finite for bθ ´ 1 small
thanks to Lemma 5.11 and the fact that f‹ is dominated by the pp, jq :“ p0, 1q term with
the rest being at least order

?
bθ ´ 1.

It remains to show that κpα, βq obeys the inequality in (1.17). For this we will have to
extract the leading-order asymptotic of t‹ in powers of ε :“

?
bθ ´ 1, for ε small positive.

We start by noting that

γ‹p0q “ 1´ 2pb´ 1qλ‹p1q2 `Opε4q (5.114)

while
γ‹p1q “ pb´ 1qλ‹p1q `Opε3q (5.115)

and
ř

ně2 γ‹pnq “ Opε2q. This now gives

Γ‹1p0q “ 1´ 2pb´ 1qλ‹p1q2 `Opε4q (5.116)

and, for j ě 2,

Γ‹j p0q “ pb´ 1q2
`

θp1`2αqpj´1q ` θp1´2αqpj´1q˘λ‹p1q2 `Opε4qb´p1´2|α|qj (5.117)

where the implicit constant in the Opε3q does not depend on j. Using this in (5.88) while
noting that λ‹p1q “ Opbθ ´ 1q, a calculation shows

t‹ “ 1` pb´ 1q
„

b´ 1
b1`2α ´ 1

`
b´ 1

b1´2α ´ 1
´ 2



λ‹p1q2 `O
`

pbθ ´ 1q2
˘

. (5.118)

Differentiating with respect to α we check that the square brackets is strictly positive
once α ‰ 0. It follows that t‹ ą 0 and thus κpα, βq ă 4π2

β α2 for bθ ´ 1 small positive. �
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Remark 5.13 In the derivation asymptotic (6.24–6.25) we show that

λ‹p1q “

d

2pb3 ´ 1q
pb´ 1q2pb` 1q3

?
bθ ´ 1`O

`

|bθ ´ 1|3{2
˘

(5.119)

Inserting this in (5.118) then shows

t‹pα, βq “ 1` τpαqpbθ ´ 1q `O
`

pbθ ´ 1q2
˘

. (5.120)

Invoking (5.113) along with bθ ´ 1 “ 2π2

β2
c
pβ´ βcq `Oppβ´ βcq

2q we get (1.20). The nu-
merical closeness of the critical and near-critical coefficients again stems from the struc-
ture of Γ‹j p0q and the similarity of leading order term of λkp1q in the critical and slightly
supercritical regimes.

Remark 5.14 The above proofs were tailored to the asymptotic of the fractional dipole-
charge correlator but the structure applies to, and the conclusion is in fact much easier
for its monopole counterpart. Indeed, we get the identity

xe2πiαφxyn,β “ fn`1p0q (5.121)

for fn`1 obtained by taking k :“ n`1 in (5.2). (Here we used that the underlying Markov
chain effectively takes value zero at the initial time so no expectation is needed.). Setting

C1n :“

#

pt‹θα2
q´nxe2πiαφxyn,β, if β ‰ βc,

k´τ̃θ´α2nxe2πiαφxyn,β, if β “ βc,
(5.122)

where t‹ :“ 1 when β ă βc, the arguments used above show that C1n is bounded away
from zero and infinity. Writing this using κpα, βqwe get (1.21) as desired.

6. SUPERCRITICAL ITERATIONS

The principal objective of this section is the proof of Theorem 3.6. This requires studying
the flow of the iterations (3.18) under the conditions when these admit a “non-trivial”
fixed point. The analysis carries a significant technical overhead that goes quite beyond
what was sufficient for the subcritical and critical cases.

6.1 Renormalization-group flow.

We start by casting the iterations in a more convenient and also somewhat more general
form. Recall the definition of θk from (3.19) and θ from (3.29) and note that β ą βc
is equivalent to bθ ą 1. Let Σ be the set of (doubly-infinite) positive sequences λ “

tλpqquqPZ satisfying the symmetry condition λp´qq “ λpqq for all q P Z and such that
λp0q “ 1 and supqě0 λpq` 1q{λpqq ă 8 hold true. For each λ P Σ and q P Z set

Gqpλq :“
ÿ

`1,...,`bPZ
`1`¨¨¨``b“q

b
ź

i“1

λp`iq (6.1)

and, for each k ě 0, let

Fpkqq pλq :“
Gqpλq

G0pλq
θ

q2

k . (6.2)
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We will write Fpkq for the map assigning λ the sequence tFpkqq pλquqPZ and use the nota-
tion F for the corresponding map in which the θk’s have been replaced by θ.

In order to make the connection to the problem at hand, note that extending our earlier
notation (3.59) to

λkpqq :“
akpqq
akp0q

, q P Z, (6.3)

and denoting λk :“ tλkpqquqPZ, the iterations (3.18) become

λk “ Fpkqpλk´1q, k ě 1, (6.4)

where the parametrization reflects that a0p¨q{a0p0q corresponds to λ0. We are thus in-
terested in the convergence/limit properties of the flow of compositions of functions
tFpkq : k ě 0u evaluated on elements from Σ.

Our control of the iterations turns out to be slightly stronger when b is even. Indeed,
in this case we can work with any starting λ0 P Σ while for b odd we have to assume that
the initial λ0 arises from the setting of the present work. We thus set Σ1 :“ Σ when b is
even and let Σ1 be the set of λ P Σ that are the Fourier coefficients of a positive measure
on r0, 1qwhen b is odd. Then we restate the key part of Theorem 3.6 as:

Theorem 6.1 Let b ě 2. There exists ε ą 0 and, for each β ą 0 satisfying 1 ă bθ ă 1` ε,
there exists a unique λ‹ P Σ1 such that

Fpλ‹q “ λ‹. (6.5)

Moreover, under Assumption 1.1, for each β as above there exist η ą 0 and C ą 0 and, for each
λ0 P Σ1, there exists k0 ě 0 such that, for all n ą 2k0, the sequence tλku

n
k“0 defined from λ0 via

(6.4) obeys

ÿ

qě1

“

16b3{2pbθ ´ 1q
‰

q´1
2
ˇ

ˇλkpqq ´ λ‹pqq
ˇ

ˇ ď C
„

e´ηk `

k
ÿ

j“0

e´ηpk´jq dmintj,n´ju



(6.6)

whenever mintk, n´ ku ě k0. Here tdjujě0 is the sequence from Assumption 1.1

While the above may appear to be a run-off-the-mill conclusion of the Banach Fixed
Point Theorem, the proof is considerably more complicated. A key problem is that F is
not contractive on Σ when β ą βc due to the “subcritical” fixed point (corresponding to
λpqq “ δq,0) lingering on the “boundary” of Σ. This fixed point is unstable for β ą βc
which mucks up uniform control of the iterations.

