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ABSTRACT. Given a square box A, < 72 of side-length L" with L,n > 1, we study hi-

erarchical random fields {¢y: x € A} with law proportional to e2P(@B19) [ Lien, v(dex),
where B > 0 is the inverse temperature, A, is a hierarchical Laplacian on A;, and v is a
non-degenerate 1-periodic measure on R. Our setting includes the integer-valued Gauss-
ian field (a.k.a. DG-model or Villain Coulomb gas) and the sine-Gordon model. Relying
on renormalization group analysis we derive sharp asymptotic formulas, in the limit as
n — oo, for the covariance {¢x¢,) and the fractional charge (e2M(9x=¢y), in the subcrit-
ical B < B := 7%/logL, critical B = B. and slightly supercritical B > B. regimes. The
field exhibits logarithmic correlations throughout albeit with a distinct B-dependence of
the variance and fractional-charge exponents in the sub/supercritical regimes. Explicit
logarithmic corrections appear at the critical point.

1. INTRODUCTION AND RESULTS

1.1 The model and assumptions.

The aim of this paper is to study a class of random fields on Z? with periodically modu-
lated values. The general setting of these models is as follows: Fix an integer L > 2 and,
for each integer n > 1,let A, := {0,...,L" — 1}? be a box of side-length L" in Z2. Then
consider a family {¢y: x € A,} of real-valued random variables with joint law

( xeN,

where § > 0 is the inverse temperature, Z,(p) is a normalization constant, (-, -) denotes
the canonical inner product in 52(/\”) and A, is a Laplacian or, in probabilistic terms, the
generator of a Markov chain on A;,. The modulation comes via v which is assumed to
be a 1-periodic locally-finite positive Borel measure on IR.

Throughout we focus on hierarchical models, for which the Markov chain defined
by A, jumps from x to y at a rate that depends only on the coefficients in base-L expan-
sion of the coordinates of x and y. To state this precisely, set b := L? and identify A, with
the set of sequences (x1,...,x,) € {0,...,b—1}". For x = (x1,...,x,) € Ay, let By(x)
denote the setof y = (y1,...,yn) such thaty; = x; fori = 1,...,n — k. Then take A, to be
a hierarchical Laplacian on A, thatacts on f: A, — R as

Anf(x) := —Cnyr f(x) + Z Z —f)], (1.2)

k=1 yEBk )
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where {ck}Z;rll is a sequence of positive numbers subject to specific decay conditions;

see Assumption 1.1 below. The positivity ensures that A, is strictly negative definite
on ¢?(A,) which is needed for Z,(B) to be finite.

A well studied example of above field is the hierarchical Gaussian Free Field (GFF)
for which v is the Lebesgue measure on R. An example of our prime interest in this
work is the hierarchical integer-valued Gaussian model, a.k.a. DG-model, for which v is
the counting measure on Z. The two models are interpolated by a continuous family of
sine-Gordon models defined by

v(dp) = e—HI—cos2mlgg, (1.3)

where k¥ > 0 is a parameter. Indeed, the GFF corresponds to ¥ = 0 while the DG-model
arises via the weak limit as x — oo under the scaling of v by (27tx)/2.

The models (1.1) turn out to be dual to Coulomb gas systems whenever the Fourier
coefficients of v are non-negative. A remarkable fact is that two-dimensional Coulomb
gas models, and thus also our fields, undergo a BKT phase transition at some . (named
after Berezinskii [13], Kosterlitz and Thouless [44]) as soon as v is distinct from the
Lebesgue measure; see Section 2.1 for more discussion. Various aspects of this transi-
tion have previously been addressed in hierarchical models (e.g., by Benfatto, Gallavotti
and Nicolo [11], Marchetti and Perez [49], Benfatto and Renn [12], Guidi and Marchet-
ti [39]) albeit subject to limitations that generally exclude the DG-model. Our aim here
is to provide a robust treatment of the transition and establish heretofore uncontrolled
aspects of the critical and near-critical behavior.

Similarly to references [11,12,39,49], our analysis relies on the renormalization-group
technique whose implementation requires some regularity of the coefficients {ck}Z;rll
We collect these requirements in:

Assumption 1.1 There exists a positive sequence {0y }x=o satisfying > -, 0 < oo such that,
for each n > 1, the sequence {ci}}~] takes the form

n -1
Cuyl = <Z bjc7]-2> (1.4)
j=0

and
1 [/ N k-1
ck=bk[<2bfajz) —(bea]?> ] k=1,...,n, (1.5)
j=0 j=0
for a strictly positive sequence {7 }1_ satisfying
!0’% — 1! < Omin{k,n_k}, k=0,...,n. (1.6)
Moreover, we have inf,~ =0 07 > 0.

In addition, we also need a bit of regularity of the measure v:

Assumption 1.2 v is a 1-periodic Borel measure on R whose Fourier coefficients defined by
a(q) := f[o 1 e~ 22y (dz) are real-valued, strictly positive and satisfy

a(—q) =a(q), qeZ, (1.7)
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along with
a(qg+1) o
=0 a(q)

In particular, v is reflection symmetric and 1-periodic but not 1/p-periodic for any p > 2.

(1.8)

Note that, while the analysis by way of the renormalization technique is easiest when
{oZ}?_, are all equal to a positive constant (which we take to be 1), permitting more
general coefficients allows us to remain flexible in what specific operator we take for a
hierarchical Laplacian; see Remark 3.2. The formulation using {0 }x>¢ is done to ensure
uniformity. Observe also that (1.6) along with 0y — 0 imply that ¢, for both k and n — k
large, decays proportionally to k + b=2. The term ¢, scales only as b~" due to its role
of a “mass”; see again Remark 3.2. (The same asymptotic arises if we think of ¢, as
an aggregate killing rate >, ¢xb* for a Markov chain on Z? with conductances {ck}ksn
given as in (1.5).)

As to the conditions on measure v, here the DG model corresponds to a(q) = 1 for
each g € Z while for the sine-Gordon model (1.3) we get

& (/274

L+ |q))rer

-2 geZ. (1.9)
/=0

a(q)

In particular, these models satisfy the conditions (1.7-1.8). The GFF is excluded but so is
unfortunately the hard-core Coulomb gas that corresponds to

v(d¢) := [1+ 2k cos(2rr¢)|d ¢, (1.10)

where « € [0,1/2]. While our conclusions (to be stated next) definitely fail for the GFF,
we still expect them to apply to the model (1.10).

1.2 Covariance structure.

Our first result concerns the asymptotic covariance structure of the field. Recall that b de-
notes the “branching number” of the hierarchical model which in the description based
on a box in Z2 relates to the base scale L of A, as b = L%. The representation of elements
of A, as sequences leads to a hierarchical metric on A, defined for any two distinct
vertices x = (x1,...,x,) and y = (y1,...,Yn) by

d(x,y) — b%(n—min{j=0 ,,,,, n: xj#y;}) (1.11)

with the convention xg = yp := 0, and by d(x,y) := 0 when x = y. Under the natural
embedding of A, into Z2 we have d(x,y) > |x — y|« for all x,y € A, with both sides
comparable for generic x and y.

As a consequence of the hierarchical structure of A,, all of our models undergo a
phase transition at the same value of the inverse temperature; namely, at

2
~logh’

Be : (1.12)

We will henceforth write (—), s to denote expectation with respect to P, g. Our result on
the covariance structure of P, g is then as follows:
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Theorem 1.3 (Covariance structure) There exists a map 0>: R — R, with

) |~ P P < Pe (1.13)
<1/B, if > Be,
such that the following holds for all models satisfying Assumptions 1.1-1.2 with {0y }x=o decay-

ing exponentially when B > B.: There exists € > 0 and, for all B > 0 with 1/p > 1/B. — €,
alln = landall x,y € A\,

() logy (T rgicy) + O, irB + b
<¢x¢y>n’ﬁ - 1 diam / i
(An) _ log diam(A,) e
ﬁclogbl/2<1+d(x,y)) _Clog(log[2+d(x,y)]> O), i#p= ﬁ(cl’ "
\ )
wnere o 8772 b(b3 -1) (1.15)

TR -1 1p
and O(1) are quantities bounded uniformly inn > 1and x,y € A,.

The above shows that models (1.1) subject to Assumptions 1.1-1.2 exhibit logarithmic
decay of correlations at all > 0 (with 1/ > 1/B. — €). This makes them qualitatively
similar to the GFF, for which the covariances behave exactly as in the B < B, regime
above. The connection to GFF at B < B, is very tight; indeed, in our earlier work [16]
we showed that one can couple P, g to the law of GFF so closely that the two fields are
within order-unity of each other at most (and at typical) points.

For B > B, (1.13) shows that the overall scale of the fluctuations is strictly smaller
than what GFF would give and, indeed, P, is far from the law of GFF both in terms
of global scaling properties as well as other correlations (see Theorem 1.4 below). A
reader looking for exponential decay for B > B, should note that the Laplacian (1.2)
is long range with the matrix coefficient for the pair x and y decaying proportionally
to d(x,y)~* (see Section 2.3) so exponential decay is not to be expected.

The difference in the overall variance scale arises from the fact that, at § > S, the
field “feels” the 1-periodicity of v at all spatial scales. Technically, this is seen in renor-
malization group iterations that draw the system towards a “non-trivial” fixed point —
meaning one that does not correspond to GFF — rather than the “trivial” one as happens
for B < Bc. The quantity 0?(B) admits a formula, see (4.47), that makes the inequality in
(1.13) quite apparent. We even get the asymptotic expansion

1 327t b(d-1
0-2(;6) = B_ ﬁ% (b—(l)?’(b—i-)l)z(ﬁ_'gC)+O((’B_‘BC)3/2)/ ‘B l :BC/ (116)

see Remark 4.8. In particular, B — ¢2(B) is not differentiable at .. The apparent nu-
merical closeness of (1.15) to the coefficient of B — B. in (1.16) is not a coincidence; see
Remark 4.9 for an explanation.

The behavior at B, is yet different as an iterated-log correction arises in the covari-
ance structure. This can be attributed to the fact that, while the renormalization group
iterations still draw the model towards the “trivial” fixed point, the convergence is poly-
nomially slow and a residue of 1-periodicity of v survives to the macroscopic scale. We
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expect that the iterated-log correction is reflected in the extremal behavior of the field.
For instance, the maximum maxyep, ¢r, which for B < B. scales exactly as that of the
GFF (see [16, Corollary 2.2]), should have a different second-order (i.e., order log 1) term
at § = B.. Controlling the maximum at (and beyond) the critical  seems to be an inter-
esting open problem; see Remark 4.10 for further discussion.

As far as we know, the asymptotic covariance structure of the models (1.1) has not
been studied previously. We suspect that this is because the standard approach based
on incorporating observables into the renormalization-group flow does not fare too well
for extensive quantities; i.e., those that scale with the system size.

1.3 Fractional charge asymptotic.

The connection of our model with Coulomb gas naturally leads us to the so-called frac-
tional charge correlation <e2”i“(4’ﬁ4’y)>n,ﬁ, where « is a parameter that, due to the un-
derlying 1-periodicity and also interpretation as an electric charge, is taken generally
real-valued; see Section 2.4. Here we get:

Theorem 1.4 (Fractional charge) There exists a map x: (0,1,) x Ry — Ry with

= ﬁ 2 ] < 7

K(Oé,,B> { 452062, lf‘B Pe

< g a, if B> Be,

such that the following is true for all models satisfying Assumptions 1.1-1.2 with {dy}i=o de-

caying exponentially when B > B and obeying > -, 0jlog(j) < oo when p = Pc: For all

ag € (0,14) there exists € > 0 and, for all « € (0,a0], all B > 0 with 1/ > 1/B. — € and
all n > 1, there exists C,, € (0, 0) satisfying 0 < inf,> C, < sup,,-; Cn < o0 such that

d(x, *K(“rﬁ), if B # Be,
(@)~ [Cy+o0(1)] ) s (1.18)
' d(x,y) P logd(x,y)]"™, if B = PBe,

(1.17)

holds for all x,y € A, with x # y, where
b -1 b—-1 b—-1
+ -2
(b—1)(b+1)3 | blH2x -1  pl-20¢_1
and where o(1) — 0 in the limit as min{d(x, y), diam(A,)/d(x,y)} — .

() =2 (1.19)

The n-dependence of C, stems from potential variability in 1 of the sequence {o7}7_,..
The quantity «(«, B) is determined, albeit somewhat implicitly, by (5.113). As discussed
in Remark 5.13, we have the asymptotic form

4r® ,  4An?

K(e, B) = BT ﬁf(ﬂé)(ﬁ —Bo) +O((B—B)?), BB (1.20)

where 7(a) is as in (1.19). It is easy to check that T(«) > 0 once & # 0, which is how we
prove the inequality in (1.17). (As x(«, B) = 0, the fact that T(«) diverges as || increases
to 1/ only attests the lack of uniformity.) Again, the apparent numerical closeness of the
critical and near-critical asymptotic is not a coincidence; see Remark 5.13.

In the language of Coulomb gas models, log(e?™*(#=#1)}, ; represents the energetic
cost of inserting a charge « at x and a charge —a at y into a system of integer-valued
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charges kept at thermal equilibrium. Inserting just a single charge « at x has energetic
cost log(e?™*¥+), ¢ for which our proof similarly shows

' N—«@p)/2, if B # Be,
<627Twc<px>n!3 — [C;1 + 0(1)] (1.21)
’ N—*@B)/2[log N|T®/2, if B = B,

where we abbreviated N := diam(A,) and where 0(1) — 0 as N — o; see Remark 5.14.
The drop in the value of x(«, 8) marked by the inequality in (1.17) is indicative of a charge
screening taking place above B. which (unlike for the lattice model) is only partial due to
the long-range structure of the hierarchical Laplacian. See again Section 2.4.

We note that some aspects of the above result are already known. For instance, the
subcritical regime B < B appears as an upper bound in Marchetti and Perez [49, The-
orem 4.3], albeit assuming that v is suitably close to the Lebesgue measure when p is
close to B.. For B = B¢, [49, Theorem 5.1] shows existence and stability of a non-trivial
renormalization-group fixed point and, for the model with v corresponding to the fixed
point, compute the leading order expansion of the fractional charge exponent as 8 | B,
albeit somewhat less explicitly than (1.20). (The paper [49] works in the language of
Coulomb gasses, so translations described in Section 2.4 are needed to identify their
result with ours.)

Another relevant paper is that by Benfatto and Renn [12] who (while working in our
framework) established existence of a non-trivial renormalization fixed point for 8 = B
and studied the integer-charge correlations; namely, truncated correlations of 1-periodic
functions f of the field for the model with v corresponding to the renormalization fixed
point. In this case they proved that (for such generic f)

CF@f (b)), = (@), 5 F (@), 5 = d(x, ) (1.22)

as d(x,y) — oo regardless of B = Bc. This coincides with the behavior of the massive
hierarchical GFF. It will be of interest to find an argument that proves the same for more
general initial v.

1.4 Summary and main ideas.

Theorems 1.3 and 1.4 capture the character of the phase transition in Z-modulated hi-
erarchical fields by way of asymptotic form of two important correlation functions. The
main novelty is uniformity in the underlying model, and thus universality, which we
achieve (in Theorems 3.4-3.6) by relying on Fourier representation of the exponential
of the renormalized potentials, rather than the potentials themselves. This avoids ar-
guments based on linearization, whose accuracy deteriorates close to the critical point,
and/or significant restrictions on the model taken in earlier work. Our control thus
extends all the way to and even slightly beyond the critical point revealing heretofore
unattended aspects of the critical behavior.

Our conclusions for the subcritical and critical regimes apply solely under Assump-
tions 1.1 and 1.2. In the supercritical regime we restrict to § — . small, but we think of
this as a mere technicality whose purpose is to keep (already very long) proof of Theo-
rem 3.6 to a manageable length. The restriction to exponentially decaying {0} and
the minor restriction in the critical case in Theorem 1.4 are imposed to allow for a com-
fortable control of the error terms. Another technical restriction (for all ) comes in the
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assumption that the Fourier coefficients of v obey Assumption 1.2. This is natural for the
connection with Coulomb gas but not necessarily so for the field itself. We take this as a
price to pay for the precision of our conclusions.

As was just noted, our proofs hinge on tracking the “flow” of the Fourier coefficients
of effective potentials under renormalization-group iterations. A key observation, stated
in Lemma 3.7 which itself draws on [16, Lemma 4.2], is that the iterations preserve the
structure in Assumption 1.2 and, in fact, improve the estimate on the ratios in (1.8).
For B < B. this leads to a full asymptotic analysis while, for B > B, we at least eventually
dominate the ratios by a quantity of order /B — B.. Assuming that to be small, a suitable
fixed-point argument then extracts the desired limit behavior.

The proofs of Theorems 1.3 and 1.4 rely on the observation that the Gibbs measure
(1.1) can be viewed as the law of a tree-indexed Markov chain after n steps. The transi-
tion probabilities of this (time-inhomogeneous) chain are simple functions of the effec-
tive potentials, see (3.15), and so one can extract a good amount of information about
the chain just from the asymptotic behavior of the effective potentials. The details un-
fortunately still require some lengthy calculations.

1.5 Outline.

The remainder of this paper is organized as follows. First, in Section 2, we discuss
the broader context of the above models while providing additional (or missing) de-
tails for various remarks made in the text above. In Section 3 we then introduce the
renormalization-group approach and state the corresponding convergence theorems;
see Theorems 3.4-3.6 in Section 3.2. Sections 4 and 5 are devoted to the proofs of our
main results (namely, Theorems 1.3 and 1.4) based on these convergence theorems. The
final section (Section 6) supplies the proof of Theorem 3.6 on supercritical renormali-
zation-group flow which, unlike Theorems 3.4-3.5, could not be efficiently reduced to
estimates proved in our previous work [16].

2. CONNECTIONS AND REFERENCES

We proceed to discuss the broader context of our work; specifically, connections to lattice
interface models, the BKT transition, Coulomb gas systems and hierarchical models.
This will also give us the opportunity to cite additional relevant literature.

2.1 Lattice interface models.

The Gibbsian distributions of the kind (1.1) arise as models of fluctuating interfaces in
statistical mechanics, albeit with the “harmonic” energy term (¢, —A,¢) often general-
ized to the “anharmonic” expression of the form

1
5 DT Viy(¢x — ) 2.1)

x,yey,

for some collection of potentials {V,,: x,y € A,} — typically, convex, translation in-
variant and decaying sufficiently fast with |x — y|; see e.g., Velenik [53], Funaki [36] or
Sheffield [51]. In this language our setting corresponds to

Viey (1) == c(x, y)1? (2.2)
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for a collection {c(x,y) = ¢(y,x): x,y € A,} of non-negative quantities called conduc-
tances, due to a natural connection of this problem to resistor-network theory (see, e.g.,
Biskup [14] for a review).

There are two canonical choices for the “single-spin” measure v: the Lebesgue mea-
sure on R and the counting measure on Z. In the former case, the field corresponding
to (2.2) is the Gaussian Free Field (GFF) associated with the generator

Lf(x):= Y e fy) - f(2)] (2.3)

yeA,

of a Markov chain defined by the conductances {c(x,y): x,y € A,}. Here, often but not
always, ¢(x,y) = 1 when x and y neighbors and zero otherwise.

The GFF is special among above models for the fact that many relevant quantities are
explicitly computable. A continuum version of the GFF also arises as the limit process at
large spatial scales for many of the above models. This was first shown for models with
uniformly strictly convex potentials by Naddaf and Spencer [50] and Giacomin, Olla
and Spohn [38] and later extended to various cases beyond; e.g., Biskup and Spohn [20],
Brydges and Spencer [26], Cotar, Deuschel and Miiller [27], Ye [54], Adams, Buchholtz,
Kotecky and Miiller [1,2], Dario [28,29] and Armstrong and Wu [5].

The integer-valued models (i.e., for v being the counting measure on Z) exhibit richer
behavior and are thus less well understood. One clear distinction is that any perturba-
tion of a ground state costs a uniformly positive amount of energy. A Peierls-type argu-
ment then shows that, for  very large, a sample from the corresponding Gibbs measure
deviates from a ground state configuration only by localized perturbations whose den-
sity decreases exponentially with their size. In particular, two-point correlations decay
exponentially and we have

sup sup {(¢x — Py)*onp < 0, (2.4)

n=1 x,yel,

for all g large.

