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ABSTRACT. We consider the unique infinite connected component of supercritical bond percola-
tion on the square lattice and study the geometric properties of isoperimetric sets, i.e., sets with
minimal boundary for a given volume. For almost every realization of the infinite connected com-
ponent we prove that, as the volume of the isoperimetric set tends to infinity, its asymptotic shape
can be characterized by an isoperimetric problem in the plane with respect to a particular norm.
As an application we then show that the anchored isoperimetric profile with respect to a given
point as well as the Cheeger constant of the giant component in finite boxes scale to deterministic
quantities. This settles a conjecture of Itai Benjamini for the plane.

1. INTRODUCTION AND RESULTS

1.1 Motivation.

Isoperimetry is a subject that lies at the heart of geometric measure theory. It provides a fun-
damental link between metric structures and measures on the underlying space. Isoperimetric
inequalities have served as an essential tool for many analytical results. Indeed, they play a
crucial role for subjects such as concentration of measure, Nash and Sobolev inequalities, hy-
percontractivity, spectra of Laplacians (Faber-Krahn and Poincaré inequalities), heat-kernel esti-
mates, elliptic PDEs, mixing bounds for diffusions/random walks, etc. Isoperimetric problems,
i.e., the characterization of sets of a given volume and minimal boundary measure, have been
around since the inception of modern science. Attempts for their solution lay the foundation for
important methods in mathematics; e.g., the calculus of variations.

The classical isoperimetric problems were stated for the continuum but they have recently
found their way into discrete mathematics as well (see, e.g., Chung [14, Chapter 2]). For a finite
graph G = (V,E), isoperimetry is often characterized by the Cheeger constant

ΦG := min
{
|∂GU |
|U |

: U ⊂V, 0 < |U | ≤ 1
2
|V |
}

, (1.1)

where ∂GU is the edge-boundary of U in G, i.e., the set of edges in E with exactly one endpoint
in U . The name owes its origin to the thesis of Cheeger [13], where the bound λ1 ≥ cΦ2

G was
derived for the first nonzero eigenvalue λ1 of the negative Laplacian. (Cheeger’s work deals
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with manifolds; for graph versions and connections to Markov chains see, e.g., Varopoulos [38],
Lawler and Sokal [26], Sinclair and Jerrum [35], etc.)

When G is infinite but amenable, then ΦG = 0 by definition and so (1.1) is not very useful.
A number of surrogates can be substituted instead; for our purposes the most interesting is the
anchored isoperimetric profile. Given a vertex 0 ∈ V , to be called an anchor, the isoperimetric
profile of G anchored at 0 is the function ΦG,0 : R+→ R+ given by

ΦG,0(r) := inf
{
|∂GU |
|U |

: 0 ∈U ⊂V, G(U) connected, 0 < |U | ≤ r
}

, (1.2)

where G(U) is the restriction of G to vertices in U . Isoperimetric profiles have proved to be in-
strumental for delicate mixing-time estimates in computer science (see, e.g., Lovász-Kannan [29]
or the books by Levin, Peres and Wilmer [27] and Montenegro and Tetali [31]).

The Cheeger constant and the isoperimetric profile may be viewed as a way to express isoperi-
metric inequalities. The minimizers of (1.1–1.2), usually referred to as isoperimetric sets are
equally interesting. Indeed, they are the solutions to separation problems, where one looks for
an optimal “cut” in a (connected) graph for a given objective function and subject to certain
conditions. (Here a “cut” is a set of edges whose removal disconnects the graph.)

In graphs with an underlying geometrical structure, such as lattices, the isoperimetric sets can
sometimes be characterized also geometrically. For instance, on Zd , they correspond to balls
in `∞-metric (i.e., square boxes). Nevertheless, aside from a few examples where the underlying
geometry is simple and regular, describing isoperimetric sets is a difficult task.

In the present note we analyze the isoperimetry of graphs arising from bond percolation on Zd .
To be more precise, regard Zd as the graph with edge set E d given by all (unordered) nearest-
neighbor pairs. Let P denote the product (Bernoulli) measure on {0,1}E d

with the density of 1’s
given by p ∈ [0,1]. An ω sampled from P can be identified with a subgraph of Zd , with edge set
composed only of edges e satisfying ω(e) = 1. These edges will be referred to as open; those
with ω(e) = 0 will be called closed.

It is well known (cf Grimmett [17]) that, for d ≥ 2, there is a pc(d)∈ (0,1) such that whenever
p > pc(d), the graph associated with ω contains a unique infinite connected component P-almost
surely. This component, usually referred to as the infinite cluster, will be denoted by C∞. Thanks
to shift-ergodicity of P, the asymptotic density of C∞ in Zd is

θp := P(0 ∈ C∞), (1.3)

with θp > 0 for p > pc(d). Similarly, for p > pc(d) and ωn denoting the restriction of ω to
the box B∞(n) := [−n,n]d ∩Zd , with P-probability tending rapidly to 1 as n→ ∞, the graph
induced by ωn contains a unique connected component whose size is linear in |B∞(n)|; all other
components are at most poly-logarithmic in n. We shall denote this giant component by Cn.