Our way to overcome this is by following the iterations until they reach a suitable
subset Σ0 Ď Σ where contractivity can be proved. We assume bθ´ 1 small as, under this
condition, the evolution of λk is completely controlled by λkp1q and λkp2q, just as we saw
happen for the critical case in Lemma 3.12 and the proof of Theorem 3.5. Indeed, these
two coordinates evolve autonomously (modulo error terms) according to (3.64) while
the remaining ones are just “swept along.”

Working near critical β unfortunately means that the convergence λk Ñ λ‹ is very
slow; in fact, it is the slower the closer is bθ to 1. Indeed, our proof gives (6.6) with η pro-
portional to bθ´1 which, as is easy to check, reflects also the true decay rate when σ2

k “ 1
for all k ě 0. The inhomogeneity of tσ2

k u
n
k“0 causes further errors that are governed by

the tails of the convergent series
ř

jě0 dj.
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6.2 Preliminary observations.

We start by some preliminary technical estimates. As noted above, our control of the
iterations is better when b is even. This is due to the availability of:

Lemma 6.2 Suppose that b ě 2 is even and let Gq be as in (6.1). Then for all λ P Σ,

Gqpλq ď G0pλq, q P Z. (6.7)

In particular, we have Fqpλq ď θq2
ď 1 for all q P Z.

Proof. Assume b even and recall that Ξbpnq :“ tp`1, . . . , `bq P Zb : `1 ` ¨ ¨ ¨ ` `b “ nu. Our
goal is to show that, for all λ P Σ and n P Z,

ÿ

¯̀PΞbpnq

b
ź

i“1

λp`iq ď
ÿ

¯̀PΞbp0q

b
ź

i“1

λp`iq, (6.8)

where ¯̀ “ p`1, . . . , `bq. For this we note that, since b is even, b1 :“ b{2 is a natural and the
distributive law yields

ÿ

¯̀PΞbpqq

b
ź

i“1

λp`iq “
ÿ

jPZ

ˆ

ÿ

¯̀1PΞb1 pjq

b1
ź

i“1

λp`1iq

˙ˆ

ÿ

¯̀2PΞb1 pq´jq

b1
ź

i“1

λp`2i q

˙

. (6.9)

On the other hand, the same argument and the symmetry condition λp´`q “ λp`q shows

ÿ

jPZ

ˆ

ÿ

¯̀1PΞb1 pjq

b1
ź

i“1

λp`1iq

˙2

“
ÿ

¯̀PΞbp0q

b
ź

i“1

λp`iq. (6.10)

To get the desired claim (6.8), it suffices to invoke the Cauchy-Schwarz inequality in (6.9)
and apply (6.10). �

The distinction between b even and b odd now enters solely through the following
enhancement of Lemmas 3.7–3.8:

Lemma 6.3 For any λ0 P Σ1 and all n ě k ě 1,

sup
qě0

λkpq` 1q
λkpqq

ď

ˆ k
ź

i“0

maxtbθ3
i , 1u

˙

max
"

1, sup
qě0

λ0pq` 1q
λ0pqq

*

. (6.11)

Proof. Let λ0 P Σ1 and, setting a0p0q :“ 1 if b is even, let ta0pqquqPZ be such that
a0pqq{a0p0q “ λ0pqq for each q P Z. Lemma 3.7 along with the fact that pq` 1q2 ´ q2 ě 3
once q ě 1 imply

sup
qě1

akpq` 1q
akpqq

ď bθ3
k sup

qě0

ak´1pq` 1q
ak´1pqq

. (6.12)

Now note that, for b even, Lemma 6.2 shows that akpnq ď akp0q for all n P Z and k ě 0
while for b odd this holds by the fact that the Fourier coefficients of a positive measure
are bounded by the total mass of the measure. Denoting, as before, the supremum on
the left of (6.11) as ck, we are thus led to the inequality

ck ď maxt1, bθ3
k ck´1u. (6.13)
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To iterate this, set c̃k :“ maxt1, cku are note that the above gives c̃k ď maxt1, bθ3
kuc̃k´1.

This now readily implies (6.11). �

As a consequence we get:

Corollary 6.4 Suppose bθ3 ă 1. Then, under Assumption 1.1, for all λ0 P Σ1,

A1 :“
ˆ

sup
ně1

n
ź

i“0

maxtbθ3
i , 1u

˙

max
"

1, sup
qě0

λ0pq` 1q
λ0pqq

*

ă 8 (6.14)

and, for each n ě 1, the iterations tλku
n
k“0 generated from λ0 via (6.4) obey

sup
někě0

sup
qě0

λkpq` 1q
λkpqq

ď A1. (6.15)

Proof. The condition bθ3 ă 1 along with Assumption 1.1 imply that the product is uni-
formly bounded. Invoking (6.11), we get the claim. �

Remark 6.5 To phrase the above in the vernacular of the renormalization group theory,
under the condition bθ3 ă 1, the estimate (6.12) says that λpqq with |q| ě 2 are irrelevant
(i.e., contracting) “directions” of the renormalization-group flow. Due to the normaliza-
tion λp0q “ 1, the only possibly relevant (i.e., expanding) “direction” in this regime is
thus λp1q “ λp´1q. The punchline of Corollary 6.4 is that the expansion in this coordi-
nate is still clamped down by a uniform bound.