As it turns out, for Z-valued fields over Z? with d > 3, the salient part of the previous
conclusion is not limited to large . Indeed, the interface is expected to be localized in the
sense (2.4) for all B > 0; see, e.g., Bricmont, Fontaine and Lebowitz [10] for a proof for
the SOS model (where V; (1) := |17| for nearest neighbors and zero otherwise). On the
other hand, in spatial dimension d = 1 the interface is always delocalized in the sense that
the limy,, o {((¢px — (Py)2>n,/g grows linearly with |x — y|.

2.2 Roughening transition for 2D interfaces.

The behavior of integer-valued models and even just Z-modulated ones, for which v is
a 1-periodic measure, in spatial dimension d = 2 is special and has been the source of
much interest and effort of mathematical physicists and probabilists alike. Indeed, here
one expects both types of behavior to arise depending on the value of B. Specifically,
localization in the sense (2.4) should occur for B > B. and delocalization for f < B,
where B, is a positive and finite critical value. The phase transition at j. is referred to as
roughening; see e.g. [10] for a discussion of this phenomenon.
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The roughening transition bears a close connection to another remarkable transition
in two-dimensional models; namely, the Berezinskii-Kosterlitz-Thouless (BKT) phase tran-
sition predicted independently by Berezinskii [13] and Kosterlitz and Thouless [44] for,
e.g., the XY-model on Z?. A common point is a power-law decay of correlations on one
side of B. in contrast to exponential decay on the other side. In the XY-model the power-
law decay occurs at 8 large as a “residue” of long-range order which does occur in these
models in d > 3 but is impossible in d = 2 due to the Mermin-Wagner phenomenon. In
Z-modulated interface models a power-law decay takes place at g small where it reflects
on the discrete nature of the fields being washed out at large spatial scales.

The first mathematical treatment of a BKT phase transition was achieved by Frohlich
and Spencer [35] who proved that, in the DG-model as well as sine-Gordon and other
models of this type, the fractional charge correlations,

X,y > (XY o 2.5)

with « small, exhibit power-law decay in |x —y| when n » |x —y| » 1 at high tempera-
tures; i.e., for B small. (The decay is exponential when S is large.) The argument of [35]
was later extended throughout the “asymptotic subcritical regime” by Marchetti and
Klein [48] although this is not the same as controlling the model up to the conjectural
critical value B.. Alternative presentations appeared in PhD thesis of Braga [21] and a
recent paper by Kharash and Peled [43].

Frohlich and Spencer’s result (see [43, Theorem 1.1]) implies that ¢ is logarithmically-
correlated at small B while it exhibits exponential decay of correlations at large . A
different point of view has been pursued by Lammers [45] and Aizenman, Harel, Peled
and Shapiro [4] who focus on the asymptotic properties of the variance function

x =P, (2.6)

in the limit as n — co. By way of monotonicity arguments they established existence of
a threshold .Bc € (0, 00) such that, for x deep inside A,

,}EE‘O<¢§>n,ﬁ{<OO’ i£f > Pe 2.7)

= if B < Be.
Still, the transition at B¢ has yet to be linked to the (conjectural) threshold S for polyno-
mial decay-rate of the fractional charge.

The extreme ends of the two phases have in the meantime been studied by perturba-
tive methods. As mentioned earlier, the very low-temperature regime (8 » 1) can be an-
alyzed by contour expansions. (Notably, an interesting remnant of the GFF-connection
persists in the behavior of the maximum; see Lubetzky, Martinelli and Sly [46].) Im-
portant inroads have also been made into the high-temperature regime (8 « 1) using
the renormalization group method, where the field is expected to scale to a continuum
Gaussian Free Field, albeit at some effective inverse temperature. For the sine-Gordon
model (1.3) with small x this was shown by Dimock and Hurd [31] and for the DG-model
by Bauerschmidt, Park and Rodriguez [7, §].

The behavior at . is yet different. Indeed, the convergence to continuum Gaussian
Free Field is expected to persist but only with additional logarithmic corrections pop-
ping up in correlation functions. The only context in which this seems to have been
controlled mathematically is the remarkable work of Falco [33, 34] who determined
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the asymptotic form of the fractional charge for the lattice sine-Gordon model (1.3)
at B = Bc(x) for x > 0 small.

2.3 Hierarchical models.

The present work focuses on Z-modulated interface models with interactions having
a hierarchical structure. Hierarchical models were originally introduced by Dyson [32]
as systems that are friendly to coarse-graining arguments. They soon became a testing
ground for the study of critical behavior (e.g., Bleher and Sinai [23, 24]). For similar
reasons, they also served well in the analysis of interacting fields using the real-space
renormalization group method; see e.g., Brydges [25].

Mathematicians often resort to hierarchical models when the actual model of inter-
est is just too hard but one still wishes to make serious predictions about its behavior.
This was the case in, e.g., the classical studies of “triviality” of the four-dimensional
¢* and Ising models (Gawedzki and Kupiainen [37], Hara, Hattori and Watanabe [40])
whose lattice counterparts have now been established as well, albeit along rather dif-
ferent lines. The trend to test a hierarchical setting first continues; see e.g., Hutchcroft’s
recent work [41,42] on hierarchical critical percolation. The present paper is a similar
attempt for two-dimensional Z-modulated interface models.

Our hierarchical models fall under the umbrella of GFF-like interface systems dis-
cussed after (2.1) but with the conductances of the associated Markovian generator (2.3)
taking constant values on annuli By (x) \ B_1(x); namely,

c(x,y) :=¢ for k:=log,,d(x,y) (2.8)

whenever x # y. For {¢}¢>1 as in (1.5) of Assumption 1.1, calculations show ¢; = b2k
and so we have

c(x,y) =d(x,y)* (2.9)

at large separations of x and y. (Recall that d(x, y) is comparable with |x — y||» at typi-
cal vertices of A,.) It is worth noting that long-range conductance/percolation models
over Z?2 with this kind of decay are known to exhibit interesting scaling phenomena;
e.g., in the scaling of the graph-theoretical distance (Baumler [9]) and, conjecturally,
in superdiffusive behavior of random walks on such percolation graphs. The polyno-
mial decay built into the interaction naturally amplifies the critical properties of two-
dimensional hierarchical interface models.

2.4 Duality with Coulomb gas.

As noted earlier, the Z-modulated interface models are dual to Coulomb gas models,
which describe systems of charged particles interacting via Coulomb forces. A configu-
ration of such a system is an assignment {gy: x € A,} of Z-valued electrostatic charges
to vertices of A,,. The Coulomb electrostatic energy is then given by 1(g, (—A,)'q) and
the equilibrium distribution of the charge configuration at inverse temperature g is thus
given by the Gibbs law

ob @) [T w(dgy), (2.10)

ﬁn,ﬁ(dﬂn = Z (,3)
n xeN,
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where w is an a priori measure on charge configurations at each vertex. Physical reasons
dictate that w is concentrated on Z and obeys w(—dgq) = w(dg).

The link between (1.1) and (2.10) is facilitated by the so-called sine-Gordon transforma-
tion (also known as Siegert transformation after [52]) which amounts to the following:
For any f: A, — R a calculation shows

<ezm(¢,f)>nﬁ :/ e%/(quf,A;l(quf)) H w(dgy), (2.11)
’ ZMn XEA,
where
B = 47T2/‘B (2.12)
while
w(dq) := a(q)#(dq) (213)

for {a(q)}4ez the Fourier coefficients of v and # the counting measure on Z. Writ-
ing (—); 5 for expectation with respect to P, g, this becomes

(XTONY 5= e%/(f,A,?lf)<eﬂ/(q,A;1f)>;ﬁ” (2.14)

where we noted that taking f := 0 in (2.11) gives Zn(‘[%’ ) = 1. In particular, the mea-

sures P, g and 13,1,!;/ determine each other.

Through the above connection, the DG-model is dual to the so-called Villain gas, which
corresponds to a(q) = 1 for all ¢ € Z and both v and w being the counting measure on Z.
For the sine-Gordon models (1.3) we get (1.9) while for the hard-core Coulomb gas (1.10)
we geta(0) :=1,a(+1) :=«x € [0,1/2] and a(q) = 0 for g # —1,0, +1. (This is interpreted
as a rule that at most one particle can appear at each vertex, giving the model its name.)
Note that, by (2.12), the high-temperature regime of the fields corresponds to the low-
temperature regime of the Coulomb gas, and vice versa.

The connection of our models to the Coulomb gas is a central motivation for the con-
sideration (and reason for the name) of the fractional charge correlation (2.5). Indeed,
setting f := ady — ad, in (2.11) gives

i X ‘57/ X ’ ;1 X
(2l ¢y)>n,ﬁ _ /ZAnez(q+a5, wdu i et =a) T w(dge). (2.15)

xeN,

The negative of the quantity in the exponent,

%(q + a6y — ady, (—By) 71 (q + ady — ady)), (2.16)

has the interpretation of the Coulomb energy of the charge configuration g + ady — ady;
namely, the fluctuating “background” distribution g with a “static” charge a inserted
at x and a “static” charge —« inserted at y.

A power-law decay of the fractional charge correlation is indicative of a logarithimic
growth of this energy as the separation of x and y increases to infinity, while an expo-
nential decay to a non-zero constant (which is what is expected in lattice models) makes
the energy gain bounded. The change in the behavior for f’ small is explained by the so-
called Debye screening which is a mechanism through which the ambient charges shield
the monopole at x from the monopole at y to make their existence at large separation
less costly than if these monopoles were placed in a vacuum.



12 M. BISKUP, H. HUANG

As is well known (see Brydges [25, Section 3.1]), the Debye screening is far less pro-
nounced in the hierarchical models than what is expected in lattice models. Indeed, as
shown in Theorem 1.4, for f > B. the energy still increases logarithmically but now with
a smaller overall scale than for the B < B, where it behaves as in a vacuum. An addi-
tional iterated-log correction to the energy appears at f = B similarly as shown in the
lattice sine-Gordon model with small x by Falco [33,34].

3. RENORMALIZATION GROUP FLOW

We are now ready to commence the proofs of Theorems 1.3-1.4. As noted earlier, we rely
on the renormalization-group method that works particularly well in the hierarchical
setting. Here we review the steps that turn the model (1.1) to the form amenable to
analysis by this method and state the relevant conclusions. The B < B.-part of these
can largely be drawn from our earlier work [16] so we give the needed proofs here. The
proofs for B > B. are deferred to Section 6.

3.1 Representation as a tree-indexed Markov chain.

The (x-space) renormalization-group analysis of a Gibbs measure of the form (1.1) typi-
cally consists of repeated applications of two steps: a coarse-graining step and a renor-
malization step. In the coarse-graining step we partition the system into disjoint blocks
and integrate the configuration on each block conditional on a suitable “representative”
value. The renormalization step then casts the integrated Gibbs weight (which is a func-
tion of the “representative” values) as the Gibbs weight for a new energy function with
suitably adjusted, or “renormalized,” potentials or coefficients. The hope is that the re-
sulting “flow” of the energy functions captures the large-scale correlations of the original
Gibbs measure.

For the coarse-graining step in the hierarchical models (1.1) we use blocks that are just
balls By (x) in the ultrametric distance (1.11). Note that two such balls are either equal or
disjoint and so A, partitions into b" ¥ of such disjoint balls which we will refer to as k-
blocks. The choice of the “representative value” relies on a “finite-range” decomposition
of the inverse Laplacian A, ! stated in:

Lemma 3.1 Given n > 1, suppose that { ck},’{l:ll is related to a positive sequence {0 }!_, as in

(1.4-1.5). Writing Qif(x) := b=k 2yeBy(x) f () for the orthogonal projection of f: Ay — Ron
its averages over k-blocks, we then have

n

(—Aw) ' = 05Qo + ). g Q. (3.1)
k=1

Proof. We start by recalling facts from the proof of [16, Lemma 3.1]: The family of op-
erators {Qx — Qx+1: k = 0,...,n}, subject to the convention Q,;1 := 0, are orthogonal
projections on orthogonal subspaces of £2(A,) such that Qp = >}_(Qx — Qk11) is the
identity. As a consequence, any operator £, on £*(A,) of the form

L= —uy Qo+ Y, (i —u ) (Qk — Qo) (3.2)

k=1
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for some constants {u;}}_, inverts to
n
L' = —uoQo — ) (u — ug—1) Q. 3.3)
k=1
see [16, Egs. (3.11-3.13)], provided that up > O and uy > uy_; fork =1,...,n.
Now observe that the operator A, from (1.2) takes the form (3.2) if

i, = i (3.4)
and
wl —u =ty k=1,...n, (3.5)
while (3.3) matches (3.1) if
k
ug =Yo7, k=0,...,n (3.6)
j=0
As a calculation shows, under (1.4-1.5) we get (3.4-3.6) as desired. O

Remark 3.2 In the literature (see, e.g., [6, Section 1.3]) the massive hierarchical Laplacian
is sometimes presented in the form

n—1
—m*Qo — >\ L7(Qk — Qks1), (3.7)
k=0
where m? is the “mass-squared” and where we write the coefficient using the scale L.

Noting that the right-hand side of (3.2) rewrites as — > ;_, 1 L(Qk — Qx41), the form (3.7)

agrees with (3.2) provided we set u,:l i=m?+ L % fork=0,...,n—1and u;! := m?.

(Observe that (3.4) then gives ¢,,1 = m?.) This in turn matches (3.6) with b := L2
g
provided that
L~4(L2 - 1)
2
o = T L) (2 1 25 k=1,...,n—1, (3.8

with the “boundary” cases given as

12—4n
m2(m2 + [2-2n)"
Assuming that m?/L~2" is bounded between two positive constants uniformly inn > 1,
a calculation shows that, fork=1,...,n—1,
02 —(1—L72) = O(L2(n=k) (3.10)
while ¢ = 1+ O(L™") and 02 = O(1) and so, modulo scaling by 1 — L~2, the oper-

ator (3.7) thus conforms to Assumption 1.1 with {0;},>¢ decaying exponentially. This
example is actually the prime motivation for the setting in Assumption 1.1.

1
2 2
00 = i and o =

(3.9)

The representation (3.1) allows us to view e2B(9.809) in (1.1) as a convolution of n + 1
probability densities of Gaussian fields on A, with covariances (Tg Qo, 0’1sz1,. ., (T%b” Qu,
respectively. (A caveat is that these densities are singular because the field with co-
variance Qy is constant on each k-block.) Adding the integral over ¢ with respect to
the product measure [ [ .5 v(d¢y), we then perform one integral after another, starting
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from that for ¢ itself and proceeding to the field with covariance 03 Qy, then to the field
with covariance (rbel, etc. The “representative” value of a block is, at each step, the
sum of the Gaussian fields yet to be integrated. (This field is constant on each k-block so
we just take the value at any point in the k-block.)

As a consequence (see [16, Section 3.3]), after k integrals have been performed and
the result has been expressed as a field on A,_, the resulting “renormalized” Gibbs
measure admits a density with respect to the law of the Gaussian field ) on A,,_; with
covariance cr,f Qo + 0']% Q1+ + 02b"kQ, _ that is proportional to

exp{— 3 b a(pf)}. (3.11)

XEN, _k

Here {vy}}_, is a sequence of potentials defined, for k = 0,...,n — 1, recursively by

0 0k1(2) . / efbvk(z%)yg]%+1 p(d0) (3.12)

where 1,2 denotes the law of A (0,¢?), with the “initial value” set as
e 00 = / e~ 2b0 0Py (dp). (3.13)

The 1-periodicity of v implies that all v;’s are 1-periodic. The renormalization group
flow is thus encoded by the sequence {v;}}_, of functions of one variable. (This sequence
depends on n but we suppress that from the notation.)

The primary output of the above procedure is a representation of the normalization
constant of the Gibbs measure (1.1) as

[An]|
Z(B) = B2 4/det(—A,) e—0n(0) (3.14)

p
where the numerator, resp., the denominator in the prefactor are the quantities that nor-

malize ¢ — eZ @), resp., ¢ — e~ 2% Xeers 9% into probability densities. (Note that the
v-dependence is now hidden inside v,,.) In order to control expectations of relevant local
observables, standard treatments of rigorous renormalization group proceed by incor-
porating the observable into suitably modified potentials whose “flow” then needs to be
controlled alongside {vj};_.

In our earlier work [16] we instead took a different approach that is based on rep-
resenting the full Gibbs measure (1.1) via a tree-indexed Markov chain. Consider a b-ary
rooted tree T, of depth n with the root denoted by ¢ and note that, keeping the same
root, T, naturally embeds T for eachk = 0,...,n. Let m: T, \ {0} — T, be the map
assigning to x the nearest vertex on the unique path from x to the root. Fork = 0,...,n,
define the probability kernels

%OV (9) (! 4 dp), ifk>1,

3.15
evo(ﬁﬂ/)—g(f(;z(q’—q")z y(dqy), ifk=0. ( )

pe(dele’) = {

Now generate a family of random variables

{pr: x €Ty} (3.16)
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as follows: Sample ¢, from p,(-|0). Then, for each k = 1,...,n, assuming that the
values of ¢ on Ty_; have already been sampled, draw ¢, for each x € Ty \ T_; from
Pu—k(:|@m(x)), independently for different x. We then have:

Lemma 3.3 Under the canonical identification of A, with the leaves of Ty, the restriction of
the family (3.16) to A, is distributed according to P, g from (1.1).

Proof. This is a restatement of [16, Lemma 3.2] modulo the fact that there the proof was
performed only for {¢7}"_, equal to one. We leave the modifications to the reader. ~ [J

Note that the definition implies that the values of (3.16) along any path from the root
to a leaf-vertex is an ordinary (time-inhomogeneous) Markov chain with transition prob-
abilities (3.15). This will be very useful in our later calculations.

3.2 Results for renormalization group iterations.

Our ability to control the above tree-indexed Markov chain depends very strongly on
our ability to control the differences vy (¢") — bug_1(¢) for large values of k (and n). In
high-temperature approaches to this problem (see, e.g., Bauerschmidt and Bodineau [6])
this is done by linearization of (3.12). However, linearization becomes inefficient if we
want to work uniformly up to B, or even beyond, so in [16] we instead followed the
flow of the Fourier coefficients of e "%, defined for k = 0, ..., n by

1
ag(q) := / e U(2)=27miaz g (3.17)
0
As shown in [16, Lemma-4.1], in light of (3.12) these coefficients iterate as
b
2
aia(g) = D) []‘[ ak(ﬁi)] 0., q€Z, (3.18)
(1 ..... beZ i=1
O+-+l=q
where
2?2
Oy :=e Pk (3.19)
and where the “initial” value is set as
2703 .
ao(q) := 7;(70 a(q) ng for a(q):= / e 2%y (dz). (3.20)
(0,1)

As also noted in [16, Lemma-4.1] (whose proof only needs that 0 < 6,1 < 1), the
conditions in Assumption 1.2 ensure that ax(q) > 0 for all k > 0 and g € Z and that
{ax(9)}gez € (1(Z) for allk = 0,...,n. (As for the v’s, the a;’s also depend on n but we
do not mark that explicitly in the notation.)

We will now state our results concerning the iterations (3.12) and (3.18). Our first
theorem concerns the subcritical j:

Theorem 3.4 (Subcritical flow) Suppose that Assumptions 1.1-1.2 hold. For each b > 2 and
each B > 0 with B < B there exist § > 0 and C > 0 such that for alln > k > 0,

0< Z}’zggi < Ce 1Kal+a) - ge 7. (3.21)
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Moreover, the vy's are C*-functions with

sup [041(z) — bop(2')| < Ce ™ (3.22)
z,z2’€R
foralln >k >0, and
sup max{|vj(z)|, [0} (z)|} < Ce (3.23)
zeR

foralln >k > 0.

The next result provides a similar statement at ., where control of the iterations is
more subtle than in the subcritical cases.