Before we move to the consequences of above observations, let us record the following
general bound that shows up repeatedly in the sequel:

Lemma 6.6 Suppose λ P Σ and A P p0, 1q are such that supqě0 λpq` 1q{λpqq ď A. For all
r ě 1 and q1, . . . , qr ě 0 we then have

ÿ

`1,...,`rPZ
@iďr : |`i|ěqi

r
ź

i“1

λp`iq ď
´1` A

1´ A

¯r ź

i“1,...,r
qiě1

“

λp1qAqi´1‰, (6.16)

with the product on the right no larger than Aq1`¨¨¨`qr .

Proof. It suffices to deal with r :“ 1 where the sum equals δq1,0 ` 2
ř

`ąq1
λp`q. The

assumptions imply that λp`q ď λp1qA`´1 for ` ě 1. Using this bounds the sum by
λp1qAq1´1 2A

1´A when q1 ě 1 and by 1`A
1´A when q1 “ 0. The second part of the claim

follows from λp1q ď A. �

6.3 Near-critical bounds.

We will now improve the above crude estimate on supqě0 λkpq ` 1q{λkpqq to a bound
that is small in the “near-critical” regime, i.e., for bθ ´ 1 small positive.
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Lemma 6.7 Suppose β ą 0 is such that pb´ 1{5qθ ă 1 ă bθ and bθ3 ă 1. Under Assump-
tion 1.1, for each λ0 P Σ1 there exists k1 ě 0 such that

sup
qě0

λkpq` 1q
λkpqq

ď A3
?

bθ ´ 1 (6.17)

holds with

A3 :“ 25{6

d

1
1´ pb´ 1qθ

(6.18)

provided that mintk, n´ ku ě k1.

Proof. For each n ě 1 fix tσku
n
k“0 obeying (1.6). We first make some observations for a

fixed n ě 1. For k “ 0, . . . , n, denote the supremum in (6.17) as ck, abbreviate δ :“
ř

jě0 dj
and set C :“ inf0ďjďn cj. Then recall the inequality (3.51) from the proof of Lemma 3.10,
where αk is defined in (3.47). Note that αk ě p1`C2q´1 by the fact that αk ď 1, abbreviate

ᾱ :“
1

1` C2 θ4δ (6.19)

and set

hpuq :“
θu

1` ᾱu2 ` pb´ 1qθu. (6.20)

From the argument following (3.51) we then get that the quantity c̃k defined from ck via
(3.52) obeys the iterative bound c̃j`1 ď hkpc̃jq for all j “ 0, . . . , n´ 1.

Under pb´ 1qθ ă 1 ă bθ, the function h is increasing and concave on positive reals
with two fixed points: one at zero and the other at

u‹ :“

d

1
ᾱ

1
1´ pb´ 1qθ

?
bθ ´ 1. (6.21)

Moreover, iterations started at u ď u‹ never rise above u‹ while those started at u ą u‹
decrease, due to e´η :“ supuěu‹ h1puq ă 1, geometrically fast towards u‹. As c̃k ď ckθ´δ,

it follows that, once j ě 0 is such that Cθ´δe´η j ď 21{3u‹ we have c̃k`j ď hj
kpc̃kq ď 21{3uk.

An inspection of (6.19) and (6.21) shows that j can be chosen independently of C.
We will now apply the same argument repeatedly to subsequences of the form tλiu

n´k
i“k .

Set Ck :“ supněk maxkďiďn´k ci and let δk :“
ř

jěk dj. The above then shows that there
exists j ě 0 such that for all k ě 0,

Ck`j ď 21{6θ´3δk

b

1` C2
k

d

bθ ´ 1
1´ pb´ 1qθ

(6.22)

where one factor of θ´δk arises from returning to variables c` on the left-hand side and
another factor θ´2δk arises from the term in (6.19). We now claim that the sequence
tCkukě0 will eventually drop below one. Indeed, if Ck ě 1 for some k with θ´3δk ď 21{6,

then 21{6θ´3δk

b

1` C2
k ď 2Ck which using x :“ 1´ pb´ 1{5qθ yields

Ck`j ď 2

d

bθ ´ 1
1´ pb´ 1qθ

Ck “

d

1´ 5bx
1´ 5pb´ 1qx

Ck. (6.23)
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For x ą 0, which is equivalent to pb´ 1{5qθ ă 1, the square root on the right is less than
one showing that ` ÞÑ Ck``j decreases exponentially. In particular, there exists ` ě 1
such that Ck``j ď 1.

To finish the proof we now note that Ck1 ď 1 along with θ´3δk1 ď 21{6 via (6.22) im-
plies Ck1`j ď A3

?
bθ ´ 1. Hence (6.17) holds once mintk, n´ ku ě k1 :“ k1 ` j. �

The power of 2 in (6.18) was chosen to ensure that A3 ď 2
?

b for bθ ´ 1 small. This
will aid some numerical computations later. We now use the above to show that the
supremum is, for bθ ´ 1, dominated by the first two components and, in fact, nail their
asymptotic values in this regime.

Lemma 6.8 For each δ, δ1 P p0, 1q there exists ε ą 0 such that for all λ0 P Σ1 and all β ą 0
with 1 ă bθ ă 1` ε and there exists k3 ě 0 for which

λkp1q ě
ˆ

pb´ 1q2

2
pb` 1q3

b3 ´ 1
` δ

˙´1{2?
bθ ´ 1 (6.24)

λkp1q ď
ˆ

pb´ 1q2

2
pb` 1q3

b3 ´ 1
´ δ

˙´1{2?
bθ ´ 1 (6.25)

and
ˇ

ˇ

ˇ

ˇ

λkp2q
bθ ´ 1

´
1

pb´ 1qpb` 1q3

ˇ

ˇ

ˇ
ď δ1 (6.26)

hold when mintk, n´ ku ě k3.

Proof. As before, we will use the shorthands λk :“ λkp1q and γk :“ λkp2q and, committing
major abuse of notation, abbreviate ε :“

?
bθ ´ 1. Our first goal is to show that λk will

eventually be at least order ε. For this we invoke the inequality (3.60) from the proof of
Lemma 3.11 which reads

λk ě
bθk

1` α1c3
k

λk´1

1` bpb´ 1qλ2
k´1

(6.27)

for some constant α1 ą 0, whenever ck´1 ď 1{2. The latter is enabled by assuming
mintk, n´ ku ą k1 and A3ε ď 1{2, for k1 and A3 as in Lemma 6.7. Plugging in the bound
ck´1 ď A3ε while noting that θk “ θσ2

k we then get

bθk

1` α1ck
ě

1` ε2

1` α1A3
3ε3

θ|1´σ2
k | (6.28)

We now take k11 ě k1 so large that dj ď ε3 once j ě k11 and ε so small that right-hand side
of (6.28) is at least 1` ε2{2. It follows that

λk ě
´

1`
ε2

2

¯ λk´1

1` bpb´ 1qλ2
k´1

(6.29)

once mintk, n ´ ku ě k11. Interpreting the right-hand side as hpλk´1q for h : R` Ñ R`
increasing and convex shows that λk converges under iterations to the unique non-zero
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fix point of h which, as a computation shows, occurs at r2bpb ´ 1qs´1{2ε. Hence there
exists k21 ě k1i such that

λk ě
1

2
a

bpb´ 1q
ε (6.30)

once mintk, n´ ku ě k21.
Next we observe that, with ck bounded by a constant times λk, whenever k obeys

mintk, n´ ku ě k21 the identities (3.64) from Lemma 3.12 are still in force. The calculation
leading up to (3.74) still applies. As δk there is order ε which is order λk, instead of (3.76)
we then get

γk

λ2
k
“

1
2

b´ 1
b3 ´ 1

` t2k λk (6.31)

for some bounded sequence tt2ku
n
k“0. Plugging this in the first line of (3.64) yields

λk`1 “ bθk`1
λk `

b´1
2 pb´ 2` b´1

b3´1qλ
3
k ` r1kλ4

k

1` bpb´ 1qλ2
k ` skλ3

k
(6.32)

where r1k :“ rk ` pb´ 1qt2k .
In order to analyze this further, note that for mintk, n ´ ku so large that dk ď ε the

above leads to the inequalities

bθ
λk

1` pA` Bεqλ2
k
ď λk`1 ď bθ

λk

1` pA´ Bεqλ2
k

, (6.33)

where

A :“ bpb´ 1q ´
b´ 1

2

´

b´ 2`
b´ 1
b3 ´ 1

¯

“
b´ 1

2

”

b` 2´
1

b2 ` b` 1

ı

“
b´ 1

2
pb` 1q3

b2 ` b` 1
“
pb´ 1q2

2
pb` 1q3

b3 ´ 1
.

(6.34)

and B is a positive constant derived from the bounds on the sequences r1k and sk. Noting
iterations of hpuq “ bθ u

1`Au2 are attracted to u‹ “ A´1{2
?

bθ ´ 1, following the iterations
(6.33) we then get that, after a finite number of steps, we have

pA` 2Bεq´1{2ε ď λkp1q ď pA´ 2Bεq´1{2ε (6.35)

For ε such that Bε ă δ, this gives (6.24–6.25). With the help (6.31) and λk ď A3ε we then
get (6.26) as well. �

6.4 Contractive region.

We now proceed to define a subdomain of Σ on which we later prove uniform contrac-
tivity of the map F. This subdomain will depend on β ą 0, which we assume is such
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that bθ ą 1, and numbers δ, δ1 P p0, 1q and A ą 0 as

Σ0 :“

#

λ PΣ1 : λp1q ě
´

pb´ 1q2

2
pb` 1q3

b3 ´ 1
` δ

¯´1{2?
bθ ´ 1

^ λp1q ď
´

pb´ 1q2

2
pb` 1q3

b3 ´ 1
´ δ

¯´1{2?
bθ ´ 1

^ sup
qě0

λpq` 1q
λpqq

ď A
?

bθ ´ 1 ^
ˇ

ˇ

ˇ

λp2q
bθ ´ 1

´
1

pb´ 1qpb` 1q3

ˇ

ˇ

ˇ
ď δ1

+

.

(6.36)

Assuming that Assumption 1.1 holds, we now summarize the previous observations in:

Lemma 6.9 For all A ě 2
?

b and δ, δ1 P p0, 1q, there exists ε ą 0 such that, for Σ0 defined
by δ, δ1 and A as above, the following is true for all β satisfying 1 ă bθ ă 1` ε: For all λ0 P Σ1

there exists k4 ě 0 such that λk P Σ0 holds whenever mintk, n ´ ku ě k4 for the iterations
tλku

n
k“0 defined from λ0 via (6.4).

Proof. This follows from Lemmas 6.7 and 6.8 along with the fact that A3 in (6.18) tends
to 25{6

?
b as bθ decreases to 1. �

We will henceforth focus on the evolution driven by F, i.e., for θk “ θ for all k. Here
we need to check that F maps Σ0 into itself.

Lemma 6.10 For each A ą
b

2
b´1 and δ1 ą 0 there exists δ ą 0 and ε ą 0 such that

FpΣ0q Ď Σ0 (6.37)

holds for all β ą 0 with 1 ă bθ ă 1` ε.

Proof. Fix A and δ1 as above and, abusing notation again, abbreviate ε :“
?

bθ ´ 1.
Pick λ P Σ0 and note that, since Fpλq P Σ1, we only need to verify that Fpλq obeys the
conditions in (6.36).