Theorem 3.5 (Critical flow) Suppose that Assumptions 1.1-1.2 hold and assume p = B..
For each b > 2 there exist § > 0 and C > 0 such that for alln > k > 0,

a(q) _ Ce '

0< 2(0) < A+ Vo’ ge”Z (3.24)
Moreover, the vy’s are C*-functions with
; C
sup vk11(2) — bog(2')] < = (3.25)
foralln >k >0, and
il;ﬁ}{) max{|vy(2)], |v}(2)|} < 1C+ - (3.26)

forall n > k = 0. Furthermore, we have

ak(]):l[ B 1 )3]1/2+o(k1)+0<k1/2 D bj), (3.27)

—1)2
a(0)  Vk[(b=1)*(b+1 min{ vk}
where {0;} ;>0 is the sequence from Assumption 1.1. Consequently,
4 »—1 12 o(1)
v (z) = —= sin(27z) + —= 3.28
0= Gl a=trarar] e+ 029

where 0(1) — 0 as min{k, n — k} — oo, uniformly in z € R.

The asymptotic (3.28) implies that {|v}|*}}_, is not summable uniformly in n which,
as we will see in Section 4, is the root cause of the doubly-logarithmic correction to
the covariance structure at § = .. The logarithmic correction to the fractional charge
asymptotic at § = B, can in turn be traced to (3.27).

Our final theorem in this section deals with supercritical 8. The statement only applies
to B slightly over B.. Denote

2

i=e F (3.29)

and observe that § > B. is equivalent to bf > 1. We then have:
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Theorem 3.6 (Supercritical flow) Suppose Assumption 1.1 holds. For each b > 2 there
exists € > 0 and, forall B > 0 with 1 < b < 1+ €, there exist 1 > 0, C > 0 and a sequence
{A+(q) }gez with A.(0) = 1 and

0 < Au(g) = A(—q) < (26"2V00—1), gezZ, (3.30)

for which the following is true: For all initial v subject to Assumption 1.2 there exists kg = 0
such that for all n and k with min{k,n —k} > koand all g € Z,

ax(q) < ax(0) (26Y2vb0 —1)" (3.31)
and L
a(q) gl | o=k k=g .
ﬂk(O) /\* (q)‘ g C € + jZOe amm{],n—]} (332)

hold with {0;};>0 denoting the sequence from Assumption 1.1. Moreover, the vy's are C*-
functions with {v} }i=0 and {v}}=o uniformly bounded and, defining v,: R — R by

b — 5
o ( 3 nuq») 3 A @, 639

m,...,quZ i=1 qEZ
qut-+4p=0
we have vi(z) — bvg_1(z') — v.(2) — bv,(2') and v} (z) — v, (z) as min{k,n — k} — oo,
uniformly on z,z’" € R. (The existence of V), is ensured by (3.30).) In addition, assuming {0y }x=0
decays exponentially fast there exist ' > 0 and C' > 0 such that

sup |vk(z) — bog_1(2') — [0s(z) — bo. (z’)]‘ < Cle 1 min{kn—k} (3.34)
z,z2’eR
and .
sup |v}(z) — v, (z)| < C'e~ 7 mintkn=k} (3.35)
zeR

hold for all n > k > 0.

We emphasize that {1.(q)}4ez and thus also v, do not depend on v; indeed, they rep-
resent a “nontrivial” fixed point of the renormalization group flow. This means that v.
is a non-zero solution to

o—0x(2) _ / et G0 (dQ), (3.36)

where, we recall, /B is the law of N'(0, 1/ B). As our proofs show (see Theorem 6.1), such
a fixed point is unique and attractive to all the 1-periodic measures whose Fourier coef-
ficients are positive and obey (1.7-1.8). (These assumptions are crucial; indeed, under
bo¥" < 1, functions that are 1/ p-periodic are still attracted to the “trivial” fixed point.)
We do not have explicit expressions for v, or {A.(q)}sez. The best we can offer is a
characterization of their b — oo limit; see Remark 6.15.

3.3 Proof of Theorem 3.4.

The above convergence statements for the subcritical and critical regimes require only
relatively minor adaptations of the results already proved in [16], and so we prove them
right away. The main new obstacle is the fact that [16] assumed 0’,3 =1 for all k > 0 while
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for us the equality holds only asymptotically. We will suppose that Assumptions 1.1-1.2
hold throughout and stop referencing these in the statements of lemmas.

We will start with Theorem 3.4. First we recall an observation from [16] that drives
many of the subsequent arguments:

Lemma3.7 Forallp>0,n>k=>0andq >0,

ﬂk+1(q + 1) < ( +1)27 2 (/Zk(g + 1)
———— < b1V T sup ———. (3.37)
wal) =t a0
Proof. This is a restatement of [16, Lemma 4.2] with 6 allowed to depend on k. U

As a consequence we obtain:

Lemma3.8 Forall>0,n>k>0andqeZ,
k-1

) o
) _ g1 (a H(b@)) " (3.38)

j=0

where ¢ := sup,- % for £ — a(¥) being the Fourier coefficients of v.

Proof. Denote ¢ := sup,- ”"a(f(;)l). Then (3.37) along with (g + 1)> —¢* > 1 for g > 0 gives

k1 < (bOriq)ck with cg < 86g. Tterating, we get ¢ < b~1¢é H;-‘zo(bej) foralln = k = 0.

Plugging this in (3.37) and iterating yields the claim. O
We are now ready to give:

Proof of Theorem 3.4. Suppose 0 < B < Bc. We start with (3.21), which for ¢? equal to one
was shown already in [16, Lemma 4.3]. Assumption 1.1 shows Omax 1= sup, -0 0 <1

and H;:& bo; < 0-¢(b0)F where ¢ := 2 2.j>00j - Using (3.38) we then get

ar(q) 2 ekl
2(0) < Ohax[E07C(b0)F]1". (3.39)

Setting, with some waste for a later convenience, e ™" := max{v/b0, v/0max}, we get (3.38)
2 ~
with C := sup 40 ngé)z( [6607°]9. The positivity follows from iterations of (3.18) and the
assumption that the Fourier coefficients of v are strictly positive.
Concerning (3.22), we observe that, by {ax(q)}sez € (*(Z),

qeZ

with the left-hand side continuous and, by (3.12), strictly positive for all z € IR. Hence,
the vy’s are also continuous. The bound (3.21) gives

2Ce "1
le™%®) — 2,(0)| < 2a,(0) Z Ce1ki+a%) < 1 © —7%(0). (3.41)
7=1 —€
For k so large that max{1, C}e ™" < 1/8 we get
sup| a(0) e~ _ 1| <3Ce M < . (3.42)
P 2

zeR
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Once k is so large that the quantity in the large parentheses in (3.38) is less than e ™'/, this
now implies (3.22) along the same argument that proved [16, Eq. (3.40)]. The remaining k
and n are handled directly by noting that, under Assumption 1.1, e % is bounded above
and below by positive constants that depend only on k. Hence |vk| is bounded uniformly
in n with n > k and so (3.22) follows by relabeling C.

For the corresponding bound on the derivatives of v, first note that (3.21) permits us
to differentiate the series in (3.40) term-by-term to get

vl (z) = —e%) Z(Zniq)ak(q)emiqz. (3.43)
qeZ

Using (3.42) along with the uniform boundedness of a;(0)e% for each k we conclude
that the v§< are continuous and bounded on R, uniformly in n > k > 0. It thus suffices to
prove (3.23) for k sufficiently large. Here we invoke the bound (3.21) to get

A7Ce Tk

[ok(2)] < 3(0)e™ 3, 4mgCe™ < a(0)e D T

g>1

(3.44)

Since a;(0)e%(*) < 2 whenever (3.42) is in force, the right-hand side is at most 32wCe "k
as soon as e 7 < 1/8. This proves (3.23) for the first derivative. For the bound on the
second derivative we differentiate (3.43) one more time and apply a similar reasoning,
along with the bound on the first derivative. We leave the details to the reader. U

3.4 Bounds on Fourier coefficients.

For the critical case, we first need to establish estimates on the Fourier coefficients ax(g).
We start with a bound that drove the analysis of the critical case in [16]:

Lemma3.9 Forall B> 0andn>k=>0,

(1)
ary1(1) a(0) a(f+1)
<0 + (b—1)0kpq sup ————. 3.45
@) = M) (i MR~ A0 04
2) \ax(0)
Proof. This is a restatement of [16, Lemma 4.5] with 6 allowed to depend on k. ]

Next we show that the supremum on the right of (3.45) exhibits polynomial decay:
Lemma 3.10 Assume B = Bc. Then there exists a constant C > 0 such that for alln > k > 0,

qup WD €

=0 ax(0) V1+k

Proof. We will adapt the proofs of [16, Lemma 4.6] and [16, Theorem 3.5] to allow (f,f
depend on n and k. Abbreviate the supremum in (3.46) as ¢x and let a; be the unique
number in (0, 1) such that

(3.46)

1

= 1+ (S)C%az'

(3.47)
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Next we will prove that k — ¢, is bounded. Indeed, at B = B. we have 6, = b= and

s0 bl = b'"%. The argument from the proof of Lemma 3.8 along with the inequality
co < 0p¢ < bbp¢ implied by (3.20) then show

k
cx < éexp{ (logb) Z [1— U]-2|} (3.48)
j=0
with the sum is bounded uniformly in n > k > 0 thanks to Assumption 1.1. This along
with a; < 1implies inf, >0 ax = [1 + (g) (SUp,~i=0 c)?]~! > 0.
We will now repeat the argument from the proof of [16, Lemma 4.6] to get an iterative
bound on c;. We start by the inequality

ag41(1) Ok+1 Ck
k41 (O) 1+ (g) Ckzl)ék2

which, for ak( )/ax(0) > wacy, is obtained by bounding the denominator in (3.45) from be-
lowby 1+ ( )azcz and then applying ax(1)/ax(0) < ¢ in the numerator. For ay(1)/ax(0) <
aick, we instead drop the denominator in (3.45) altogether, invoke a;(1)/a;(0) < akcy in
the numerator and then observe that, by (3.47), right-hand side of (3.49) equals (b — 1 +
)0k 1ck. With (3.49) in hand, observe that Lemma 3.7 also gives

ars1(q +1)
A41(9)

with (g +1)? — g2 > 3 for g > 1. Noting again that the right-hand side of (3.49) can been
written as (b —1 + ock)9k+1ck, we get

+ (b — 1)9k+1ck (3.49)

< b O T, (3.50)

Orqc
Chitl < —— o 4 (b= 1)1 (3.51)
1+ (5)cxla?

as soon as min{k, n — k} is so large that b0 1> < (b — 1 + 16
To deal with k dependence of 6 and aj in (3.51), denote

Cp = ckexp{log 1/0) Z (7 -1) } (3.52)
j=0
and abbreviate
(b
R = <2> (nirgozxk) exp{ 410g(1/9)];00]}. (3.53)
The bound (3.51) then gives
. 6 ¢ .
G S T2t (b —1)0¢k (3.54)

once k and n — k exceed some kg = 1

Now observe that setting 6 := 1/b reduces (3.54) to the conclusion of [16, Lemma 4.6].
The proof of [16, Theorem 3.5] then applies, resulting in the bound ¢ < C'(1 + vk)~'/2.
Noting that ci /¢ is bounded uniformly in n > k > 0 by Assumption 1.1 then gives (3.46)
once mint{k, n —k} > ko. Thanks to sup, ;- cx < o, the extension to small k is achieved
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by choosing C sufficiently large. The extension to k close to 7 is in turn supplied by
Lemma 3.7 along with Assumption 1.1. U

The next lemma shows that the supremum in (3.46) is actually order k=12 and, in fact,
so is even the ratio ax(1)/ax(0):

Lemma 3.11 Assume B = B.. There exists a constant C' > 0 such that for all n > k > 0,
ak(l) < C’
a(0) ~ V1+k

Proof. Let ci continue to denote the supremum in (3.46). We first prove suitable bounds
on ax.1(1) and a,,1(0) using (3.18). Indeed, neglecting all but the terms with just one ¢;
non-zero in (3.18) yields the lower bound

ari1(1) = by 1ar(1)ar(0)1. (3.56)

For an upper bound on a;,1(0), we note that the sum in (3.18) contains a term with all
zeros, then terms with exactly two indices equal to +1 (and all other equal to zero), and
then the remaining terms in which either three indices are non-zero or two are non-zero

(3.55)

but at least one is at least two in absolute value. Invoking the bound a;(¢) < C]L ‘ak(O)
while assuming, thanks to Lemma 3.10, that k is so large that ¢, < 1/2, the contribution
of the last two cases is estimated by

b
[6(b — 1) + b(b—1)(b—2)]c} (1 +2) cg1> a;(0)°. (3.57)

m=1

Here the prefactors dominate the number of ways the above sets of indices can appear in
the given ordering of the b-tuple /4, ..., {; in (3.18) and the term in the large parentheses
dominates the sum over the remaining indices after the restriction on ¢; + - - - + ¢, has
been dropped. Hence we get

a141(0) < ar(0)? + b(b — 1)ar(1)%a,(0)"72 + &/ c}ai (0)°, (3.58)
where « := b(b — 1)23". Abbreviating

A 1= , (3.59)

from (3.56) and (3.58) we then get
b9k+1}\k > b9k+1 Ak

A > . 3.60
T -1) 2+ 0 T T+ 1+ b(b—1)A2 (3.60)
At B = B. we have b1 = b'~%+1. Denote
_ k14 a/c3 i k 14+a/c3 1
=M —7— = H — (3.61)

j=1 bo; j=1 g

and observe that A;/A; is bounded from above and below uniformly in n > k > 1 thanks
to Assumption 1.1and [ ;- (1+j73/2) < co. Abbreviating 7 := b(b — 1) sup, ;5.0 Ar/Ar,
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the inequality (3.60) then gives
A

=0 rA2

(3.62)

-2
k+1
Hence we get that }‘k_ 2/k is bounded uniformly in n > k > ko, for some kg > 1. This,
along with A/ Ak being bounded from below gives (3.55) for k sufficiently large. The
extension to k < ky is routine from the positivity of a(1)/ax(0) which by Assumption 1.1
and (3.60) holds uniformly in n satisfying n > k. U

This now readily yields A, 2, < 7\,:2 +1 fork > 1and v := 2r +r’sup,_,, A2 < o

3.5 Proof of Theorem 3.5.

Moving to the proof of Theorem 3.5, we now cast the iterations of {Ax}¢=o from (3.59)
in a form that is amenable to asymptotic analysis. This will require tracking also the
second-order Fourier coefficients in the form

ar(2)
T 40)

(3.63)

which, as suggested by (3.46) and (3.55), decays proportionally to A7. Here we get:

Lemma 3.12 Assume B = Bc. For each n > 1 there exist positive sequences {rk}Z;é, {sk}Z;é
and {tk}z;é that are bounded uniformly in n such that
Ak + (0= DAy + 2(b = 1) (b — 2)A3 + 1At

14 b(b—1)AZ + 5¢A3

)\k+1 = bek+1

(3.64)
b3y + 36730 — 1)A2 + 13
1+b(b—1)A2 + 5A3

hold true for all n > k > 0, where Ay is as in (3.59).

TYk+1 = b491%+1

Proof. Note that, by Lemmas 3.10-3.11, when B = B the quantity A is proportional to ci
while ay(g)/ax(0) is bounded by lel. Using this we now write (3.58) as equality

ar41(0)

=1+b(b—1)A2 + 573, 3.65
ax(0)° FHE DA s (369

where {sk}Z;é is a positive sequence that is bounded uniformly in n > 1. Similarly, since
the only integer-valued b-tuples (¢1,...,¢,) with {1 +---+ ¢, = land |[{1] +---+ || < 4
are permutations of (1,0,...,0), (-1,2,0,...,0)and (1,1,-1,0,...,0), we get

ax41(1)

oo =t (A + b0~ DA+ 300 = 1) (B =223 + bridl)  (3.66)

for a positive sequence {rk}l’{l;é that is bounded uniformly in n > 1. Dividing (3.66) by
(3.65) then yields the first equality in (3.64).

For the second equality in (3.64) we first observe that the only integer-valued b-tuples
(b1,...,0p) with 01 +---+ ¢, =2and |[{1]| + - - - + || < 4 are permutations of (2,0,...,0)
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and (1,1,0,...,0). This implies

a 2
::(lo()b) = 01 (b + 3b(b — AT + b 1A) (3.67)

for a positive sequence {f;}/'_ that is bounded uniformly in n > 1. Dividing this by
(3.65) then gives the desired claim. O
We are now finally ready to give:

Proof of Theorem 3.5. Assume B = B.. Let us start with the bounds (3.24-3.26). First, using
(3.46) in (3.37) and iterating yields

ar(q) _ ,2( bC N\l
ax(0) <O (m) (3.68)

whenever k > 1. (For k = 0 we note that ag(q)/ao(0) < Bgzé, for ¢ as in Lemma 3.8.) Since

Assumption 1.1 implies that 922/ Z(bC)W | is bounded uniformly inn > k > O and g € Z,
this is sufficient for (3.24). The bound (3.25) is then proved using the same argument
as in [16, Theorem 3.4]. For the bound (3.26), we plug (3.68) in (3.43) using the same
argument as for the subcritical case.

The main point of the proof is the asymptotic (3.27) and (3.28). For the latter we isolate
the terms |g| = 1 from the rest of the sum in (3.43) to get

vl (z) = 471e%*Pa; (0)Ag sin(271z) — Z e (), (0)271ig e Zkég;. (3.69)
k

lq|=2

Proceeding as in (3.42) using (3.24) instead of (3.21), we get uniform convergence of
1;(0)"Te %) to 1 with decay rate (1 + k)~/2, which leads to

v1(z) — 4 sin(27z)| < = (3.70)
k k

for some constant C € (0, 0) uniformly in z € R. To get (3.28) it thus suffices to prove
the asymptotic (3.27).

We will prove (3.27) by iterating the top line in (3.64) but for that we first have to show
that 7;/A? is, for k large, close to a constant. Here (3.64) expresses 7.1/A? 4188

14b(b—1)A2 + s¢A3

1
(b9k+1)2(b*3ﬂ + b3 -1+ tk/\k>

A (14 (b= )y + 26— 1)(b—2)A2 + 7A3)
(3.71)
which in light of /A% being bounded from above gives
_ 1 _
K’g“ = ((b6ks1)* + tAk) (b 3% + 507 (b - 1)) (3.72)
k+1 k

for a sequence {t;{},’z;é that is bounded uniformly in n > 1. Since the prefactor is close
to 1 for min{k, n — k} large, set & := (b6y,1)* + tiAx — 1 and observe that then

Yk+1 1b-1 14 Ok | vk 1b-1
/\il_2b3—1‘\ b3 )T%_Elﬁ—l + k. (373)
+
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Iteration shows
k j—1 k
v 1b—-1 149 1+5]‘
)\22b3—1‘<25k_j1_[!)3'+ H b3
k j=1 i=1 j=0
Using Ay = O(k™Y/2) and b6 — 1 = O(|o? — 1|) we get & = O(k™/2) + O(|ox 112 — 1|) and

so 1+ 8 < exp{ck™V/2 + c|o? 1 — 1|} for some constant ¢ > 0. It follows that, for some
constants ¢/, ¢” > 0,

A2 2p3-1

(3.74)

Yo 1b—1’

-1 -1 n

1+ 0k ; . j ;
[[5 <0 exp{c k=) e Y o? - 1|} < b0 D exp{e’j/k2),
i=1 i=0 i=0

(3.75)
where in the second inequality we invoked Assumption 1.1 for the second sum and
noticed that the first sum is bounded by a constant times j /k/2. The product is thus
checked to decay at least as O(b~?/) which then allows us to simplify (3.74) as

v 1b-1

1
A2 2h -1

k
+ 0k +o<2 b0 — 1|>. (3.76)
j=0

Here the implicit constants are uniform in n > k > 0.
Moving to the proof of (3.27), we temporarily denote

an

;Lk = Ay (b9])_1 (3.77)

j=0

and observe that the first line in (3.64) can concisely be written as

. A
Myt = ————, (3.78)
A/ 1+ PrAR
where
1 14b(b—1)A2 + 50A3 2
Pri= 13 ( : k L 3> —1/. (3.79)
| \1+(b—=1)y +5(b—1)(b—2)A; + 1Ay
The reason for writing the iteration this way is because (3.78) can now be cast as
1 1 £
52 = 52 P [ J®6))%. (3.80)
k+1 k j=0

Iterating we then get

)}2 - ;g(ﬁ(bef“) * ki( ﬁ (b9j>2)p/,, (3.81)

j=1 (=0 N j=(+1

where we already returned to the original variables.
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In order to extract the leading asymptotic of the sum in (3.81), we note that (3.76)
along with Ay = O(k~/2) show

k
or = (b— 2;2£b1+ 1)° +O(k V) +0 ( Z b‘2f|a,§,j — 1|> (3.82)

j=0

Denote by p. the first quantity on the right. Plugging (3.82) in (3.81) while noting that,

thanks to Assumption 1.1, H;(: , H(bej)—Z is bounded uniformly inn > k > £ > 0 we get

k-1 k k=1
A=0m)+ Y [ 08) 2. +0(k2) + O( 2. lof - 1I>- (3.83)

(=0 j=0+1 =0
The last term is again O(1) by Assumption 1.1 so we just need to control the middle

term. Here we separate the terms with £ < v/k at the cost of another O(k'/?) correction.
In the remaining terms we note that

k k
2_
[T wo2= T[] v*7"= 1+o< D aj> +o( > aj>, (3.84)
j=t+1 j=t+1 =vk j=n—k

where {0}, is the sequence from Assumption 1.1. Using this in (3.83) and inverting
the two negative powers then proves (3.27). Plugging this in (3.70) gives also (3.28). U

Unlike Theorems 3.4-3.5 whose proofs borrowed from results proved in our earlier
work, Theorem 3.6 will have to be proved from “scratch” using different ideas. The
details will be given in Section 6.

4. ASYMPTOTIC COVARIANCE STRUCTURE

We are now ready to commence the actual proof of Theorem 1.3. We rely heavily on the
convergence of the renormalization-group iterations established in the earlier sections
along with the representation of the field as a tree-indexed Markov chain. We again
suppose that Assumptions 1.1-1.2 hold throughout.

4.1 Markov-chain representation.

In Lemma 3.3 we showed that P, g is the law on the leaves of a tree-indexed Markov
chain. Along any branch of the tree, that tree-indexed Markov chain is just an ordinary
Markov chain with transition probabilities (3.15). As it turns out, the proof of Theo-
rem 1.3 can be reduced to properties of this chain.

In order to match the labeling of the v;’s, we will label the Markov chain backwards;
i.e., from the leaves to the root. A run of the chain is thus a sequence of real-valued
random variables {¢y}i—, . o such that, for all Borel A < R,

P(¢n € A) = pa(A]0) (4.1)

and

P(pr € AlFis1) = pr(Aldr+1), 4.2)
where pi(+|-) is as in (3.15) and

]:k 2:0'<(Pi2i:k,...,1’l). (43)
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The above is consistent with setting the “initial” state of the chain to ¢,;1 := 0 and
using J, 11 to denote the trivial c-algebra.

We will use E to denote expectation with respect to P and, for x,y € A,, write k(x, y)
for the depth of the nearest common ancestor of x and y in the underlying b-ary tree
structure on T,,. Explicitly, for distinct x = (xq,...,x,) and y = (y1,...,yn) in A, we set

k(x,y) :==n—min{j =0,...,n: x; # y;} = log,,d(x,y) (4.4)

with the convention xy = yp, and put k(x,y) := 0 when x = y. To reduce clutter we
sometimes use the same letter for both the field values and the states of the chain as the
precise meaning will always be clear from context.

A key step in the proof of Theorem 1.3 then comes in:

Proposition 4.1 Let B > 0 and assume that {v}}}_, and {v]}}_, are bounded uniformly
inn = 1. Then foralln > 1and all x,y € Ay,

! 1 1b+1
(PxPy)np = Z —+ ——— E[v}(¢i+1)* — 0] ($i+1)] ) + O(1) (4.5)
! i=k(x,y) <'B pro—1 ! i )

holds with O(1) that is bounded uniformly inn > 1 and x,y € A,.

To prove this proposition note that, for k := k(x,y), the tree-indexed Markov chain
representation gives
{fxPynp = E(E(gol 7)) (4.6)
and so all we need to do is to extract the asymptotic form of E(¢g|F), uniformly in n >
k = 0. This leads to somewhat lengthy calculations for the underlying Markov chain,
part of which we relegate to:

Lemma4.2 Let B> 0andn > 1. Then forallk =0,...,n,
2

E(@ilFis1) = Pyt — ‘Z‘vi(cpkm 47)
and, forallk =1,...,n,
1
E(vf_q(¢p1)| Fiz1) = EUZ(CPkH)- (4.8)

Proof. Abbreviate By := Bo; > and recall our notation y,» for the law of N'(0, o). We start
by computing some relevant Gaussian integrals. The first one of these is

_ 1d _
/e bvk—l(¢+€)é"u1/ﬁk(d€) - 5 dg e bvk_1(4>+é)y1/ﬁk(dg)
4.9)
1 d 1
— 77e70k(¢) — _7'0/ eka((P)
ﬁk d(P ﬁk k(‘P)

fork =1,...,n. Here we first performed a Gaussian integration by parts, then swapped
differentiation with respect to ¢ by that with respect to ¢ and finally applied the re-
cursive relation between v, and v,_;. The second integral to compute uses the relation
between v, and v_; with the result

1d 1

/ e MW (@ + Q) payp, (dD) = —E@e‘w) = L ok(@)e Y (4.10)
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forall k = 1,...,n. The above manipulations are justified by the fact that the v;’s are
periodic C*-functions and so no issues arise from swapping derivatives and integrals
and no boundary terms pop up during integration by parts.

Moving to statements above, for (4.8) we only need to use the top line in the defini-
tion (3.15) of the transition probability to get

E(vf_1(¢r) | Fier1) = e%(Pet) /ebvk1(¢k+l+g)0;c—1(¢k+l + {)m1/p,(d0) (4.11)

Using (4.10) we now obtain (4.8). For (4.7) we first treat k > 1 where (4.9) combined with
the top line in (3.15) show

E(¢| Fisr) = e Pert) /e_bvk‘l(%“JrQ (Prv1 + O p1sp,(dE)

= pror = o)
= Pk B K (Prt1)-

4.12)

For k = 0 we instead use the bottom line in (3.15) to get

E(¢olF1) = 1 + e / RO (p — gr)u(dg)

_¢1+evo(¢1)/310 dil / e~ 2600 (dg) (4.13)

1
=¢1 — %06(4’1)

by invoking the definition of v in the last step. U

Remark 4.3 We note that (4.8) shows that, for the model corresponding to the renormal-
ization fixed point, the associated potential is an eigenvector of the Markov transition
kernel restricted to the space of 1-periodic functions. This fact was key for the deriva-
tions in Benfatto and Renn; see [12, Eq. 4.22] and thereafter.

As a consequence of the identities (4.7-4.8) we then get:
Corollary 4.4 The sequence { My} *] defined by My := ¢ and by

/&
M, = ¢k—ﬁ(2b1 a,g_i>v;(_1<¢k>, k=1,...,n+1, (4.14)
i=1

is a reverse martingale; i.e., E(Mg|Fyy1) = Myy1 holds true a.s. forallk =0,...,n

Proof. Write (4.14) as My := ¢, — skﬁ_lvz 1(¢x) where sy := 0 to avoid having to in-
terpret v’ 1 For {Mk}”Jrl to be a reverse martingale, the identities (4.7—4.8) dictate that
k1 = b lsp + O’k forallk = 0,...,n. This is satisfied by s := lel bl- l(Tk_i. ]
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Let us keep writing s := Zi;l b'=ig? .. The fact that {M;}}*] is a martingale with
My = ¢ allows us to continue (4.6) as

(@x¢yonp = E(E(do|Fi)?)
52 (4.15)
~ E(M?) = E(¢}) - ng (96011(00) + 190,

To compute the expectation on the left, we need to iteratively compute the expectations
arising on the right. This is done in:

Lemma 4.5 Abbreviate By := [8(71:2. Forallk=0,...,n,

1 2
E(07 | Fis1) = Pop1 + o B [vk(4’k+1) — U (Prs1)] — E4’k+1v;c(¢k+1) (4.16)

and, forallk = 1,...,n,also

‘32

E(¢kvk 1(Pr) ‘]:kﬂ) b¢k+1vk(¢k+1) ,Bk %[Uz((PkH)z - U;c/(ﬁkarl)]- (4.17)

Proof. We again start by computing some relevant integrals. The first of these uses similar
ideas as (4.9) with the result

1 1 d
—boy_1(p+0) 72 d0) = —e u@) 4 — —bor_1(¢+{) d
/e ¢ 1y, (dQ) ﬁke B, dg e C pyp, (d0)

1 1 d2

= ‘Bke—?]k(sb) + ﬁZ d(pz e~ uk(9) (4.18)

1 1., 2 " —v(¢)

= (5 + g lok(@) —wi(9)] Je ¥

(ﬁk :B% [ k k ])

forall k = 1,...,n. Here we first interpreted one of the {’s as a term coming from the
derivative of the probability density of j/5, and then used that to integrate by parts,
which reduces the computation to the integral in (4.9). Differentiating twice the formula
for e~ in turn shows

/ “R0-0 (9 — g1 v (d)
— 1/ F@-¢1) v(de) + 1 dz/ 7 o—g)? v(de) (4.19)

Bo B3 dg¢?
= (g * gleb@r ~b@])e ™.

To get (4.16) we now invoke ¢7 = @71 + (Pk — Pis1)? + 2¢k+1 (P — Prr1) and then apply
(4.18-4.19) to the second term and (4.7) to the third term.
The proof of (4.17) again starts by computing an integral; namely,

/ e 1@ 00 (o + 0)C iy, (A0)

d

. (4.20)
= hdg /e_bvk‘l(¢+€)CH1/ﬁk(dg) =B B[v;(qﬁ)z — v} (¢)]e™?),
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where the last equality follows by plugging in an intermediate step from (4.18). This
shows that, forallk=1,...,n,

E(¢rvh_y (fr) | Fier) = e%Per) / e P @10 (¢ g + ) 0y (a1 + ©) payp, (D)

1 11
= E4’k+10;<(47k+1) - E B[v;c(‘{bkﬂ)z - UZ(‘PkH)],

(4.21)
where the first term arises via (4.10) and the second term via (4.20). 0

We are now ready to give:

Proof of Proposition 4.1. We will keep using the above shorthands s; and p; whenever

convenient. The argument aims directly at an iterative computation of E(M?). Here the
identities (4.16-4.17) give

ng;cl(qbk)]z ‘ ]:k+1>

1 1 2
=i+ o By ﬁz [0k (prr1)? — 0} (Prs1) ] — E¢k+1v;<(4’k+1)

E(M2| Fin) = E( [

4.22
25, (4.22)

5 <b¢k+17f§<(¢k+1) - ﬁlk %[%(4’1&1)2 - UZ(<P1<+1)]>

2
+ ;’EE(U;c—l(ka)z | Fiz1)-

Next note that, by the definition of B; and the recursion sy, = b~ s, + (T,?, the terms
containing ¢y 19} (¢r+1) combine into the cross-term that arises from squaring the ex-
pression My, 1 = ¢ri1 — Skr1B 04 (Prs1). This wraps (4.22) into

2 2 2 ZSk / 2 "
E(M| Fig1) = Mk+1Jr B ’32 ( O + )[Uk(¢k+1) — 0 (Prs1) ]
(4.23)

1
ﬁZ <SkE(Uk 1(¢x) “Fkﬂ) S%Jrlv;c((f)kﬂ)z)

Taking expectatlon and invoking the assumed uniform boundedness of {v} }}_, and {v}}}_,,
we may replace o7 by 1 and s by ;2 571 to get

EME) = EOME ) + 5 + g E[04n P — o ()]
+ 512 (bfl)z (E (v;cfl(qbk)z) - E(vfc((pkH)Z)) (4.24)

k
+0 ( dbTog 1|> +0(7"),

i=0

where O(b~F) arises from the bound on the tail of the infinite series for the asymptotic
value of s;. Under Assumption 1.1, adding up the error terms over k = 0, ..., n shows
that these produce an O(1) correction under iteration. The same applies to the middle



30 M. BISKUP, H. HUANG

term as it leads to a telescoping sum which is bounded by the assumed uniform bound-
edness of {v} }}_,. Iterations of (4.24) then prove the desired claim. ]

4.2 Technical lemmas.

In order to process the formula in Proposition 4.1 further we need a couple of technical
lemmas. First we note a way to simplify the right-hand side of (4.5).

Lemma 4.6 Let > 0and assume that {vi},’jzo and {v{}}_, are bounded uniformly in n > 1.
Then foralln > 1andallk = 0,.

n

Z H(pir1)? — of (is1) =—bZE (¢i41)?) +O(1), (4.25)

where O(1) bounded uniformly in n and k subject ton > k.

Proof. By the assumed boundedness of {vk}k o and {v{}}_, it suffices to prove this for
k > 1. Here the definition of vy from vy_; gives

E(0*0}_1 (¢x)* — boi_1 () | Fies1)
= et /e_bvk_l(gbk“%) (0% V%1 (Prsr + 0)* = boi_y (dxs1 + )] payp, (dG)

(4.26)
U (Pr+1) d? —bog_1 (Pr+1+0) / 2 "
= e ikt (:12/e 11T g (AE) = Ok (Prr1)” — Ok (Pra1)-
P
Taking expectation then shows

n n—1
D E[0i(@in1)* = o (pisn)] = 3 E[UP0i(@i1)* — b0 (i) - (427)

i=k+1 i=k

Relying again on the boundedness of {v}}_, and {v}}]_,, rearranging terms yields

n n
(b* = 1) D E(0}(¢i41)%) = Z v} (¢i1)) +O(1). (4.28)
i=k i=k
Canceling b — 1 on both sides then shows the claim. O

Next, in order to determine the asymptotic behavior of the sum on the right of (4.25),
we need to control the law of ¢y for large k. While this law does not converge by itself
due to the fact that the variance of ¢ stays of order k, the law of its fractional part (which
is all what we need to compute expectations of 1-periodic functions) does converge as
long as v, tends to a limit. In quantitative form, this is the subject of:

Lemma 4.7 Let f > 0 and let v, be a 1-periodic continuous function such that (3.36) holds.
Let v, be the Borel measure on [0, 1) defined by

, -1
Vi(dz) := [ /[ o e (0+Do.(z >dz’] e 0@ (z)dz. (4.29)
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Fork =1,...,n, abbreviate

Apg = (b+1) sup|v.(z)| + sup |ox(z) — bog_1(2)|

zell:3 z,2/€R , (4.30)
+5 max{o; %, 1} + 5 log(27t/B) + log max{oy, 1}
and
O := sup |[vk(z) — bog_1 ()] — [vs(2) — bv*(z’)]’ + log max{cy, (Tk_l}. (4.31)
z,2’€R
Then forallk =1,...,n,
n n j—2
|P(pemod e ) —v. |y, <] [(1—e )+ Z (1—e o) []a—-e?), 432
i=k j=k+1 i=k

where the last product is interpreted as 1 when j = k + 1.

Proof. The proof proceeds by a coupling argument. First note that the assumptions
about v, ensure that

P.(B|¢) = e>@ / e @+ 1p(¢ + T mod 1)pyp(d0) (4.33)

is a transition kernel on [0,1). Let (¢}, ..., ¢;) denote a run of Markov chain with tran-
sition probability P, and ¢; drawn from v, above. Write P, for the distribution of the
chain. Using that v, obeys (3.36) we now check that v, is stationary for P,. In particular,
we have P, (¢; € -) = v, forallk=1,...,n

Recall the following standard coupling of random variables X and Y taking values
in [0, 1) with probability densities denoted as f, resp., g:

P((X,Y) € B) =/1B(x,x)f A g(x)dx

[f(x) — f ~ &l )][() f 8)]
/ 1= [ Ag(2) dxdy,

where f A g(x) := min{f(x), g(x)}. If the pair is drawn using the first term, we will say
that X and Y get “coupled,” while if the pair is drawn using the second term, we say
that they get “uncoupled.”

We will now apply the above coupling recursively to generate a sequence

(@nsr's Pra™), -, (91, 97) (4.35)

of [0,1) x [0,1)-valued pairs of random variables as follows: Draw (¢, 11’, ¢,4+1*) from
5 ® vx. Then, given a sample of (¢, ¢5 ;) for some k = 1,...,n, draw (¢, ¢;) from
the above coupling measure with

(4.34)

F(z) 1= eWPrr)—brioa Yeo 2Pt (4.36)

«/Zﬂ/ﬁk]ez
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where By := Bo 2, and

g(Z) Ou(Pf1q) — b0k (2 Z ¢k+1+] (4.37)

«/271 JeZ

As f is the probability density of py(- mod 1|¢;_ ;) and g the probability density P.(:|¢;),
this gives us a (Markovian) coupling of (¢,+1 mod1,...,¢; mod 1) and a run of the
Markov chain with transition probability P, with initial law v,.

We will now use the explicit expression (4.34) to control the probabilities that (¢, ¢5)
get “coupled” or get “uncoupled.” We start by deriving bounds on the terms entering
on the right of (4.34). First note that, for f and g as in (4.36—4.37), retaining only the j = 0
term in the sums shows

fAgz)=e (4.38)
forallz e [0,1), regardless of the values of ¢ ; and ¢;_ ;. On the other hand, assuming
that ¢, = ¢}, if 0f > 1, then B < B and from (4.31) we get f(z) > e %g(z) for
all z € [0,1). This implies f A g(z) = e %g(z) leading to

§(z)— f rglz) < (1—e %)g(z) (4.39)
for all z € [0,1). Similarly, still under ¢; w1 = Py if (7,3 < 1 then B < By and so
f(z) < e5kg(z) for all z € [0, 1). This now gives f A g(z) > e_5kf(z) and so

f2) = frgla) < (1-e)f(z) (4.40)
holds for all z € [0,1). Using the fact that (¢}, ¢;) get “coupled” with probability equal
the the total “mass” of the first term on the right of (4.34) and get “uncoupled” with
probability equal to the total “mass” of the second part, the above observations readily
translate into the inequalities

P(¢; = ¢;

Ak g, (4.41)

)Ze

and
P(¢p # ¢} |Fi) <1—e % as. on {4 = i1}, (4.42)

where we set 7 := o (¢}, ¢7: i = k,...,n) wrote P for the coupling measure.

We now observe that the event that ¢, # ¢; entails one of two possibilities: either the
chains never got “coupled” up to and including the state indexed by k, or they did get
“coupled” at some index j = k+1,...,n but then got “uncoupled” and stayed so until
and including the state indexed by k. This means

n

P(¢y # 7)< (ﬂ{qzm ) > ﬁ<{¢;=¢;} nﬁ{wm). (4.43)

j=k+1

Using (4.41), the first probability is bounded inductively by the product of 1 — e ~4»i for i

ranging from k to n while (4.41-4.42) bounds the second probability by 1 — e ~%-! times
the product of 1 — e~ for i ranging from k to j — 2. Since P(¢, # ¢;) dominates the
total variation on the left (4.32), the claim follows. O
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4.3 Proof of Theorem 1.3.

We are now in a position to prove the conclusion concerning the covariance of the field.
We start with sub and supercritical cases that can be handled concurrently:
Proof of Theorem 1.3, B # B.. Suppose b > 2 and f > 0 are such that either Theorem 3.4
or Theorem 3.6 applies, whichever is relevant. This in particular means existence of a
1-periodic continuously differentiable v,: R — R and 4 € R such that (3.34-3.35) hold
with some some C’,5’ > 0. (For B < B. we have v, = 0 for which this follows from
(3.22-3.23).) Morever, {v;}}_, and {v]}}_, are bounded uniformly inn > 1.