For the first two conditions in (6.36), we repeat the calculations underlying the proof
of Lemma 6.8 to get

F1pλq “ bθ
λp1q ` r

`b´1
2

˘

` 1
2
pb´1q2

b3´1 ` ηε2sλp1q3

1` rbpb´ 1q ` η1ε2sλp1q2
(6.38)

for some non-negative η and η1 depending only on δ1 and A. Once ε is sufficiently small
(depending only on δ), this implies

bθ
λp1q

1` pA` δqλp1q2
ď F1pλq ď bθ

λp1q
1` pA´ δqλp1q2

(6.39)

for some constant B derived from η and η1. Now check that (for bθ “ 1` ε2) the ex-
pression on the left preserves the inequality λp1q ě pA` δq´1ε while that on the right
preserves the inequality λp1q ď pA´ δq´1ε. We conclude that F1pλq obeys the first two
lines in (6.36).
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For the third condition in (6.36) we first note that Lemma 3.9 along with the third
condition for λ give

F1pλq ď θ
λp1q

1`
`b

2

˘

λp1q2
` pb´ 1qθ sup

ně0

λpn` 1q
λpnq

ď

ˆ

θ

1`
`b

2

˘

A2ε2
` pb´ 1qθ

˙

Aε, (6.40)

where we assumed ε small enough so that the first term is non-decreasing in λp1q ď Aε.
As a calculation shows, under pb ´ 1qθ ă 1, the prefactor of Aε is less than one for ε

sufficiently small if A ą
b

2
b´1 . Since Lemma 3.7 gives

Fq`1pλq

Fqpλq
ď bθ1`2q sup

`ě0

λp`` 1q
λp`q

ď bθ3Aε, q ě 1, (6.41)

under bθ3 ď 1, the third condition in (6.36) thus applies to Fpλq.
Finally, for the last condition in (6.36) abbreviate C :“ rpb ´ 1qpb ` 1q3s´1. We now

proceed as in the derivation of (3.67) to get

F2pλq ´ bθ4
”

λp2q ´
b´ 1

2
λp1q2

ı

“ Opε4q. (6.42)

Noting that bθ4 “ b´3 `Opε2q, this implies

ˇ

ˇF2pλq ´ Cε2ˇ
ˇ ď b´3ˇ

ˇλp2q ´ Cε2| ` b´3
ˇ

ˇ

ˇ

ˇ

b´ 1
2

λp1q2 ´ pb3 ´ 1qCε2
ˇ

ˇ

ˇ

ˇ

` A2ε4, (6.43)

where A2 is a constant that depends only on A. Invoking the conditions from Σ0, a
calculation shows

ˇ

ˇε´2F2pλq ´ C
ˇ

ˇ ď b´3δ1 `

„

pb3 ´ 1qpb´ 1q
pb` 1q2

2

δ` A2ε2. (6.44)

We now choose δ so that the corresponding term is less than, say, δ1{2. For ε small, Fpλq
then obeys also the last condition in the definition of Σ0 and so Fpλq P Σ0. �

6.5 Contractivity.

Having identified Σ0 and shown that F maps it into itself, we now prove that F is actually
contractive on it. Note that, for supqPZ λpqq ă 1, each component of Fpλq is the ratio of
two positive convergent sums and so F is continuously differentiable. A natural way to
prove contractivity is thus to estimate the derivatives of F in a suitable norm. However,
this will only be useful if we first show:

Lemma 6.11 Σ0 is a convex set.

Proof. The first and third condition in the definition of Σ0 are clearly preserved by convex
combinations. For the second condition we note that

t ÞÑ
tA` p1´ tqA1

tB` p1´ tqB1
(6.45)

is, for any A, A1, B, B1 ą 0, monotone on r0, 1s. If the ratio is less than a constant at t “ 0
and t “ 1, it is less than that constant for all t P r0, 1s. �
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We will for brevity write B`Fq to denote the partial derivative of the q-th component
of F with respect to λp`q. We start with estimates on these:

Lemma 6.12 Let β ą βc. For each A ą 0 there exist δ0 ą 0 and ε0 ą 0 such that, for Σ0
defined by A and any δ, δ1 P p0, δ0s,

ˇ

ˇB`Fqpλq
ˇ

ˇ ď

$

’

’

’

&

’

’

’

%

bpb´ 1qθq2
λp1q `Opε2q, if |q´ `| “ 1,

bθq2
`Opε2q, if q “ ` ě 2,

pbθq2
`Opε2qqpbAεq|q´`|, if |q´ `| ě 1,

1´ bpb´ 1qλp1q2, if q “ ` “ 1,

(6.46)

holds for all λ P Σ0 and all q, ` ě 1 provided that ε :“
?

bθ ´ 1 P p0, ε0q. Here the implicit
constants in Opε2q terms do not depend on q and `.

Proof. Fix q ě 1 and ` ě 1. We start with some general considerations. Denote by rGq the
quantity Gq with b replaced by b´ 1. The symmetry λp´`q “ λp`q then gives

B`Gqpλq “ b rGq´`pλq ` b rGq``pλq (6.47)

and so, by the quotient rule,

B`Fqpλq “
”

`

rGq´`pλq ` rGq``pλq
˘

G0pλq
´1 ´ 2 rG`pλqGqpλqG0pλq

´2
ı

bθq2
. (6.48)

Note that one term in the square bracket is positive and the other is negative. It thus
suffices to estimate each of them separately.

Moving to actual estimates, let us begin with the the third line in (6.46). Here we first
observe that the argument in Lemma 3.7 and the second condition in the definition of Σ0
give Gq`1pλq{Gqpλq ď b sup`ě1 λp`` 1q{λp`q ď bAε whenever q ě 1. Using also that
G1pλq ď bAε`Opε3q and G0pλq ě 1, the first term in the square bracket in (6.48) is at
most pbAεq|q´`|p1`Opε2qq while the second is order εq`` “ ε|q´`|Opε2q. This proves the
bound on the third line in (6.46).

The first and second lines in (6.46) require explicit treatment of the leading-order term
contributing to rGn´`pλq. This is easy for n “ ` where we only need rG0pλq ď 1`Opε2q,
which is proved from (3.65). This, along with the aforementioned estimates, bounds the
square bracket in (6.48) by the maximum of 1`Opε2q and 4pbAεq2. For the first line (i.e.,
|q´ `| “ 1) we in turn need

rG1pλq ď
`

b´ 1`Opε2q
˘

λp1q, (6.49)

which is proved from (3.66). This dominates the square bracket in (6.48) by pb´ 1qλp1q`
Opε2q, thus showing that |B`Fqpλq| ď bpb´ 1qθq2

λp1q `Opε2q.
Unlike the previous cases, both terms in the square bracket in (6.48) will contribute to

the alternative ` “ q “ 1 in (6.46). This results in potential cancellations that force us
to extract terms of order up to ε2 explicitly. Since the first term in the square bracket in
(6.48) is of order unity while the second term is of order ε2, it suffices to derive an upper
bound on B`Fqpλq. Here bounding the first term requires the upper bounds

rG0pλq ď 1` pb´ 1qpb´ 2qλp1q2 `Opε4q (6.50)
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and
rG2pλq ď pb´ 1qλp2q `

ˆ

b´ 1
2

˙

λp1q2 `Opε4q

ď

ˆ

b´ 1
2

”

b´ 2`
b´ 1
b3 ´ 1

ı

` δ2
˙

λp1q2 `Opε4q,
(6.51)

where δ2 is a quantity of order of δ1 ` δ. Since we are tracking terms up to order ε2,
bounding G0pλq ě 1 is not sufficient; instead we need

G0pλq ě 1` bpb´ 1qλp1q2. (6.52)

In the second term we in turn need the lower bounds
G1pλq ě bλp1q
rG1pλq ě pb´ 1qλp1q

(6.53)

along with the upper bound
G0pλq ď 1`Opε2q. (6.54)

Putting these together we get

B1F1pλq ď
1` rpb´ 1qpb´ 2q ` b´1

2 rb´ 2` b´1
b3´1 s ` δ2sλp1q2 `Opε4q

r1` bpb´ 1qλp1q2s2
´

bpb´ 1qλp1q2

1`Opε2q

“ 1`

˜

pb´ 1qpb´ 2q `
b´ 1

2

”

b´ 2`
b´ 1
b3 ´ 1

ı

` δ2 ´ 3bpb´ 1q

¸

λp1q2 `Opε4q

“ 1´
ˆ

b´ 1
2

´

3b` 6´
b´ 1
b3 ´ 1

¯

´ δ2
˙

λp1q2 `Opε4q.

(6.55)
Using b´1

b3´1 ď 1 and Opε4q “ λp1q2Opε2q by λ P Σ0, this is at most 1 ´ bpb ´ 1qλp1q2

once δ, δ1 and ε are sufficiently small. �

We now use these to prove:

Lemma 6.13 Let Σ0 be defined using A ą

b

2
b´1 and δ P p0, δ0q, for δ0 as in Lemma 6.12.

Given t ą 0 and β ą 0 with 0 ă bθ ´ 1 ă ptbA2q´1, we have

$pλ, λ1q :“
ÿ

qě1

ptbAqq´1pbθ ´ 1q
q´1

2
ˇ

ˇλpqq ´ λ1pqq
ˇ

ˇ ă 8 (6.56)

for all λ, λ1 P Σ0. Moreover, if t obeys

?
2

?
1´ b´3

p1´ b´2q
?

1` b´1
b2 ą tA (6.57)

and

sup
`ě2

ˆ

b1´`2
`

`´1
ÿ

q“1

tq´`b1´q2
˙

ă 1, (6.58)

then there exist δ1 ą 0, ε1 ą 0 and η ą 0 such that

$
`

Fpλq, Fpλ1q
˘

ď
“

1´ ηpbθ ´ 1q
‰

$pλ, λ1q (6.59)



PHASE DIAGRAM OF DG-MODEL 63

holds for all λ, λ1 P Σ0 provided δ ă δ1 and bθ ´ 1 ď ε1.

Proof. Let us again abbreviate ε :“
?

bθ ´ 1 and let λ, λ1 P Σ0. The conditions defin-
ing Σ0 then imply |λpqq ´ λ1pqq| ď 2pAεq|q| and so the series in (6.56) converges when-
ever tbA2ε2 ă 1. Next recall that, by Lemma 6.11, the convex combination λu :“
p1´ uqλ` uλ1 lies in Σ0 for all u P r0, 1s. Moreover, elementary calculus shows

ˇ

ˇFqpλ
1
q ´ Fqpλq

ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

ˆ 1

0

ÿ

`ě1

B`Fqpλuq
`

λ1p`q ´ λp`q
˘

du
ˇ

ˇ

ˇ

ď

ˆ 1

0

ˆ

ÿ

`ě1

ˇ

ˇB`Fqpλuq
ˇ

ˇ

ˇ

ˇλ1p`q ´ λp`q
ˇ

ˇ

˙

du
(6.60)

where the second line follows by the triangle inequality.
Multiplying (6.60) by ptAεqq´1 and summing over q ě 1 we find out that, in order to

prove (6.59), it suffices to show that for all ` ě 1 and all λ P Σ0,
ÿ

qě1

ptbAεqq´1ˇ
ˇB`Fqpλq

ˇ

ˇ ď p1´ ηε2qptbAεq`´1. (6.61)

Starting first with the cases ` ě 2, here we plug in the second and third line in (6.46)
with the result

ÿ

qě1

ptbAεqq´1ˇ
ˇB`Fqpλq

ˇ

ˇ

ď

ˆ

bθ`
2
`

`´1
ÿ

q“1

btq´`θq2
`

ÿ

qą``1

b
`
?

t bAε
˘2pq´`q

θq2
`Opε2q

˙

ptbAεq`´1,
(6.62)

where the Opε2q term collects the contribution of Opε2q-terms in (6.46). Now observe
that, in the limit as ε Ó 0, the term in the large parenthesis is bounded by the supremum
in (6.58), proving (6.61) for ` ě 2 once ε is small enough.