The bounds (3.35) enable Proposition 4.1 and Lemma 4.6. In the notation of Lemma 4.7
the bound (3.32) implies

’os 1
5 < Cle ' minfkn—k} | 5 max{|oZ — 1|, o2 — 1|} (4.44)

while the uniform boundedness of {v }}_, and {v}}[_ gives sup, ;- A,x < o0. From
(3.35), the coupling inequality (4.32) and Assumption 1.1 we then get

sup 2 ’E (04 (¢s1)?) — Eu (vi(fp)z)‘ < o, (4.45)
nz1 k=g

where E, denotes expectation with respect to v, and where the k = 0 term is handled
using the uniform bound on v} and v,. Since E. (7, (¢)?) does not depend on k, it follows
that the sum on the right of (4.25) equals

(n — k)E. (v, (¢)%) + O(1). (4.46)

This implies the claim with

1 1b+1 [y e ETVn@yl (p)2dg
B BT LoD dg

which equals 1/8 when B < B as v. = 0 but is strictly less than that whenever v, is
non-trivial, as is the case for § > B.. O

a*(B) : (4.47)

Remark 4.8 The computations in Section 6 (see, e.g., Lemma 6.8) show that

) =22 =D e owe - 1) (4.48)
* (b+1)2(b+1)3 ' '
This, along with the bounds (3.31) implies
o () = amy | —2P =D a7 sin(2me) + Ob0 — 1) (4.49)
R VPO VTPV ' '

It follows that, up to corrections of order (b — 1)%?, the integrals in (4.47) reduce to

integrals with respect to the Lebesgue measure only. As fol sin(27t¢)2d¢ = 1/2 we get
1 1 b+1 20°-1) 1
20py — = _ 2 1 1= _ 1132
o= (B) 5 (477) ,B%bb— I -1+ 1 (b6 1)2 + O(|b6 — 1]779). (4.50)

A computation gives b — 1 = 2/3%2(,3 — Be) + O((B — Bc)?)- This now gives (1.16).
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With the above stated, the critical case requires only minor changes:
Proof of Theorem 1.3, B = B. Note that v, = 0 in this case. Since (v})? decays as 1/k while
|ok]|oo decays as 1/v/k, we have

E(0e(frs1)?) = /[ ) 9P+ 00, (4.51)

In particular, in this case the finite-k corrections to the law yield only O(1) term. Writing
the right-hand side of (3.28) as 471 A sin(271¢) and using again that fol sin(27t¢)2d¢ = 1/2,
the sum in (4.5) thus equals

1 1. b+1_ 5,5 n
Plugging n := log;:»(diam(A,)) and k := log,:2(2 + d(x,y)) + O(1) and substituting
for A yields the claim. O

Remark 4.9 The previous proofs demonstrate the reason for the numerical closeness of
the coefficients in front of the second order term at . and the near-critical expansion
of 0%(B) in (1.16). Indeed, both rely on the expansion v/ (¢) = (47 Ae€) sin(27t¢) + O(e?),
where € := k=12 in the critical case and € := 1/2(b8 — 1) in the near-critical case and A
is the constant on the right of (3.27). Plugging this into (4.5) with the help of (4.25), we
also need that E(sin(27t¢%)?) = 1/2 4+ O(e€) once k and n — k are sufficiently large.

Remark 4.10 The covariance computation reveals a log-correlated structure that has, in
recent years, allowed control of the limit law of the maximum and the full extremal
process of the underlying field in a number of specific models of interest. Two examples
most relevant for the present work where this has been done are the Branching Random
Walk (Aidekon [3], Madaule [47]) and the GFF on subdomains of Z? (Bramson, Ding and
Zeitouni [22], Biskup and Louidor [17-19]; see also [15]). In [16] the present authors used
the tree-indexed Markov chain representation of the hierarchical DG-model to control
the maximum and the extremal process throughout the subcritical regime. This leaves
the question of what happens at, and beyond, ..

Unfortunately, the covariance calculation is not sufficient to make reliable predictions
about the law of the maximum. Indeed, we need a sharp asymptotic of the proba-
bility that ¢, exceeds quantities of order n, and likely quite a bit more. While we
presently do not see how to extract this information from our calculations, we do be-
lieve that the maximum at > B, scales as for the Branching Random Walk with step
distribution A/(0,¢%(B)) while, at B = B, the variance of the steps should be taken as

1/Bc — c‘lofn. In short, we conjecture that the model is well approximated by the Branch-
ing Random Walk with step distribution adjusted to match (1.14).

5. FRACTIONAL CHARGE ASYMPTOTIC

We now move to the computation of the asymptotic of the fractional charge correlation
stated in Theorem 1.4. We start with some general observations that apply to all > 0
and then prove the statement for subcritical, critical and supercritical S.
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5.1 General considerations.

The proof of Theorem 1.4 again relies on the Markov chain representation of the field;
see Section 3.1. As before, we will write ¢,11, Pn, . . ., o for a run of the chain along the
path from the root to a generic leaf-vertex indexed so that ¢, is the value at the root and
¢nt+1 = 0. We start by introducing the key iteration for the fractional-charge setting:

Lemma 5.1 Let o € R and, given {w1(q)}gen € 1(Z), define {wy(- )}'“rl by the recursion

ax—1(0)" (bl ﬂk-l(&')) (q+a)?
w = ———= ) wi ()0 . 5.1
k1) ax(0) m%lmz 111 a-1(0) S o
bt +ly=g

Then {wi(q)}gez € £ (Z) forallk = 1,...,n + 1 and so we can set

fi(z) 1= a1(0)e™1) Yy (g)e, (5.2)
qeZ

Moreover, with F as in (4.3),
E(e*™ % fi(¢) | Ficyn) = €749 fi g (Pry1) (5.3)

then holds for allk = 1,...,n. In short, {e?™% fk(cpk)}”+1 is a reverse martingale.

Proof. Using that {ax(q)}qez € (*(Z) for all k = 0,...,n we check that {wy11(9)}sez €
(1(Z) whenever {wy(q)}4ez € €'(Z), so the main part to prove is (5.3). Continuing to
abbreviate f; := po; 2, letk =1,...,n and observe

E (2™ fi(¢x) | Fies1)
= % (Pr+1) /e—bvk1(¢k+1 +0) g27tia(Pri +C)fk(4’k+1 + g)ﬂl/ﬁk (d)
(0)92”i“¢k+1evk(4’k+l) (5.4)

y /e_(b_l)vk_l(¢k+1+§)ezmag Z we(£y) eZHiﬂh(¢k+1+C)y1/5k(d€).
beN

= 0r—1

The sum over ¢, can be exchanged with the integral thanks to {wi(q)}sez € (*(Z). In-
voking e %13 = 3, a;_1(£)e? % along with the fact that er”irgyl/ﬁk(dg) = 9,22 for
any r € R, we then compute the resulting integral to be

Z wk(gb)/e(b1)vk1(¢k+1+§)e2ﬂiaée2ﬂiéh(¢k+1+é)yl/ﬁk(dC)
beZ (5 5)

= Z <Hak 1 > Eb) 27T1(/€1+ +‘€b)§bk+1 9(£1+ +£b+¢x)

é gbGZ

Writing the sum as two sums, one over g € Z and the other over /4, ...,{, € Z subject
to /1 +--- + £, = g, the definition of wy; reduces the expectation of interest to

E (™% £ (¢y) | Fiesn) = 29941, (0)ePiet) "y 4 (g)e> 0551, (5.6)
qeZ
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This equals e?™%%+1 f | (¢r,1) thus proving (5.3) as desired. O

Note that the case k = 0 is excluded from the previous lemma in light of the condi-
tional law of ¢ given F; being of a different form than the law of ¢ given Fj; fork > 1.
To get the iteration started, we thus need:

Lemma 5.2 Suppose that f: R — R admits the Fourier representation
fl2) = 2 w(g)e?™ (57)
qeZ
such that {w(q)}qez € €*(Z). Then for all « € R,

2
E(eZHiaq)of((PO) ‘fl) _ ezma(lervo((Pl) an Z w * a(q) 9(()q+oc)2e2niq4>1, (5.8)
qeZ

where {a(q)}qez are the Fourier coefficients of v; i.e., a(q) := f[o N e 22y (dz), and w * a is
the usual convolution,

w=a(q) = Z w(g—~al), qeZ. (5.9)
leZ

Proof. In light of {w(q)}4ez € £'(Z) it suffices to focus on f(z) := e*™% for some g € Z.
With B := Boy %, the bottom line in (3.15) then gives

E(eZHi(q+“)¢o|}“1) - evo(¢1)+2ﬂi(ﬂl+ﬂé)¢1/ 2rti(g+a) (9 —91)— L (9—91)’ v(de). (5.10)

Using the 1-periodicity of v we now check that the integral is a 1-periodic function of ¢;.
The Gaussian decay of the integrand in turn permits us to swap any number of deriva-
tives with respect to ¢ with the integral which means that the integral is actually a C*-
function of ¢;. It follows that one can express the integral as a uniformly convergent
Fourier series. Comparing the Fourier coefficients we get (5.8). O

To connect the above to the main objective of Theorem 1.4, we note:
Corollary 5.3 Let B > 0and a € R and let {wk}"Jrl be defined by (5.1) with
27of a(q) (g+a?
w = ,
D=7 )™

where {a(q)}qez denote for the Fourier coefficients of v. Let {fi}171 be defined from {wy}} ] as
in (5.2). Then wy(-) is strictly positive forallk = 1,...,n +1and

<mwwww—Umwﬂ (5.12)
holds with k := k(x,y) for all distinct x,y € A,,. (Here k(x,y) is as in (4.4).)

ge<z, (5.11)

Proof. The strict positivity of wy(-) is immediate from (5.11), (5.1) and the positivity
of a;’s so we only need to prove (5.12). Let x,y € A, be distinct and set k := k(x,y). The
tree-indexed Markov representation of the field {¢+}1ea, from Section 3.1 yields

(¥ =)y, o = <E(e2”i"‘4’° | Fi)E(e™ 240 |fk))~ (5.13)
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The first conditional expectation corresponds to the choice f := 1 in (5.8) for which
w(q) := 650. The identity (5.8) then gives E(e*™4% | Fy) = 201 f(¢) for fi corre-
sponding to w; from (5.11) via (5.2). Using (5.3) we obtain E(e?™%0 | ;) = e fi (¢y).
Since the second expectation in (5.13) is the complex conjugate of the first, plugging this
in (5.13) yields (5.12).

We remark that, besides k, the sequence {wi(q)}4ez depends also on n through the
n-dependence of the sequence {¢7}_,. While we keep that dependence implicit, it may
need to be noted in statements where uniformity in 7 is required.

5.2 Below criticality.

Corollary 5.3 tells us that, for the asymptotic of the fractional charge at large separations
of x and y, we need to track the large-k asymptotic form of f; initiated from (5.11). As it
turns out, the cases of B < B. are united by the fact that f; is completely dominated by
the coefficient wy(0).

Lemma 5.4 Let € (0,Bc], a € (=, V) and let wy be as in (5.11). Then

: wi(q)
lim su =0. (5.14)
k—o0 n;,? L;) wk(O)

Proof. We will prove that, under the stated conditions on B and «, there exist C> 0,7>0

and ko > 2 such that
k—ko
wi(q) & i o A—i(9)
<C e (5.15)
{;O wi(0) ]:ZZ g‘; a,—;(0)

holds for all k > kg + 2, uniformly in n. For this we note that, reducing the sum in (5.1)
to the term with /1 = --- = £,_; = 0 shows

ar_1(0)°
ar(0)

Dividing each side of (5.1) by the corresponding side of this bound then gives

Wis1(0) > 62" wi (0). (5.16)

b—1

wi1(q) _ < ﬂk—1(£i)) Wi (lp) o(q+a)?—a?
< 0 : (5.17)
wy41(0) (1,_%62 Eak—l(o) wy(0) K
A =g

Now observe that for g # 0 we have (7 + «)? — a? = g% + 2qa > 1 — 2|a| and abbreviate

= Y ag-1(9) (5.18)

=0 -1(0)

Summing (5.17) over g # 0, we have two cases to consider on the right-hand side: ei-
ther ¢, = 0, in which case at least one of /4, . .., £;,_1 must be non-zero, or £, # 0 in which
case the remaining indices can, as an upper bound, be summed over as free. This yields

Wi () _ b—2p 91214 b—1p1-2lal 1 Wk(4)
DA < (14 u)P 7260, g+ (1 4+ u) 10 , 5.19
q;o wk+1(0) ( k) k k ( k) k qZ?EO wk(o) ( )
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where the factor b in the first term dominates the number of choices of the first non-zero
term among /1, ..., ¢p_1.

Now observe that Theorems 3.4 and 3.5 imply sup,_,uxy — 0as k — co. In light
of [a| < 1/2, Assumption 1.1 and sup, _,, 6 < 1, there exists ko > 1 such that

e T:= sup (1+ uk)b’19;_z|“| <1 (5.20)

n>k>k0

Using this in (5.19) and iterating we get (5.15) by invoking {wy,(q)}sez € ¢'(Z) which
is checked from (5.1), (5.11) and the boundedness of {a(q)}4ez. With (5.15) in hand, we
then get (5.14) by using again sup,,_; ux — 0 ask — oo. g

Using very similar arguments, we also get:

Lemma 5.5 Let € (0,Bc], a € (=, 1) and let wy be as in (5.11). Then

0 < inf waFil(O)z < su wk+71(0)2 < . 56.21)
n2k21 wi(0)0F  nzkz1 wi(0)6f

Proof. For the lower bound in (5.21) we use (5.16) to get

we1(0) ar_1(0)°
w(0)62" ~  ax(0)

(5.22)

The quantity on the right is positive uniformly in n > k > 1 thanks to (3.21) (for g < B.)
and (3.24) (for p = Bc) and the bound a,(0) < (X7 ar_1(q))". For the upper bound in
(5.21) we relax the condition ¢1 + - - - + ¢, = g in (5.17) to get

h—
W (0) _ (Z ak_l(ﬂ)) Ly ) (5.23)

w008\ /5 @000/ S wi(0)

The first sum is again bounded uniformly in n +1 > k > 1 thanks to (3.21) and (3.24)
while the second sum is bounded thanks to (5.19). 0

We are now ready for:

Proof of Theorem 1.4, B < B.. We will derive an approximate recursion equation for the
sequence {wk(O)}Zill For this we separate the term with /; = --- = ¢, = 0in (5.1) and
use arguments similar to those underlying the proof of (5.23) to bound the remaining

terms. This yields

b 2
’wk+1(0)—aka_k](g;) 0; wk(O)‘
ax-1(¢) ar_1(0) b—2 W) ] 2 (5.24)
10

where the prefactor b accounts for the choice of the smallest index with ¢; # 0. The last
two sum on the right are bounded uniformly in n > k > 1 as above while the exponen-
tial decay (3.21) in Theorem 3.4 shows that the first sum decays exponentially in k. By
the same reasoning, a;_1(0)"/a,(0) differs from 1 by a factor that decays exponentially
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with k. It follows that for each € (0, B¢) there exists 7 > 0 such that
wi1(0) = %€ 0w, (0), (5.25)

with the implicit constant in O(e ~7¥) bounded uniformly in n > k > 1. Here we relied
on Lemma 5.5 in moving the error to the exponent for small k.

We now set #’ := |n/2] and let C, := (w,(0)0~*""")2. In light of 91?‘2 = g (-1,
for k < n’ we then have

n'—1 n'—1
we(0)0~** = /C, exp{— 3 1og(;”f(+01)(6?2) + o?log(1/60) Y (07 — 1)} (5.26)
i=k ! i i=k

The same identity with the limits of the sums interchanged applies also to k > n’ (pro-
vided k < n). Invoking (5.25) and Assumption 1.1, we get wk(O)G_“Zk = v/Cy +0(1)
where 0(1) — 0 as min{k,n — k} — . To see that {C,},>1 is bounded and uniformly
positive, take k := 1 in (5.26) and note that, by Assumption 1.1, w;(0) is positive and
bounded uniformly in n > 1. With the help of Lemma 5.4 and some elementary facts
from Fourier analysis, we now conclude that

(@)} = [Cu+0(1)]62** (5.27)
holds with o(1) — 0 as min{k,n — k} — oo, uniformly in z € R. Plugging this in (5.12)
then proves (1.18) for B < f.. 0

5.3 At criticality.

In the critical and supercritical situations, a simple (albeit approximate) recursion linking
wi(0) to wy_1(0) is not enough to capture the actual decay. Indeed, as we will show,
wy(0) will receive non-trivial contributions from wy_;(0) with j > 2 as well. To prepare
the needed formulas, we first condense (5.1) as

2
wea(9) = 67 D vl — Owi(0), (5.28)
leN
where, abusing our earlier notation, we set

1) i= ag_1(0)" Z ﬁ ay (Ei)‘

-1
a(0) o ez i 1k—1(0)
Ot +lp_1=q

(5.29)

Note that, as many of the above objects, x depends also on n but we keep that depen-
dence implicit. We now rewrite (5.28) as follows:

Lemma5.6 Foreachn+1>k>2andp,qe Z let

2
Tia(p,q) == 071 0~y 1 (p —q) (5.30)
andforn+1>k>3andj=2,...,k—1,set

= j
L) = <H9,Eq_'fff 9“2) [[ri@ia—q). (31
i=1

q1yeees qj_1€Z\{0} i=0
qJo=p.4q;=4
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Then foralln+1>k > 2,
k—1

we(p) = 3. Tei(p, 000w (0) + D Tieeor(p, )0 ¢ Dy (g). (5.32)
j=1 qeZ~{0}

Moreover, foralln +1 >k >2,all1 <j<kandallpe Z,

j
Z Tyi(p,q) < g—c+Ipl(Ipl-Dogn+(1=2la)(j-1) H Z Ye_i(£) (5.33)
geZ i=1(leZ

holds with ¢ := max{a?, (1 — |a|)?} I |[0? — 1| and 0%, = infi_o, _, 07

Proof. We start by proving (5.32). As is checked directly from (5.28), this holds for k = 2
For general k > 3, we plug (5.32) for wy_1(¢) in

07 e (p)we 1 (0) + 387 1 (p — D)1 (0) (5.34)
1#£0

which itself follows from (5.28). With the help of

[ 2 o
07 i 1(p) = Tia(p, 0)6% (5.35)

wr(p) =

and

2 2
SO i (p — OTi_1(4,9) = 0T 1 (p.q) (5.36)
{+#0
we now prove (5.32) for k from (5.32) for k — 1 and thus show (5.32) to be valid for
alln +1 > k > 2 by induction.
For the bound (5.33) recall that

(q+a)* = |q* —2lallg] + a® = |q|(lq] = 1) + |q](1 - 2la]) + &? (5.37)
For q¢ := p and any ¢y, ...,q;-1 # 0 we thus get

ql+a
Hgk i—1 0~ o

j—1
< <9a2<cf,§1—1> I 9<a,3i1—1><1—2a+a2>> gIPI(Ipl =107y +(1-2lal)-1)
i=1

(5.38)

Plugging this in (5.31), using 07, > 02, and noting that the quantity in the large paren-

min
theses is bounded by 6~¢, we get (5.33) by performing the sums over gy, ..., g;. U
The main point of the bound (5.33) is that, for & € (—1,15) and with Assumption 1.2
in force, the second sum on the right of (5.32) decays exponentially faster than the first
and can thus be regarded as an error whenever

002D > () < 1. (5.39)
leZ

The latter is true for min{k, n — k} large up to, and even slightly above f..

Formula (5.32) reduces the iterations to those of the sequence {w;(0)};" "H (That this
suffices at criticality has been shown in Lemma 5.4. We wrote (5.32) in more generality
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to prepare for supercritical situations.) Next we need good control of the asymptotic
behavior of the coefficients I' ;(0,0). This comes in:

Lemma 5.7 Let B = B, a € (=Y, ) and let A := [Wf;%]l/z be the constant on the
right of (3.27). For 0 < k < n set

= Y0, (5.40)
j)min{\/l;,n—\/l;}

where {0}} ;>0 is the sequence from Assumption 1.1. Then
T,1(0,0) = exp{—2(b — 1) A%k " + O(k™?) + O(k " ¢) + O@umingk—1,u-k+1y)}  (5.41)
and, for j = 2,...,k —1and n defined by e ™" := p—2(1=2lal),
. 4 1
—(142w) (j=1) , 3,—(1—2a)(j—1 2 42
I};(0,0) = (b (1+20)(j=1) 4 p=(1-20)(j ))(b— 1)2A .

+0(e Mk 2) +O(e Wk (ep_1 + ex_)))

where the error bounds are uniform in j, k and n such that 2 < j < k < n+1and in « on
compact subsets of (=, ).

(5.42)

Proof. The proof will require the results in Theorem 3.5 to extract the asymptotic behavior
of the relevant coefficients <. For I'; 1(0,0) we only need 7 (0). Here we treat explicitly
the term corresponding to permutations of (1, —1,0,...,0) in the sum in (5.29) as well
as in the sum representing a,(0) via a;_1 () and note that, by (3.24), the remaining terms
give contributions of order k=2. Applying also (3.27), Theorem 3.5 gives
(0) = 14+ (b—1)(b—2)A2 + O(A})
T = T (- A2+ O(AD)
=1-2(b-1)A2 +0(A}) (5.43)
=1-2(b- 1A%k +O(k™2) + O(k 'ey)
=exp{—2(b —1)A’k ' + O(k™) + O(key) },

where Ay := a;(1)/a,(0) and where we used that ¢2 = O(¢,) and noted that the exponen-
tial form is legit thanks to 74_1(0) being positive uniformly in n > k > 1. From (5.43)

and 6;_; = 6%1 we then readily get
T}1(0,0) = 21D exp{—2(b — 1) A% + O(k™2) + O(k 'er)}. (5.44)

With the help of (1.6) this shows (5.41).

For I';(0,0) with j = 2,...,k — 1 we will need the leading-order asymptotic of (1)
and suitable bounds on 7, (g) with |g| > 1. For 7,(1) we treat explicitly the terms corre-
sponding to permutations of (1,0, ...,0) in (5.29) and apply (3.27) to get

1

(1) = (b— 1)AW + Ok~ + O(k™12¢)

| (5.45)
~ (b=1)A 00t
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For the remaining coefficients we invoke (3.24) with the result

1\l
<c 5.46
) < (37 7) (5.46)
where c is a constant independentof g€ Z and n > k > 1.
With (5.45-5.46) in hand, we now treat the (j — 1)-tuples withg; = --- =g;_1 = +1in

(6.31) (with p = g = 0) and, for the remaining terms, bound the prefactors using (5.38)
while noting that the gy, .. .,q; under the sum necessarily satisfy |q1 — qo| + - + [q; —
gj—1| = 4. This yields

Tii(0,0) = [y j(e)+hyj(—a) ] ye—1(1)7i—i( H')’k i(

: (5.47)
+O(p A Z H Yk-i(Pi),
p1,Pj—1€Z  i=1
[p1l+-+[pj—1]=4
where p; represents q; — q;_1,
—1
hk]( ) b~ (1+2a) (j—1)—a?(c?_ 1—1)Hb (1+a)?(2_;_,-1) (548)

i=1
and where the symmetry v, (—¢) = v,({) was invoked to simplify the first term.
Let 7 > 0 be as in the statement. Using (5.46) we now check that the second term on
the right of (5.47) is at most O(e "k™2), uniformlyinj = 2,...,k —1. As to the first term,
collecting the error terms in (5.43) (5.45) and (5.48) shows

A o
By (0) Y1 (1) 7 (1 Hvk R0 (p 1) e, (5.49)

where
. kY 12 12
i 1= log ;— ]+Z|‘7k =l e e+ (k=124 (k=)

=1 (5.50)

J'
Cr—i
* Z k- Z ki
Now observe that the first, flfth, 51xth, seventh and elghth term on the right are bounded
by a constant times j/k, while the second and the last term are bounded by ¢;_; + ¢x_1.

It follows that
ﬁk,]‘ = O(ek_1 + ek_]‘) + O(]/k) (5.51)

Borrowing part of the exponential decay from the prefactor b=(1+20(=1) to absorb the
O(j/k)-term shows that the quantity in (5.49) equals

—(1420) (- A? L
p~(1+20( 1)(b—1)27+0(ek,1+ek,j)k L, (5.52)
Plugging this in (5.47), we get (5.42). O
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We will now show how to use the above to control the fractional-charge asymptotic
when B = B. Set T := %T(a) for 7(a) from (1.19) and observe that we then have

0
T42(b—1)A% = ) (b~ UH200=D 4 p= (200D (p — 1)2 A2 (5.53)
j=2
for A as above. Setting
re 1= k- T07k,(0), (5.54)

the proof of Theorem 3.5 will boil down to showing that 4 is close to a positive and finite
n-dependent constant once k and n — k are large. For this we first prove:

Lemma 5.8 Let B = B and suppose that the sequence {0;};o from Assumption 1.1 obeys
Z]‘>1 0;log(j) < 0. Then

0< inf 7 < sup rp < 0. (5.55)
nzk=1 nx=k=1
Proof. For A as above, denote
hj = (b~ (200D 4 p=(17200-D)y(p — 1)2A2 (5.56)
and, recalling e™" := b_%(l_z“"‘), abbreviate

2 1
Sk = k™" + k" ek + Omingk—1,n—k+1}

, (5.57)
Upj = e [kiz + kfl(ek_l + ek_]‘)].
Then use the asymptotic forms from Lemma 5.7 to cast (5.32) as
1\ % -
1 = <1 _ E> o—2(0-1)A% 1+O(5k)rk_1
(5.58)

k—1 1 7 k—1
+ ]:z; h]% (1 — %) Tk—j + O<j=Z;uk/kaj> + O(e_”k),

where the last error term arises from the aforementioned bound on the second sum in
(5.32). Now set M := max;_1, 7 and invoke 1 — % <e Vkand1-— % < 1to get

k-1
I= 1y 42751 1 _
M < {e [T+2(b-1) A%k + % Z h]‘ + C(ﬁk + Z uk,]ﬂMk_] + ce 1k (5.59)
j=2 j=2

for some constant ¢ > 0 independent of n > k > j > 2. The choice of T ensures (via (5.53))
that the sum of the first two terms in the square brackets equals 1+ O(k~2). To prove
uniform boundedness of { M }!_, it thus suffices to show that >}}_; s and >/, Z;:zl Uy
are bounded uniformly in 7. In light of Assumption 1.1, this reduces to uniform bound-
edness of >'}_; k~1e;. Here we compute

5o 1 1 ,
Dk lee<2y 0 D <2300 3y ¢ <23 9;log(f) (5.60)
k=1 k=17 >k =1 1<k<)? j=1

which we assumed to be finite.
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-----

wi—;(0) = (k— ])76"‘ *k=Dmg_y in the first sum on the rlght of (5.32). Dropping the second
sum and invoking Lemma 5.7 along with the bound (1 — ) > 1 — j/k shows

k
1
my = [e [£4+2(b—1) A%k~ s EZ -a Z]h c Z uk]]mk . (5.61)
: ]>2

for some constant ¢’ > 0. We now check that there is ky > 1 such that the the term in the
square bracket is uniformly positive for n > k > ko and differs from 1 by a quantity that
is uniformly summable on k = 1, ..., n. It follows that my > ¢"my, for alln > k > ko. To
extend the bound to k < ko we call upon Lemma 5.5 which gives my > ¢k~ for ¢ > 0
independentofn > k > 1. O

We are now ready for:

Proof of Theorem 1.4, B = B.. We start by deriving a recursive bound on the difference
1y — 1x—1. For this we only need to expand a bit on the arguments from the proof of
Lemma 5.8. Indeed, using that {r}}_; is bounded, we can trim (5.58) to the form

1 k 1
Te = Vk_1 — E[T + Z(b — 1)A2]7’k 1+ + Z h; iTk—j + O(Uk) (5.62)
] 2

where vy := k=2 + e 7F + 5 + Z;:zl Uy ;. For our choice of 7 and 7, this gives

| k=
Te—Tho1 = EZ j(Tk—j — k—1) + O(0g). (5.63)

With the help of the triangle inequality and a simple interchange of two sums we get

[ =

k=2
ne—real < ¢ Z( > hj) Pk—i = Te—im1| + a0 (5.64)

i=1  jzi+1

for a constant 2 > 0 independent of n > k > 1. Setting

ko = {Z e'li< D Iy)}, (5.65)

izl j=i+1

where the sum over i is finite for 7 as above, we assume that a is so that the bound

—rji_1] < uZe ’7’0] ; (5.66)

holds forallj = 2,...,ko.
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We now claim that (5.66) is true for all j = 1,...,n. Indeed, suppose k > ko is such
that (5.66) holds for j = 2,...,k — 1. Then plugging the bound in (5.64) yields

[T — re1| < ave+ - Z(Eh)zen ng

1 1
=R (5.67)

= avy + % Z [Z e’71< Z h]>:| efngtlk_g.
t=1ti=1 jzi+1
Noting that the quantity in the square bracket is bounded by ko, the fact that k > ko then
implies (5.66) for j := k. This proves (5.66) for all j = 2,...,n by induction.
With (5.66) in hand, we proceed similarly as in the subcritical situations. Indeed,
abbreviate n’ := |n/2|, set C, := r%, and note that, by Lemma 5.8, C,, this is positive and
finite uniformly in n > 1. The inequality (5.66) implies

|rk—\/Cn| < 1

max{k,n—k} k—1

a o
Z v+ 1o Z e W]Uk_]'. (5.68)

j=min{k,n—k} j=1

The assumption » ;- 9;log(j) < o along with the bounds in the proof of Lemma 5.8
then give ry —+/C, — 0 as min{k,n — k} — 0. Using this in (5.54) along with 2T = 7(«),
Lemma 5.4 and standard facts about Fourier series show

fe(2)[F = [Cn + 0(1)]kT @K (5.69)
with 0(1) — 0 as min{k, n — k} — oo uniformly in z € R. Plugging k := k(x,y) we get
(1.18) for § = B. O

5.4 Above criticality.

Our last item of business in this section is the asymptotic of the fractional charge for
slightly above B.. Throughout we assume that the sequence {0 }¢>o in Assumption 1.1
exhibits exponential decay.

We will again rely on the representation from Lemma 5.6 for which we need to iden-
tify the asymptotic values of the coefficients I'y j(p,0). Abbreviate Z;(q) := {(¢1,...,4p) €

Zb: 0y + -+ 4y = q} and, with {A,(q)}nez as in Theorem 3.6, set

b—
ez, (o izt As()
Sirez, o) =1 Ae(£))

where ¢ stands for ({1, ...,¢,_1) and ¢ stands for (¢}, ...,2;). Note that, by (3.30), the
sums are finite for b — 1 small and 7.(p) = v+(—p) by Au(g) = A(—q). Now let

Ti(p) := 7«(p) (5.71)

7+(q) = (5.70)

and, for j > 2, let

j—1 j
1“;(]9) = Z <H g(q,-+zx)2_a2) H Y (qi — qi-1)- (5.72)
‘11,~--,11];1€Z\{0} i=0 .
q0=p.4;=0
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Theorem 3.6 then shows:

Lemma 5.9 Forall x € (—1,15) and § € (0,1 — 2|a|) there exists € > 0 and, for all p > B
with 1/ > 1/Bc — €, there exist C > 0 and 17 > 0 such that

r]f(p) < CVbo —1 b (A-20al=0)jg—nlpl(pl=1) (5.73)
holds for all j > 2 and p € Z and
’rk] p,0) — (p)\ < Ch~(=2la[=6)ja=nIpl(Ip|-1) g =1 min{k,n—k} (5.74)

holds forn >k > j = land p € Z.

Proof. We start by estimates for the weights 7 and .. For b0 — 1 sufficiently small, the
bounds (3.30-3.31) imply that, for some constant C’ > 0,

max{z m(0), 7*(5)} <1+CVho—1 (5.75)

leZ leZ

holds uniformly in 1 < k < n. The assumption of exponential decay of {0y }¢>¢ in turn
allows us to summarize the inequalities (3.31-3.32) as

‘ak(q) o )\*(Q)‘ < C//e—q’max{min{k,n—k},|q|}‘ (5.76)
a(0)
Hereby we get
S 1) — 1 (g)] < Ce mintkn—k}, (5.77)
qeZ

We will assume that ' < 16logb.
The reasoning underlying (5.33) gives

i—1
% (p) < 0%l (Pl +(1-2a) - 1>< SRR )(Z%“))] 679

qeZ~{0} leZ

where we noted that q; —g;_1 # 0in (5.72). The first sum on the right is order v/bf — 1
by the same argument that proved (5.75). The second sum can be made less that b° by

taking bf — 1 small, proving (5.73) with e ™" := 6% min
In order to prove (5.74), we telescoplcally swap the k-dependent terms in the expres-
sion for I'; ;(0) for the corresponding terms in l"]*. Using (5.37) this gives

Tka(p,0) = Ti(p)]
< 0 lX +0; mm‘p‘(lpl_l)|/),k_1(p) _ ,Y*(p)| + |91((P+“)29—1x2 _ 9(P+“)29_0‘2| ry*(p)
For j > 2, we in turn invoke (5.33) with the result

!Fk,j(p, 0) — F]*(p)‘ < g~ et (1=2)) (- 1)+17r2mn|P|(\P\—1)Bl 4+ 9 ct(1-2)(G-2) g, (5.80)

(5.79)

where

Z < H 2 i > <Z|7k—m(15) - %(€)|) (Z 7*(€)>jm (5.81)

m=1 " i=1 (eZ leZ leZ.
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and

b= (G )[ BT o]

leZ
(5.82)

+ 9(p+a —a? Z Z |9kqu“1 0 a2 9(q+vc)29—u¢2|
i=1geZ
The bounds (5.75-5.77) give
By < C"ellle=n mintkn=k} i1 o C'\/pe — 1)~ (5.83)
If b0 — 1 is so small that 1+ C'v/b0 — 1 < b%/3, then the assumption 7’ < 15logb along

with the fact that sup;s jb‘j‘s/ ® < o0 bounds the first term on the right of (5.80) by a

quantity proportional to the right-hand side of (5.74).

The first term on the right of (5.79) is bounded via (5.77) so it remains to bound the
second terms in (5.79) and (5.80). Here the term involving 7. controlled with the help of
(5.75) so it remains to estimate the quantity in absolute value. The elementary inequality
le=® — e~ < e~ miMad} |5 — 7| combine into

IQEMD{)ZG,“Z . 9(q+a)2971x ’ log(l/G) 9m1n{1 2} g+a)*— (q + D()Z‘O'l% _ 1‘ (5.84)
Assumption 1.1 and the exponential decay of {0;}>¢ give
072 —1| < Ce~Tmin{tn=0} (5.85)

for some C, i > 0. In light of inf,> =1 07 > 0, this bounds the second term on the right
of (5.79) by a quantity proportional to the right the right hand side of (5.74).

The bounds (5 84-5.85) dominate the first term in the square bracket in (5.82) by a
constant times 62 ™7 BIpl(Ip-1)e—min{kn—k} 'ywhere “half” of the exponential decay
in |p| was used to control the term (p + a)2. Similarly, the second term in the square
bracket in (5.82) is bounded by the same quantity as the first times je/. Summarizing,

B, < ¢’z min{ogn 1} pI(Ipl=1) g~ min{k,n—k} [1+C'Vbo — 1]1[1 + jeﬁi], (5.86)

where (5.75) was used for the 7,.-dependent prefactor. Assuming that 77 < §/2 and b0 — 1
so small that 1 + C'v/b8 — 1 < b/, the last two terms on the right are at most a constant

times b%. Inserting this on the right of (5.80), we get the claim. g
Given o € (=1, 1) and B > B as in Lemma 5.9, define t, = t.(«, B) by
= inf{t > 0: Z F]*(O)t_j < 1}. (5.87)
j=1

Clearly, ¢, € (0,%) and, by Fatou’s lemma, > -, ](0) <1 Key for our use of this
quantity is the fact that equality holds. Indeed, we have:

Lemma 5.10 For each a € (=1, 1)) there exists € > 0 such that
PR MO (5.88)
=1

holds true for all B > B. with 1/ > 1/B. — €.
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Proof. The above Fatou argument gives I'1(0)t;! < 1and so £, > 7.(0)~!. By (3.30), we
have 7,(0) — 1 as b decreases to 1 and so, by the uniform exponential decay (5.73), t.
lies in the region of continuity of f — >,;-; I ; *(0)t~/ for B close to Bc. The equality (5.88)
must therefore hold at the infimum. U

We now follow the same blueprint as in the critical case. Define {#}}_, by

P 1= (£09) Fwi(0). (5.89)

This quantity depends also on n but we keep that dependence implicit. Our aim is to
show that 7 is close to an n-dependent constant once min{k, n — k} is sufficiently large.
As in this critical situations, for this we first prove:

Lemma 5.11 For each a € (—14,15) there exists € > 0 such that for all B > B satisfying
1/B > 1/Bc — € we have

f 7 . )
0< n;rk1>l e < ns;};{gl Fr < o0 (5.90)

Proof. Applying (5.89) in (5.32) yields

k—1 ]
o= 2. Tei(0,08 7+ D) Tieea(0,9)t50 Cwi(q). (5.91)
j=1 geZ~{0}

An inspection of (5.11) shows that w; is bounded. Since ¢, is close to one for b6 — 1
small, the uniform exponential decay (5.33) implies that the last term is O(e ") for
some 11" > 0. Invoking Lemma 5.9 to swap I’y ;(0,0) for I(0) gives

k-1
e <O(e %)+ Y Tr(0)t, P+ e mintkn—k} Z b~ (=2l =0 T (5.92)
j=1 j=1
Setting My := max1<]<k 7;, the same reasoning applied to the second sum along with the
bound i~} T3 (0)t. < 1yields My < O(e %) + (1 + O(e 1miMEn=k) M,y with the
implicit constants umform in n. This now gives the upper bound in (5.90).
For the complementary direction we first prove that {7}r~o cannot decay exponen-

tially fast. Indeed, for this we pick 6 > 0 and note that Lemma 5.9 along with (5.88)
show that, for some £ > 1 and kg > /,

g .
D Tj(0,008 > e7° (5.93)

holds once min{k,n —k} > ko. Now observe that plugging (5.89) for w;(0) in (5.32)
and retaining only the terms with j < ¢ from the first sum (and dropping the second
sum) yields

> Y T%;(0,0)t,” i e (5.94)
j=1
Setting my := m1n1<]<k Fiwegetmyg > e ~%my_, once min{k,n — k} > ko. For k violating
this inequality, we in turn use that 7y > I'y1(0)m_; and observe that the product of
min{I1(0),1} for k = 0,...,ko and k = n —ky,...,n is positive uniformly in n > 1.
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(k=ko)f. As & > 0 is arbitrary, we

Writing ¢ for this product we conclude that m; > ce™
have ruled out exponential decay.
We now redo the argument leading to (5.94) while invoking Lemma 5.9 and the bound-

edness of {7};_, proved earlier to get

k—1 ) _
P = ) TH (00t — O(e ™1 mintkn=i) (5.95)
1

~.
Il

The boundedness of {7}(>1 along with the exponential decay (5.73) allows us to extend
the sum all the way to infinity at the cost of an O(e ') error. From (5.88) we then get
My = my_q — ae~1Mn{kn—k} for some constant 2 > 0. But the fact that {my}x=1 does not
decay exponentially means that we can wrap this as m; > (1 — ae™%/2)m;_; once k is
sufficiently large. Any positive sequence satisfying this recursive bound is necessarily
bounded away from zero. O

Next we prove an iterative bound on the increments of {7 };_;:

Lemma 5.12  For each « € (=15, 1) there exists € > 0 and C,ij > 0 such that for all B > .
satisfying 1/B > 1/B. — €,

P — Fe_q| < CeTmintkn—k} (5.96)
holds for alln > k > 2.

Proof. We start by using (5.74) in (5.91) along with (5.33), the boundedness of {?k};‘:ll and
the fact that ¢, is close to 1 when b6 — 1 is small to get

k-1 4
P = O(e 1minEn=k) 4 N 2(0)t, /7. (5.97)
j=1
Next we invoke (5.88) to rewrite this as
. k-1 ‘
P — Fro1 = O(eT™MEm=R) 4 N T2 (008 (Feej — 1), (5.98)
j=2

where we also noted that the j = 1 term cancels on the right-hand side. Using the same
argument as in (5.64), this yields

k=2 , k-1 , _
e — Fro1] < ) ( > Tt ]> |Fi — Tii1| + ae 1 mintkn—k} (5.99)
i=1 N j=i+1

for some constant a > 0 which we will for convenience assume exceeds e?|, — 71|.
Next observe that, since ¢, is close to one for B close to B, for all j > 2 we have

F]*(O)t:j < C'v/bO —Te "7 with C’" a constant and 7’ close to (1 — 2|«|) logb. Assuming
C'vbf —1 < 1/2 we thus get Z};i I"]*(O)t:j <2C'\/bO —1e " forall i > 2. Abbreviating
n" := min{y, '}, the bound

g — Fo_q| < 2ae~ 21" minbn=0 p_ o f_1q, (5.100)
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then iterates via (5.99) to
k

‘fk _ ?kfl‘ < ZaC’(bG _ 1) Z e—i’/lie—%ﬂ” min{k—i,n—k+i} + ae—n” min{k,n—k}
i=2 (5.101)
'/
< 4C b9 - 1 + 1 ae—%ﬁ”min{k,n—k}
1—e 12 ’

where we also used e~ 27" mintk=in—k+i} < o=37"(k=i) 4 o=31"(n=k) anq applied ' = 5".