For ` “ 1 we in turn invoke the first and last line in (6.46) to the leading order terms
and bound the rest using the third line with the result

ÿ

qě1

ptbAεqn´1ˇ
ˇB1Fqpλq

ˇ

ˇ ď 1´ bpb´ 1qλp1q2

`
`

bpb´ 1q `Opε2q
˘

θ4λp1qptbAεq `
ÿ

qě3

`
?

t bAε
˘2pq´`q

θq2
.

(6.63)

Invoking the upper and lower bounds on λp1q, the right-hand side is bounded by

1´

˜

bpb´ 1q
1
2
pb´1q2pb`1q3

b3´1 ` δ
´ tbAθ4 bpb´ 1q

b

1
2
pb´1q2pb`1q3

b3´1 ´ δ

¸

ε2 `Opε3q. (6.64)

We now check that the term in the large parentheses will be positive for θ close to 1{b
and δ sufficiently small if (6.57) holds. For small-enough ε, the term then dominates the
expansion in powers of ε which validates (6.61) for ` “ 1. �
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6.6 Convergence proofs.

We are now finally in a position to address the proofs of Theorems 6.1 and 3.4. One last
technical hurdle to get out of the way is the choice of parameters t and A:

Lemma 6.14 For all b ě 2, the inequalities (6.57–6.58) are true when

tA ď 4
?

b and t ě
3
2

. (6.65)

Proof. We start by proving that

inf
bPN
bě2

?
2

?
1´ b´3

p1´ b´2q
?

1` b´1
b3{2 ą 4. (6.66)

Indeed, for b ě 3 we invoke
?

1´ b´3 ą
?

1´ b´2 and
?

1` b´1 ď
?

2 to dominate the
expression by b3{2 from below. Since b3{2 ě 33{2 ě 5 for b ě 3, we are down to b “ 2.
Here we calculate the expression explicitly to be 8

?
7

3
?

3
which is above 4, albeit just barely.

It follows that (6.57) holds if tA ď 4
?

b.
As for the second condition, for ` “ 2 we need that 2´8 ` t´1 ă 1 which is true

whenever t ě 8{7. For ` ě 3 we bound the expression by b´8 ` t´1 ` b´3 ř
`ě3 t1´` and

so we need

t´1 `
1
8

t´2

1´ t´1 ă 1´ 2´8 (6.67)

The left-hand side is decreasing in t and, at t :“ 3{2, equals 5{6 which is indeed less than
the right-hand side. Hence (6.58) holds for all t ě 3{2. �

We are now ready for:
Proof of Theorem 6.1. We assume throughout that bθ ´ 1 is positive and small enough
so that the statements of above lemmas apply. As to the choice of t and A, relying on
Lemma 6.14, we set t :“ 3{2 and put A :“ 8

3

?
b. Notice that this enables Lemma 6.9 as

well as other claims where a bound on A appeared. Also note that tA “ 4
?

b so $ from
(6.56) coincides with the expression in (6.6).

Next observe that $ is a metric on Σ0 and, relying on product topology and com-
pleteness of the space of probability measures on r0, 1q, that pΣ0, $q is complete. By
Lemma 6.13, F is a strict contraction on Σ0. Using Lemma 6.9 along with the Banach
contraction principle, iterations of F on any λ P Σ1 thus converge to some λ‹ P Σ0 which
is then also a unique fixed point of F in Σ1.

Let us now consider a sequence tλku
n
k“0 obtained by λk :“ Fpkqpλk´1q starting from

some λ0 P Σ1. In order to control the approach of this sequence to λ‹, we need to com-
pare the action of F and Fpkq. For this we first note that, for all λ P Σ0 and all q P Z,

ˇ

ˇFpkqq pλq ´ Fqpλq
ˇ

ˇ “
Gqpλq

G0pλq

ˇ

ˇθq2σ2
k ´ θq2 ˇ

ˇ

ď pbAεqqθq2 mint1,σ2
k u logp1{θq|σ2

k ´ 1|,
(6.68)
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where ε :“
?

bθ ´ 1. Assuming σ2
k ě 1{2 and noting that A ď 4b3{2, we thus get

$
`

Fpkqpλq, Fpλq
˘

“
ÿ

qě1

p4b3{2εqq´1ˇ
ˇFpkqn pλq ´ Fnpλq

ˇ

ˇ

ď

ˆ

ÿ

qě1

p4b3{2εq2q´1θq2{2 logp1{θq
˙

|σ2
k ´ 1|.

(6.69)

Write pC for the expression in the parenthesis and recall the sequence tdkukě0 from As-
sumption 1.1. Abbreviate d1k :“ dmintk,n´ku. For all λ P Σ0 the triangle inequality along
with (6.59) and (6.69) show

$
`

Fpkqpλq, λ‹
˘

ď $
`

Fpkqpλq, Fpλq
˘

` $
`

Fpλq, Fpλ‹q
˘

ď pC d1k ` p1´ ηε2˘$pλ, λ‹q.
(6.70)

Using this for λ :“ λk´1 yields

$pλk, λ‹q ď pC d1k ` p1´ ηε2˘$pλk´1, λ‹q. (6.71)

whenever k is such that λk P Σ0 and σ2
k ě 1{2.