Noting that C’ and %’ do not depend on , for b — 1 so small that 4C'/b —1 < 1—e~7'/2

we proved (5.100) for ¢ := k from (5.100) for ¢ < k. Since (5.100) holds for ¢ := 2 by our

assumption on g4, it holds for all £ > 1 by induction. U
We are now ready for:

Proof of Theorem 1.4, B > B.. For each n > 1 abbreviate n’ := |n/2|. We start by noting
that the exponential decay (5.96) implies

Cell .
P — Fr| < Cel _ o—iminten—tt 1 <y <. (5.102)
1—e
Next we note that the identity (5.32) rewrites via (5.89) as
k-2
2, _ [ —kn—a2
(£60°) Fwe(p) = D Thj(p, O Feej+ D, Tigea(p, )t 0™ wi(g). (5.103)
j=1 qeZ~{0}
Denoting
Pu(p) = rw D Ti(p)t (5.104)

j>1

we thus get

k—2 ) )
|(£8%) i (p) — P (p)] < D|TH(p, 0) = T3 (p) [t P + 1 D) T
=1 j=k-1

o (5.105)
+ Z r;(p)t:]|7~’k—j — 77;1/‘ + 2 Fk,k_l(p, q)t:kG_”‘Zwl(q).
j=1 qeZ~{0}

Using that {7}}_, is bounded uniformly in 7, invoking the bounds (5.73-5.74) in the first
two terms, the decay (5.102) in the third term and the bound (5.33) in the last term along
with the fact that t, is close to one shows

|(£6) Fwy (p) — Fur(p)] < Cle W 1PIIPI=D) g minthon—ky (5.106)

for some C’, 77’ > 0 independent of n provided b — 1 is sufficiently small.
We now define

fulz) = 3TN T (p)r e, (5.107)
pEZ j>1
where ‘
e %) = YA, (g)e? ™ (5.108)

qeZ
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and where the sum in (5.107) converges absolutely thanks to (5.73) and the fact that ¢, is
close to one. The definition of f; in (5.2) then shows

‘(t*G”‘z)*kfk(Z)—T’n’f*(z)| <7’n’|e Vs ( )_ak 1(0)71e—vk71(z)}ak n ekal(z)’fn(zﬂ

+a_1(0)e® 1) 3 |(1,07 p) — Fu(p)]. (5.109)
peZ
Now observe that
’e—v*(z) _ akfl(o)_le_vk_l(Z)‘ < Z akl(g) _ )\*(q)‘ (5110)
ez ag-1(0)
which by (5.76) decays C'e =" min{kn—k} Noting that 7, is bounded, we get
(£.6°)FE(fu(0)?)) — 2 E. (£u(¢)?)| < e nmintin—i (5.111)

for some constant C” > 0.
Set Cy, := r2,E.(f+(¢)?). Plugging (5.111) in Corollary 5.3, for all distinct x,y € A, we
thus obtain _ ,
< 27tia(px—¢y) >‘Vl/3 _ [ + O<e—17m1n{k,n—k})] (t*ezx )—Zk (5112)
where k := k(x,y). Denoting
T2
k(a, B) = ?[X —2logt.(a, B) (5.113)
we obtain (1.18). The sequence {C,},>1 is uniformly positive and finite for b6 — 1 small
thanks to Lemma 5.11 and the fact that f, is dominated by the (p,j) := (0,1) term with
the rest being at least order /b0 — 1.
It remains to show that x(«, B) obeys the inequality in (1.17). For this we will have to
extract the leading-order asymptotic of ¢, in powers of € := /b8 — 1, for € small positive.
We start by noting that

.(0) =1 =2(b—1)A,(1)% + O(e*) (5.114)
while
Ye(1) = (b —1)A,(1) + O(€®) (5.115)
and Y-, 7« (1) = O(e?). This now gives
T5(0) =1—-2(b—1)A(1)* +O(eh) (5.116)
and, forj > 2,
T7(0) = (b—1)? (002901 4 =200 3, (1)% + O(e*)p~(1—2IeDi (5.117)

where the implicit constant in the O(e®) does not depend on j. Using this in (5.88) while
noting that A, (1) = O(bf — 1), a calculation shows
b-1 b—-1 5 ’
te=1+(b-1) [bma T 2})\*(1) +O((b8 —1)%). (5.118)

Differentiating with respect to @ we check that the square brackets is strictly positive
once « # 0. It follows that f, > 0 and thus x(«, B) < ngucz for b0 — 1 small positive. [
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Remark 5.13 In the derivation asymptotic (6.24-6.25) we show that

B 2(b° —1) y
A1) = \/(b 2P Vbo — 1+ O(|b0 — 12) (5.119)
Inserting this in (5.118) then shows

to(a,B) = 1+ T(a)(b0 — 1) + O((b0 — 1)?). (5.120)

Invoking (5.113) along with b6 — 1 = zﬁ—”%z(ﬁ — Be) + O((B — Be)?) we get (1.20). The nu-
merical closeness of the critical and near-critical coefficients again stems from the struc-
ture of I'7(0) and the similarity of leading order term of Ai(1) in the critical and slightly

supercritical regimes.

Remark 5.14 The above proofs were tailored to the asymptotic of the fractional dipole-
charge correlator but the structure applies to, and the conclusion is in fact much easier
for its monopole counterpart. Indeed, we get the identity

(€, 5 = fur1(0) (5.121)

for f,11 obtained by taking k := n 4+ 1in (5.2). (Here we used that the underlying Markov
chain effectively takes value zero at the initial time so no expectation is needed.). Setting

o (t*9a2>—n<e2nia¢x>n,ﬁ, if B # Be,
n-_ k—'fe—zxzn<e27fi“¢x>nlﬁ’ lfﬁ — ,BC/

where t, := 1 when < B, the arguments used above show that C}, is bounded away
from zero and infinity. Writing this using «(a, B) we get (1.21) as desired.

(5.122)

6. SUPERCRITICAL ITERATIONS

The principal objective of this section is the proof of Theorem 3.6. This requires studying
the flow of the iterations (3.18) under the conditions when these admit a “non-trivial”
fixed point. The analysis carries a significant technical overhead that goes quite beyond
what was sufficient for the subcritical and critical cases.

6.1 Renormalization-group flow.

We start by casting the iterations in a more convenient and also somewhat more general
form. Recall the definition of 6 from (3.19) and 0 from (3.29) and note that B > S«
is equivalent to b0 > 1. Let X be the set of (doubly-infinite) positive sequences A =
{A(q)}4ez satistying the symmetry condition A(—q) = A(g) for all g € Z and such that
A(0) =1 and Sup,-g A(g+1)/A(q) < o hold true. For each A € X and g € Z set

b
Gy(A):= 3, J[re) (6.1)
gl,...,beZ i=1
b+tly=gq
and, for each k > 0, let
G, (A
EPA) = 1) g 6.2)
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We will write F¥) for the map assigning A the sequence {Fék) (A)}4ez and use the nota-
tion F for the corresponding map in which the 6;’s have been replaced by 6.

In order to make the connection to the problem at hand, note that extending our earlier
notation (3.59) to

a(q)
A = , eZ, 6.3
k(q) 20 1 (6.3)
and denoting Ay := {Ax(q) }4ez, the iterations (3.18) become
Ae=FOQAL), k=1, (6.4)

where the parametrization reflects that ag(-)/a9(0) corresponds to Ayg. We are thus in-
terested in the convergence/limit properties of the flow of compositions of functions
{F®): k > 0} evaluated on elements from .

Our control of the iterations turns out to be slightly stronger when b is even. Indeed,
in this case we can work with any starting A¢ € £ while for b odd we have to assume that
the initial A¢ arises from the setting of the present work. We thus set ¥ := X when b is
even and let X’ be the set of A € X that are the Fourier coefficients of a positive measure
on [0,1) when b is odd. Then we restate the key part of Theorem 3.6 as:

Theorem 6.1 Let b > 2. There exists € > 0 and, for each B > 0 satisfying 1 < b0 < 1 +¢,
there exists a unique A, € ¥ such that

F(A,) = A, (6.5)

Moreover, under Assumption 1.1, for each B as above there exist § > 0 and C > 0 and, for each
Ao € X, there exists ko > 0 such that, for all n > 2k, the sequence {A}}_, defined from Ag via
(6.4) obeys

_ k 4
Y [166*2(b6 — 1)) T Ae(q) = Ae(g)| < c[e'fk + > e 1) amm{j,nj}] (6.6)
g=1 j=0

whenever min{k, n — k} > ko. Here {0;} > is the sequence from Assumption 1.1

While the above may appear to be a run-off-the-mill conclusion of the Banach Fixed
Point Theorem, the proof is considerably more complicated. A key problem is that F is
not contractive on X when 8 > B. due to the “subcritical” fixed point (corresponding to
A(q) = 64,0) lingering on the “boundary” of X. This fixed point is unstable for § > B
which mucks up uniform control of the iterations.

Our way to overcome this is by following the iterations until they reach a suitable
subset Xy < X where contractivity can be proved. We assume b0 — 1 small as, under this
condition, the evolution of Ay is completely controlled by Ax(1) and Ax(2), just as we saw
happen for the critical case in Lemma 3.12 and the proof of Theorem 3.5. Indeed, these
two coordinates evolve autonomously (modulo error terms) according to (3.64) while
the remaining ones are just “swept along.”

Working near critical B unfortunately means that the convergence Ay — A, is very
slow; in fact, it is the slower the closer is b6 to 1. Indeed, our proof gives (6.6) with # pro-
portional to b6 — 1 which, as is easy to check, reflects also the true decay rate when 0']% =1
for all k > 0. The inhomogeneity of {¢7}_, causes further errors that are governed by
the tails of the convergent series ;- 0;.
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6.2 Preliminary observations.

We start by some preliminary technical estimates. As noted above, our control of the
iterations is better when b is even. This is due to the availability of:

Lemma 6.2 Suppose that b > 2 is even and let G, be as in (6.1). Then forall A € %,
Gy(A) < Go(A), qeZ. 6.7)

In particular, we have Fy(A) < 07 < 1forallge Z.

Proof. Assume b even and recall that (1) := {(¢1,...,4,) € ZP: b1+ --- + £, = n}. Our
goal is to show that, forallA e Y and n € Z,

b
> H My < D T, (6.8)
leBy(n ZeEb(O) i=1

(n) 1=

where ¢ = (¢4,...,{;). For this we note that, since b is even, b’ := b/2 is a natural and the
distributive law yields

SRR 2( v wa 2 HM”) (69)

leg,(q) i=1 jeZ E’ew /(j) i=1 [”EH

On the other hand, the same argument and the symmetry Condltlon A(—=0) = A(£) shows

2( 2 HM’) 2 H/\ (6.10)

JEZ “VeE, (j) i
To get the desired claim (6.8), it sufflces to invoke the Cauchy—SChwarz inequality in (6.9)
and apply (6.10). O

The distinction between b even and b odd now enters solely through the following
enhancement of Lemmas 3.7-3.8:

Lemma 6.3 ForanyAge X andalln >k >1,

Mg +1) (k 5 ) { Ao<q+1>}
sup ————= < max{bf;, 1} | maxq 1, sup ————=¢. 6.11
P <\ | [maxtee 1) P (@) (6.11)

Proof. Let Ag € X' and, setting ag(0) := 1 if b is even, let {ap(q)}sez be such that
ao(q)/a0(0) = Ag(q) for each g € Z. Lemma 3.7 along with the fact that (g +1)> — ¢*> > 3
once g > 1 imply

sup a(g+1) _ b63 su G-1(q+1)

g=1 ak(q) q=0 Ax—1 (‘1)
Now note that, for b even, Lemma 6.2 shows that ax(n) < ax(0) foralln € Z and k > 0
while for b odd this holds by the fact that the Fourier coefficients of a positive measure
are bounded by the total mass of the measure. Denoting, as before, the supremum on
the left of (6.11) as cx, we are thus led to the inequality

cr < max{1,b8ic 1} (6.13)

(6.12)
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To iterate this, set & := max{1,c;} are note that the above gives & < max{1,b6? Y Ch—1-
This now readily implies (6.11). O

As a consequence we get:

Corollary 6.4 Suppose b63 < 1. Then, under Assumption 1.1, for all Ag € ¥/,

A= <sup ﬁmax{b@?,l}) max{l, sup W} <®© (6.14)
0

n=1 ;g q=0

and, for each n > 1, the iterations {Ay}}_, generated from Ag via (6.4) obey

sup sup 7)\]( (q * 1)

< A (6.15)
n=k=0 g=0 Me(9)

Proof. The condition b6® < 1 along with Assumption 1.1 imply that the product is uni-
formly bounded. Invoking (6.11), we get the claim. U

Remark 6.5 To phrase the above in the vernacular of the renormalization group theory,
under the condition b3 < 1, the estimate (6.12) says that A(q) with |g| > 2 are irrelevant
(i.e., contracting) “directions” of the renormalization-group flow. Due to the normaliza-
tion A(0) = 1, the only possibly relevant (i.e., expanding) “direction” in this regime is
thus A(1) = A(—1). The punchline of Corollary 6.4 is that the expansion in this coordi-
nate is still clamped down by a uniform bound.

Before we move to the consequences of above observations, let us record the following
general bound that shows up repeatedly in the sequel:

Lemma 6.6 Suppose A € X and A € (0,1) are such that sup,-g Ag+1)/A(g) < A. Forall
r=1landgq,...,q- = 0 we then have

S [Tre) < (”A) H 1) A% (6.16)
1,..

0, 0eZ i=1 i=
Vi<r: [4|=q; gi=

with the product on the right no larger than AT ++4r,

Proof. 1t suffices to deal with r := 1 where the sum equals J5,0 + 2>}, A({). The

assumptions imply that A(£) < A(1)A‘"! for £ > 1. Using this bounds the sum by
A1)AT1 24 when q; > 1 and by 124 when q; = 0. The second part of the claim
follows from A(1) < A. g

6.3 Near-critical bounds.

We will now improve the above crude estimate on sup,_, Ax(q + 1)/Ak(q) to a bound
that is small in the “near-critical” regime, i.e., for b0 — 1 small positive.



56 M. BISKUP, H. HUANG

Lemma 6.7 Suppose B > 0 is such that (b —15)0 < 1 < b6 and b6 < 1. Under Assump-
tion 1.1, for each Ao € X' there exists k1 = 0 such that

sup MY o pe—T 6.17)
7=0 Ak(q)
holds with
1
_ ~5/6
A3 =20 [T (6.18)

provided that min{k, n — k} > ky

Proof. For each n > 1 fix {o}}]_, obeying (1.6). We first make some observations for a
fixedn > 1. Fork = 0, ..., n, denote the supremum in (6.17) as ¢k, abbreviate § := ijo 0;
and set C := infog <, ¢j. Then recall the inequality (3.51) from the proof of Lemma 3.10,
where ay is defined in (3.47). Note that a; > (1 + C?)~! by the fact that a; < 1, abbreviate

1y
Ri= (6.19)
and set
h) = — (b —1)0u (6.20)
1+ au? ’ '

From the argument following (3.51) we then get that the quantity & defined from ¢y via
(3.52) obeys the iterative bound Cir1 < hk(Ej) forallj=0,...,n—1.

Under (b —1)8 < 1 < b8, the function & is increasing and concave on positive reals
with two fixed points: one at zero and the other at

1

T Vb — 1. (6.21)

1
Uy 1= -
1%

Moreover, iterations started at u < u, never rise above u, while those started at u > u,
decrease, due to e := sup,., h'(u) <1, geometrically fast towards u,. As ¢ < cb°,
it follows that, once j > 0 is such that C6~%e " < < 213y, we have Ckyj < hi(ék) < 213y,
An inspection of (6.19) and (6.21) shows that j can be chosen independently of C.

We will now apply the same argument repeatedly to subsequences of the form {A; ?:_kk
Set Cy := sup,,o; Maxy<i<n—k ¢; and let o := ijk 0;. The above then shows that there
exists j > 0 such that for all k > 0,

bo —1
Cryj < 21/69=30, [1 4 C2 T-0-10 (6.22)

where one factor of 6% arises from returning to variables c; on the left-hand side and
another factor 6% arises from the term in (6.19). We now claim that the sequence
{Cx}k=0 Will eventually drop below one. Indeed, if Cx > 1 for some k with §~3% < 21/6,

then 21/69=%%, /1 + C? < 2C; which using x := 1 — (b — 1/5)0 yields
1 - be

Cryj < 1_ ~ 1 56T Cy. (6.23)
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For x > 0, which is equivalent to (b — 1/5)0 < 1, the square root on the right is less than
one showing that ¢ +— Cj, decreases exponentially. In particular, there exists ¢ > 1
such that Cy 4 < 1.

To finish the proof we now note that Cyr < 1 along with 873% < 2/6 via (6.22) im-
plies Cy4; < A3v/bf — 1. Hence (6.17) holds once min{k,n — k} > k1 := k' +j. O

The power of 2 in (6.18) was chosen to ensure that A3 < 2+/b for b — 1 small. This
will aid some numerical computations later. We now use the above to show that the
supremum is, for b6 — 1, dominated by the first two components and, in fact, nail their
asymptotic values in this regime.

Lemma 6.8 Foreach 6,6' € (0,1) there exists € > 0 such that for all Ag € X and all B > 0
with 1 < b6 < 1 + € and there exists k3 > 0 for which

12 3 -1/2

Ae(1) = <(b 21) (Zj_li +5> Vb —1 (6.24)
12

A1) < <(b _21)2 (Z:_lig - 5) N (6.25)

and

)\k<2) 1 !
‘b9—1 (b—l)(b+1)3’ S0 (6:26)
hold when min{k, n — k} > ks.

Proof. As before, we will use the shorthands Ay := Ax(1) and 7y := A4(2) and, committing
major abuse of notation, abbreviate € := /b6 — 1. Our first goal is to show that A, will
eventually be at least order €. For this we invoke the inequality (3.60) from the proof of
Lemma 3.11 which reads

boy Ak

A =
W31+ b(b—1)AL,

(6.27)

for some constant &’ > 0, whenever ¢;_; < 1/2. The latter is enabled by assuming
min{k,n —k} > ki and Ase < 1/2, for k; and Az as in Lemma 6.7. Plugging in the bound
ck—1 < Aze while noting that 0y = 0% we then get

2
bgk > 1 +€ 6|1_‘7[§|
T+alcy ~ 1+aAed

(6.28)

We now take k{ > ky so large that 9; < €3 once j > k) and € so small that right-hand side
of (6.28) is at least 1 + €2/2. It follows that

2
A
Ak>(1+‘i k-1

2 ) 1+b(b—1)A7 (6.29)

once min{k,n — k} > kj. Interpreting the right-hand side as (A;_1) for h: Ry — R
increasing and convex shows that Ay converges under iterations to the unique non-zero
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fix point of 1 which, as a computation shows, occurs at [2b(b — 1)]~"/2¢. Hence there
exists k] > k! such that
1

N> 6.30
SN (6.30)

once min{k,n —k} > kf.

Next we observe that, with ¢, bounded by a constant times Ar, whenever k obeys
min{k, n —k} > kY the identities (3.64) from Lemma 3.12 are still in force. The calculation
leading up to (3.74) still applies. As Jy there is order € which is order Ay, instead of (3.76)
we then get

Yk 1b-1

e 1071 (6:31)
AT 281

for some bounded sequence {t/}}_,. Plugging this in the first line of (3.64) yields

A+ 5 —2+ A3 +rad

1+b(b—1)A2 + 53

Akr1 = by (6.32)

where 1} := 1 + (b — 1)t].
In order to analyze this further, note that for min{k,n — k} so large that 0y < € the
above leads to the inequalities

A Ak
. <t , 6.33
T+ (A+Be)A? ~ M= T4 (A= Be)A? o
where
b—1 b—1\_b-1 L
A.:b(b—l)—T<b_2+b3—1>: 2 [b+2_m] (6.34)
Cb—1 (b+1)°  (b—1)2(b+1)° '
2 P+b+1 2 BPP-1°

and B is a positive constant derived from the bounds on the sequences ; and s;. Noting
iterations of h(u) = b0z are attracted to u. = A~Y2,/bf —1, following the iterations
(6.33) we then get that, after a finite number of steps, we have

(A +2Be)"2e < Ap(1) < (A —2Be) V2e (6.35)

For € such that Be < 4, this gives (6.24-6.25). With the help (6.31) and A < Aze we then
get (6.26) as well. ]
6.4 Contractive region.

We now proceed to define a subdomain of £ on which we later prove uniform contrac-
tivity of the map F. This subdomain will depend on B > 0, which we assume is such
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that b8 > 1, and numbers 6,6’ € (0,1) and A > 0 as

X = {/\ eX: A1) = <(b_1)2 (b+1) +(5>_1/2Vb9—1

2 P-1
o 2 3 _
A1) < <(b 21) (Zj_li -5) Y pe—1 (6.36)
Ag+1) AQ2) 1 ,
e SYP) SAVEI—1 A ’bf)—l_(b—l)(b+1)3‘<5}'

Assuming that Assumption 1.1 holds, we now summarize the previous observations in:

Lemma 6.9 Forall A > 2vband 6,8 € (0,1), there exists € > 0 such that, for X defined
by 6, 8" and A as above, the following is true for all B satisfying 1 < b6 < 1+ e: Forall Ag € &’
there exists ky > 0 such that Ay € X holds whenever min{k,n — k} > ky for the iterations
{Ar}E_, defined from Ag via (6.4).

Proof. This follows from Lemmas 6.7 and 6.8 along with the fact that A3 in (6.18) tends
to 25/61/b as b6 decreases to 1. U

We will henceforth focus on the evolution driven by F, i.e., for 6, = 6 for all k. Here
we need to check that F maps X into itself.

Lemma 6.10 Foreach A > b%1 and &' > 0 there exists 6 > 0 and € > 0 such that
F(Zo) c 2y (637)
holds forall p > 0 with1 < b <1 +e.

Proof. Fix A and ¢’ as above and, abusing notation again, abbreviate e := /b0 — 1.
Pick A € Xy and note that, since F(A) € ¥/, we only need to verify that F(A) obeys the
conditions in (6.36).

For the first two conditions in (6.36), we repeat the calculations underlying the proof
of Lemma 6.8 to get

A +[(13Y) + 18 4 pea1)?
14 [b(b—1)+ n'e?]A(1)?

Fi(A) = b0 (6.38)

for some non-negative 1 and 1’ depending only on ¢’ and A. Once € is sufficiently small
(depending only on §), this implies

A) < F(A) < b AD)

b61 +(A+6)A(1)2 T U1+ (A-6)A(1)2

(6.39)

for some constant B derived from 7 and 7’. Now check that (for b0 = 1 + €?) the ex-
pression on the left preserves the inequality A(1) > (A + &)~ !e while that on the right
preserves the inequality A(1) < (A — §)~'e. We conclude that F;(A) obeys the first two
lines in (6.36).
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For the third condition in (6.36) we first note that Lemma 3.9 along with the third
condition for A give

MY A(n +1) 0 -
F(A) < 91 N (S)A(l)Z + (b 1)95:;}8 A0 < (1 N (S)Azez + (b 1)9>Ae, (6.40)

where we assumed € small enough so that the first term is non-decreasing in A(1) < Ae.
As a calculation shows, under (b —1)8 < 1, the prefactor of Ae is less than one for €

sufficiently small if A > 4/ bi—l. Since Lemma 3.7 gives

F,.1(A) AL +1)
g+1 < b91+2q su
£ (Y o A0
under b6> < 1, the third condition in (6.36) thus applies to F(A).

Finally, for the last condition in (6.36) abbreviate C := [(b —1)(b + 1)}]71. We now
proceed as in the derivation of (3.67) to get

By (A) — b [A(Z) _ b;lm)z] — O(eb). (6.42)

<b8Ae, =1, (6.41)

Noting that b§* = b=3 + O(€?), this implies

IR (A) — Ce?| < b3 |A(2) — Ce?| + b2 b%lm)z — (1® —1)Ce?| + A”¢?, (6.43)

where A” is a constant that depends only on A. Invoking the conditions from Xy, a
calculation shows

2
-2 =35/ (b3_1)(b_1) "2
F —C| < —_— A'€e”. 44
le?F(A)—C|<b (5—1—{ b+ 1) o0+ A€ (6.44)
We now choose ¢ so that the corresponding term is less than, say, ¢’ /2. For € small, F(A)
then obeys also the last condition in the definition of £y and so F(A) € Xy. U

6.5 Contractivity.

Having identified Xy and shown that F maps it into itself, we now prove that F is actually
contractive on it. Note that, for sup ., A(q) < 1, each component of F(A) is the ratio of

two positive convergent sums and so F is continuously differentiable. A natural way to
prove contractivity is thus to estimate the derivatives of F in a suitable norm. However,
this will only be useful if we first show:

Lemma 6.11 X is a convex set.

Proof. The first and third condition in the definition of X are clearly preserved by convex
combinations. For the second condition we note that
tA+ (1 —t)A

o (6.45)

is, for any A, A’, B, B’ > 0, monotone on [0, 1]. If the ratio is less than a constant at t = 0
and t = 1, it is less than that constant for all f € [0, 1]. O
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We will for brevity write J;F,; to denote the partial derivative of the g-th component

of F with respect to A(¢). We start with estimates on these:

Lemma 6.12 Let § > B.. For each A > 0 there exist 59 > 0 and ey > 0 such that, for
defined by A and any 6,6' € (0,0,

b(b—1)07A(1) + O(e?), iflg—t =1,
boT + O(2), ifg=10>2,
oF,(M)] < ) 6.46
0cEy(A)] < (b7 + O(€?))(bAe)l1—1], iflg—10 =1, (6.46)
1—b(b—1)A(1)%, ifg=10=1,

holds for all A € Xg and all q,¢ > 1 provided that € := /b8 —1 € (0,€ep). Here the implicit
constants in O(€?) terms do not depend on q and (.

Proof. Fix ¢ = 1 and ¢ > 1. We start with some general considerations. Denote by éq the
quantity G, with b replaced by b — 1. The symmetry A(—{) = A({) then gives

01Gg(A) = bGy_¢(A) + bGyyp(A) (6.47)

and so, by the quotient rule,
0uFy(A) = | (Gys(A) + Cpue(M) Go(A) ™! = 26 (MG (M) Go (V) 2 [b7. (648)

Note that one term in the square bracket is positive and the other is negative. It thus
suffices to estimate each of them separately.

Moving to actual estimates, let us begin with the the third line in (6.46). Here we first
observe that the argument in Lemma 3.7 and the second condition in the definition of X
give G;11(A)/Gy(A) < bsup,o; A(£ +1)/A(f) < bAe whenever g > 1. Using also that
G1(A) < bAe + O(€®) and Go(A) = 1, the first term in the square bracket in (6.48) is at
most (bAe)l1~!(1 + O(e?)) while the second is order €7+ = €l7=!IO(e?). This proves the
bound on the third line in (6.46).

The first and second lines in (6.46) require explicit treatment of the leading-order term
contributing to Gp_s(A). This is easy for n = ¢ where we only need Go(A) <1+ 0O(e?),
which is proved from (3.65). This, along with the aforementioned estimates, bounds the
square bracket in (6.48) by the maximum of 1+ O(e?) and 4(bAe¢)?. For the first line (i.e.,
lg — £| = 1) we in turn need

Gi(A) < (b—1+0(e2)A(1), (6.49)

which is proved from (3.66). This dominates the square bracket in (6.48) by (b —1)A(1) +
O(€?), thus showing that |0/F;(A)] < b(b —1)87A(1) + O(€?).

Unlike the previous cases, both terms in the square bracket in (6.48) will contribute to
the alternative / = g = 1 in (6.46). This results in potential cancellations that force us
to extract terms of order up to e? explicitly. Since the first term in the square bracket in
(6.48) is of order unity while the second term is of order €?, it suffices to derive an upper
bound on d,F;(A). Here bounding the first term requires the upper bounds

Go(A) <1+ (b—1)(b—2)A(1)2 + O(e*) (6.50)
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and

Goy(A) < (b—1A(2) + (b ; 1)/\(1)2 +0(eh
b1 b1 (6.51)
< ( . [b 2+ 23 _1] +(5”>A(1)2+O(e4),

where ¢” is a quantity of order of &' + 6. Since we are tracking terms up to order €2,
bounding Gp(A) > 1 is not sufficient; instead we need
Go(A) = 1+b(b—1)A(1)> (6.52)
In the second term we in turn need the lower bounds
Gi1(A) = bA(1)
- (6.53)
Gi(A) = (b —1)A(1)

along with the upper bound
Go(A) <14 0O(e?). (6.54)
Putting these together we get
aE < L =DO=2) + B [b -2+ 555 ] + 82 + 0D b(b— DAL
1F1(A) < [1+b(b—1)A(1)2  1+0(€?)

12
—1+ ((b—l)(b 2) + bT[b 24 bb _11] +5”—3b(b—1))A(1)2+O(e4)

1 (b21(3b L6 bb__ll)—é”>/\(1)2+0(e4).

(6.55)
Using 573_—_11 < 1and O(e*) = A(1)20(e?) by A € X, this is at most 1 — b(b — 1)A(1)?
once ¢, ¢’ and € are sufficiently small. O

We now use these to prove:

Lemma 6.13 Let X be defined using A > /327 and 6 € (0,6), for &y as in Lemma 6.12.
Givent > 0and B > 0 with 0 < b0 — 1 < (tbA%)~!, we have
oA, A') == ) (thA)I~ Lo —1)" |/\ ~N(q)] <o (6.56)
=1

forall A, A" € %. Moreover, if t obeys

1—b3
2 b? > tA 6.57
(1—b-2)v/1+ b1 (657)
and
sup<b1 na +th pl- q) <1, (6.58)
=2 q= 1

then there exist 1 > 0, €1 > 0 and n > 0 such that
o(F(A),F(A) < [1—n(b0 —1)]e(A,A) (6.59)
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holds for all A, A" € X provided 6 < & and b — 1 < €.

Proof. Let us again abbreviate € := /b6 — 1 and let A,A’ € ;. The conditions defin-
ing X then imply |A(q) — A'(q)] < 2(Ae€)l! and so the series in (6.56) converges when-
ever tbA%2e? < 1. Next recall that, by Lemma 6.11, the convex combination A, :=
(1 —u)A + uA’ lies in X for all u € [0, 1]. Moreover, elementary calculus shows

1
IF,(A) — F(A)| = ‘ /0 D auF,(Aw) (N (€) — A(é))du‘

(=1

< /01 ( S ocE (A |N(6) - W)})du

=1

(6.60)

where the second line follows by the triangle inequality.
Multiplying (6.60) by (tAe)7~! and summing over g4 > 1 we find out that, in order to
prove (6.59), it suffices to show that for all / > 1 and all A € X,

D (thAe) 1o Fy (M) < (1— 7€) (thAe) 1. (6.61)
g=1

Starting first with the cases ¢ > 2, here we plug in the second and third line in (6.46)
with the result

D (thAe) T |o,Fy(A)]
g=1
, (=1 . ) (6.62)
< (bef + Yo7 1+ Y b(vibAe) T gl +O(62))(tbAe)‘*—1,
q=1 g>{+1

where the O(€?) term collects the contribution of O(e?)-terms in (6.46). Now observe
that, in the limit as € | 0, the term in the large parenthesis is bounded by the supremum
in (6.58), proving (6.61) for £ > 2 once € is small enough.

For ¢ = 1 we in turn invoke the first and last line in (6.46) to the leading order terms
and bound the rest using the third line with the result

D (thAe) Moy Fy(A)] < 1—b(b—1)A(1)?

7 (6.63)

+ (b(b — 1) + O(e%))0*A (1) (tbAe) + Y (VibAe) "o,
q=3

Invoking the upper and lower bounds on A(1), the right-hand side is bounded by

1= ( 1 (bjgf(l:rll)2 — thAg* bb(lbz_b 11) 3 )62 + O(€3)' (6.64)
e WA

We now check that the term in the large parentheses will be positive for 6 close to 1/b
and ¢ sufficiently small if (6.57) holds. For small-enough €, the term then dominates the
expansion in powers of € which validates (6.61) for ¢ = 1. 0
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6.6 Convergence proofs.

We are now finally in a position to address the proofs of Theorems 6.1 and 3.4. One last
technical hurdle to get out of the way is the choice of parameters t and A:

Lemma 6.14 Forall b > 2, the inequalities (6.57—6.58) are true when

tA<4Vb and t> g (6.65)
Proof. We start by proving that
V1—b-3
inf /2 1-b b2 > 4. (6.66)

beN T (1=b2)V1+b71

Indeed, for b > 3 we invoke v/1 —b—3 > /1 —b—2 and V1 + b~ < v/2 to dominate the
expression by b%?2 from below. Since b*? > 3%2 > 5 for b > 3, we are down to b = 2.

Here we calculate the expression explicitly to be % which is above 4, albeit just barely.

It follows that (6.57) holds if tA < 4v/b.

As for the second condition, for ¢ = 2 we need that 278 + 1 < 1 which is true
whenever t > 8/7. For ¢ > 3 we bound the expression by b=% + t~1 + b3, _,#!~* and
so we need

1 2

L
T8I 1

<1-278 (6.67)
The left-hand side is decreasing in f and, at t := 3/2, equals 5/6 which is indeed less than
the right-hand side. Hence (6.58) holds for all t > 3/2. O

We are now ready for:

Proof of Theorem 6.1. We assume throughout that b0 — 1 is positive and small enough
so that the statements of above lemmas apply. As to the choice of t and A, relying on
Lemma 6.14, we set t := 3/2 and put A := §+v/b. Notice that this enables Lemma 6.9 as
well as other claims where a bound on A appeared. Also note that A = 4v/b so o from
(6.56) coincides with the expression in (6.6).

Next observe that ¢ is a metric on Xy and, relying on product topology and com-
pleteness of the space of probability measures on [0,1), that (X, 0) is complete. By
Lemma 6.13, F is a strict contraction on Xy. Using Lemma 6.9 along with the Banach
contraction principle, iterations of F on any A € ¥’ thus converge to some A, € ¥y which
is then also a unique fixed point of F in .

Let us now consider a sequence {A;}]_, obtained by Ay := F () (Ag_1) starting from
some Ag € X/. In order to control the approach of this sequence to A,, we need to com-
pare the action of F and F (k). For this we first note that, for all A € ¥, and all geZ,
Gy(A) |9qza}3 B qu’
Go(A) (6.68)
< (bAe)197 ML} 1og(1/6) |02 — 1),

EP(A) = By(A)| =
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where € := /b0 — 1. Assuming 07 > 1/2 and noting that A < 4b%?, we thus get
o(FO (), FQ)) = 3,402 P () — By

q=1

< ( 3 (4b%2e) 211972 10g(1/9)) o2 —1].

g=>1

(6.69)

Write C for the expression in the parenthesis and recall the sequence {0}¢>o from As-
sumption 1.1. Abbreviate 0} := Opin(kn—k}- For all A € Xy the triangle inequality along
with (6.59) and (6.69) show

o(F®(),A,) < o(FP(A), F(A)) + o(F(A), F(AL))

R (6.70)
< COp+ (1—ne?)o(A, Ay).

Using this for A := A;_; yields
0(Ak Ay) < COL+ (1= 7€?) (Mg, Av)- (6.71)

whenever k is such that Ay € ¥g and 07 > 1/2.
To finish the proof, consider the family of {07 }/_ 0 conformmg to Assumption 1.1 with
sequence {0k }x>1. Denote diam(Xo) := sup{o(A,A"): A,A" € Zp} and, for n > 1, let
ko := 1+ supmax{k < n/2: {Ay, Ay} & Zo v 0} > 1/2}, (6.72)
n=1

where the maximum is set to be ko := 0 if the set is empty. The above lemmas show
that kg < oo for each Ay € X/. Since Ako € X, iterations of (6.71) then show

0
0(Ak, As Z (1—ne?)iv,_ i+ (1= ne?) % diam (%) (6.73)

whenever min{k,n —k} > ko. Now set C := max{é, diam(Xy)}, write e 7 instead of
1 — 57€? and extend the range of the sum to all j < k. g
With this we now quickly finish also:
Proof of Theorem 3.6. Let € > 0 be such that Theorem 6.1 applies. This yields the existence
of A, which obeys (3.30) by extension of the bounds from Lemma 6.7. The bound (3.32)
in turn follows from (6.6) by retaining only the term corresponding to # in the sum on
the left and redefining C correspondingly.
Let 3, be as defined in (5.108). For the convergence of v, and its derivative, we need
the uniform bound
eka (Z) _
a(0)

The bounds (3.30) and (3.32) then show that the sum on the right tends to zero as
min{k, n — k} — co. Under the additional assumption that {0 }>¢ decays exponentially
we can unite the estimates (3.31-3.32) as

Ak(g) — Au(g)] < Cle maxiklall 6.75)

@) <N Aklg) — Al(g)]. (6.74)

qeZ
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This now readily shows that the sum on the right of (6.74) decays exponentially with k,
proving
sup|vg(z) + log ax(0) — 7.(2)| < Cle ' mintkn—k} (6.76)
zeR
To derive (3.34) from this, note that a simple telescoping argument gives

ax(0)
_ Au(g;
a;—1(0)° Zq:bez H (@)
= (6.77)

<2 heaw) " (S -rawl) (S r0)

i=1 geZ

The right hand side is now bounded by C”e~ min{kn=k = Since v, (z) — bu,(z') differs
from 3, (z) — bd.(z') by the logarithm of the giant sum on the left, (3.34) follows by com-
bining the previous two estimates.

To extend the convergence to the derivatives, we note that v, — 3, differ by a constant
and so v/, = 7,. Here we get

v (2) = g (0) Z)\k (27tig)e?™4? (6.78)
qeZ
and
<@ A(q)(27ig)e® ™ (6.79)
qeZ
This implies
/ / vk (2) T4 (2) e_vk( : —v*
[04(2) vl (2)] < e Day(0)e™ 0% — =) 3] As(g)anlg
1<z (6.80)
e Y | \(g (9)|27lql)

qeZ
Since (3.31) implies that e %) /a2, (0) > 1/2 while (3.30) gives e %+(*) > 1/2 once b — 1 is
sufficiently small while 3, . Ak(9)|g] is bounded uniformly in k, both terms on the right

decay to zero as min{k,n — k} — co. The decay is exponentially fast if {0;};~0 decays
exponentially. This yields (3.35) as desired. g

Remark 6.15 The above proofs are tailored for the near-critical regime, meaning with b
fixed and b — 1 positive but small. Another interesting asymptotic regime which can
be analyzed is that of large b. Focussing for simplicity on b even and 6, = 0, here

Lemma 6.2 shows that Ax(g) < 69 for all k > 0 and all g € Z. As 0 is close to 1/b, this
suggests introduction of the scaled variables

() = b7 A(q). (6.81)
In terms of these, the iterations (6.4) take the form
Yz a1 (1> +0(1/b)
1+42Y 00 i1 (1)2 +O(1/b)

N(1) = bo (6.82)
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and

0 — oy S0 T A (D00
K 142320 7 Ah 4 (12 + O(1/b)

for |g| = 2. Using these one can show that A} (1) converges to a positive quantity charac-

terized, modulo errors that vanish as b — 0, as a fix point of the ratio of two modified

Bessel functions. The other reduced variables are then simply computed from the limit

version of (6.83).

We have in fact carried our initial proof in this framework except that, in order to
overcome the non-linearity of the right-hand side (6.82), we ultimately also had to as-
sume that b0 is close to 1. However, we expect that with increasing b large, one should
be able to control larger and larger intervals of b6.

(6.83)
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