To finish the proof, consider the family of tσ2
k u

n
k“0 conforming to Assumption 1.1 with

sequence tdkukě1. Denote diampΣ0q :“ supt$pλ, λ1q : λ, λ1 P Σ0u and, for n ě 1, let

k0 :“ 1` sup
ně1

max
 

k ď n{2 : tλk, λn´ku Ę Σ0 _ d1k ą 1{2
(

, (6.72)

where the maximum is set to be k0 :“ 0 if the set is empty. The above lemmas show
that k0 ă 8 for each λ0 P Σ1. Since λk0 P Σ0, iterations of (6.71) then show

$pλk, λ‹q ď pC
k´k0´1
ÿ

j“0

p1´ ηε2qjd1k´j ` p1´ ηε2qk´k0 diampΣ0q (6.73)

whenever mintk, n ´ ku ě k0. Now set C :“ maxt pC, diampΣ0qu, write e´η instead of
1´ ηε2 and extend the range of the sum to all j ď k. �

With this we now quickly finish also:
Proof of Theorem 3.6. Let ε ą 0 be such that Theorem 6.1 applies. This yields the existence
of λ‹ which obeys (3.30) by extension of the bounds from Lemma 6.7. The bound (3.32)
in turn follows from (6.6) by retaining only the term corresponding to n in the sum on
the left and redefining C correspondingly.

Let ṽ‹ be as defined in (5.108). For the convergence of vk and its derivative, we need
the uniform bound

ˇ

ˇ

ˇ

ˇ

e´vkpzq

akp0q
´ e´ṽ‹pzq

ˇ

ˇ

ˇ

ˇ

ď
ÿ

qPZ

ˇ

ˇλkpqq ´ λ‹pqq
ˇ

ˇ. (6.74)

The bounds (3.30) and (3.32) then show that the sum on the right tends to zero as
mintk, n´ ku Ñ 8. Under the additional assumption that tdkukě0 decays exponentially
we can unite the estimates (3.31–3.32) as

ˇ

ˇλkpqq ´ λ‹pqq
ˇ

ˇ ď C1e´η1maxtk,|q|u. (6.75)
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This now readily shows that the sum on the right of (6.74) decays exponentially with k,
proving

sup
zPR

ˇ

ˇvkpzq ` log akp0q ´ ṽ‹pzq
ˇ

ˇ ď C1e´η1mintk,n´ku. (6.76)

To derive (3.34) from this, note that a simple telescoping argument gives
ˇ

ˇ

ˇ

ˇ

ˇ

akp0q
ak´1p0qb

´
ÿ

q1,...,qbPZ
q1`¨¨¨`qb“0

b
ź

i“1

λ‹pqiq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

b
ÿ

i“1

´

ÿ

qPZ

λk´1pqq
¯i´1´ ÿ

qPZ

ˇ

ˇλkpqq ´ λ‹pqq
ˇ

ˇ

¯´

ÿ

qPZ

λ‹pqq
¯b´i

.

(6.77)

The right hand side is now bounded by C2e´η1mintk,n´ku. Since v‹pzq ´ bv‹pz1q differs
from ṽ‹pzq ´ bṽ‹pz1q by the logarithm of the giant sum on the left, (3.34) follows by com-
bining the previous two estimates.

To extend the convergence to the derivatives, we note that v‹´ ṽ‹ differ by a constant
and so v1‹ “ ṽ1‹. Here we get

v1kpzq “ evkpzqakp0q
ÿ

qPZ

λkpqqp2πiqqe2πiqz (6.78)

and
v1‹pzq “ eṽ‹pzq

ÿ

qPZ

λ‹pqqp2πiqqe2πiqz (6.79)

This implies

ˇ

ˇv1kpzq ´ v1‹pzq
ˇ

ˇ ď evkpzqakp0qeṽ‹pzq
ˇ

ˇ

ˇ

ˇ

e´vkpzq

akp0q
´ e´ṽ‹pzq

ˇ

ˇ

ˇ

ˇ

ÿ

qPZ

λkpqq2π|q|

` eṽ‹pzq
ÿ

qPZ

ˇ

ˇλkpqq ´ λ‹pqq
ˇ

ˇp2π|q|q
(6.80)

Since (3.31) implies that e´ṽkpzq{akp0q ě 1{2 while (3.30) gives e´ṽ‹pzq ě 1{2 once bθ´ 1 is
sufficiently small while

ř

qPZ λkpqq|q| is bounded uniformly in k, both terms on the right
decay to zero as mintk, n ´ ku Ñ 8. The decay is exponentially fast if tdjujě0 decays
exponentially. This yields (3.35) as desired. �

Remark 6.15 The above proofs are tailored for the near-critical regime, meaning with b
fixed and bθ ´ 1 positive but small. Another interesting asymptotic regime which can
be analyzed is that of large b. Focussing for simplicity on b even and θk “ θ, here
Lemma 6.2 shows that λkpqq ď θq2

for all k ě 0 and all q P Z. As θ is close to 1{b, this
suggests introduction of the scaled variables

λ1kpqq :“ bq2
λkpqq. (6.81)

In terms of these, the iterations (6.4) take the form

λ1kp1q “ bθ

ř

`ě0
1

`!p``1q! λ
1
k´1p1q

2``1 `Op1{bq

1` 2
ř

`ě0
1
`!`! λ

1
k´1p1q

2` `Op1{bq
(6.82)
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and

λ1kpqq “ pbθqq
2

ř

`ě0
1

`!p``|q|q! λ
1
k´1p1q

2``|q| `Op1{bq

1` 2
ř

`ě0
1
`!`! λ

1
k´1p1q

2` `Op1{bq
(6.83)

for |q| ě 2. Using these one can show that λ1kp1q converges to a positive quantity charac-
terized, modulo errors that vanish as b Ñ 8, as a fix point of the ratio of two modified
Bessel functions. The other reduced variables are then simply computed from the limit
version of (6.83).

We have in fact carried our initial proof in this framework except that, in order to
overcome the non-linearity of the right-hand side (6.82), we ultimately also had to as-
sume that bθ is close to 1. However, we expect that with increasing b large, one should
be able to control larger and larger intervals of bθ.
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