It is not hard to surmise the leading order of the anchored isoperimetric profile of C∞ and the
Cheeger constant of Cn by invoking an analogy with the full lattice:

ΦC∞,0(n)� n−1/d and ΦCn � n−1, n→ ∞. (1.4)

Thanks to sophisticated facts from percolation theory, these bounds can be established with prob-
ability tending rapidly to one (Benjamini and Mossel [5], Mathieu and Remy [30], Rau [34],
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Berger, Biskup, Hoffman and Kozma [6] and Pete [32]). This led Itai Benjamini to formulate the
following natural conjecture (stated for free boundary conditions):

Conjecture 1.1 For p > pc(Zd) (and d ≥ 2) the limit lim
n→∞

nΦCn exists P-a.s.

With this conjecture in sight, Procaccia and Rosenthal [33] have recently established the fol-
lowing bound: For d ≥ 2 and p > pc(d), there is C = C(d, p) < ∞ such that

Var(nΦCn)≤Cn2−d . (1.5)

This implies concentration of nΦCn around its mean in all dimensions ≥ 3. Unfortunately, no
information could be obtained about the limit of nEΦCn .

The principal aim of the present note is to prove Benjamini’s conjecture for the isoperimetric
profile as well as a version of the Cheeger constant (see below) for supercritical bond percolation
on Z2. In addition, and perhaps more importantly, we also characterize the asymptotic shape of
the minimizing sets via an isoperimetric problem in R2. These types of problems admit a general
solution via the so-called “Wulff Construction.” In this aspects, our conclusions bear resemblance
to the problems of Wulff construction studied about two decades ago in the context of two-
dimensional percolation (Alexander, Chayes and Chayes [2]) and the Ising model (Dobrushin,
Kotecký, Shlosman [15], Ioffe and Schonmann [22]). Nevertheless, our work differs from these
in many key points; in particular, in reliance on concentration of measure techniques and almost-
sure statements rather than large-deviation methods used in the above studies.

1.2 Results.

We will now proceed to state the main conclusions of the present note. All of our considerations
will be limited to d = 2. Here we recall that, thanks to Kesten’s Theorem [23], pc(Z2) = 1/2.
Notwithstanding, we will use pc(Z2) as it is more illuminating. We begin with the isoperimetric
profile where the result is easiest to formulate:

Theorem 1.2 (Isoperimetric profile) Let d = 2 and p > pc(Z2). Then there exists a constant
ϕp ∈ (0,∞) such that P(·|0 ∈ C∞)-almost surely,

lim
n→∞

n1/2
ΦC∞,0(n) = θ

−1/2
p ϕp, (1.6)

where θp is defined in (1.3).

Next we will address the Cheeger constant for the giant component Cn. As it turns out, it is
more natural to look at the quantity Φ̃Cn,C∞ , where for a finite subgraph G = (V,E) of a (possibly
infinite) graph H, we define

Φ̃G,H := inf
{
|∂HU |
|U |

: U ⊂V, 0 < |U | ≤ 1
2
|V |
}

. (1.7)

The rationale behind the use of Φ̃Cn,C∞ , or Φ̃Cn for short, in place of ΦCn is to avoid giving unfair
advantage to sets which are “attached” to the boundary of B∞(n). We can now state a theorem
which settles a version of Conjecture 1.1:



4 M. BISKUP, O. LOUIDOR, E.B. PROCACCIA AND R. ROSENTHAL

Theorem 1.3 (Cheeger constant) Let d = 2 and p > pc(Z2) and let ϕp be as in Theorem 1.2
and θp as in (1.3). Then, P-almost surely,

lim
n→∞

nΦ̃Cn =
1√
2

θ
−1
p ϕp. (1.8)

Remark 1.4 The factor 1/
√

2 arises from the factor 1/2 in (1.7) and the fact that B∞(n) has
roughly (2n)2 vertices. In particular, if 1/2 in (1.7) is replaced by α ∈ (0, 1/2], then 1/(2α1/2)
shows up instead of 1/

√
2 in (1.8).

Having established the existence of a limit value, the next natural question is its characteri-
zation. As already alluded to, ϕp can be represented as the isoperimetric constant for a specific
isoperimetric problem on R2. To set up the necessary notation, for a curve λ , i.e., a continuous
map λ : [0,1]→ R2, and a norm ρ on R2, let the ρ-length of λ be defined as

lenρ(λ ) := sup
N≥1

sup
0≤t0<···<tN≤1

N

∑
i=1

ρ
(
λ (ti)−λ (ti−1)

)
. (1.9)

The curve λ is rectifiable if lenρ(λ ) < ∞ for any (equivalent) norm ρ on R2. If λ is simple and
closed (i.e., Jordan), its interior int(λ ) is the unique bounded component of R2 \λ .

Theorem 1.5 (Limit value) Let d = 2 and p > pc(Z2). There exists a norm βp on R2, which is
symmetric with respect to the reflections through the axes and diagonals of Z2, such that ϕp from
Theorems 1.2 and 1.3 satisfies

ϕp = inf
{

lenβp(λ ) : λ is a Jordan curve in R2, Leb(int(λ )) = 1
}

. (1.10)

Here Leb stands for the Lebesgue measure on R2.

Isoperimetric problems in Rd have a long history and much is known about them. In particular,
thanks to observations made by Wulff [39], a minimizer of (1.10) can be explicitly constructed.
(This is what is referred to as the “Wulff Construction.”) Define

Wp :=
⋂

n̂ : ‖n̂‖2=1

{
x ∈ R2 : n̂ · x≤ βp(n̂)

}
, (1.11)

where n̂ · x is the Euclidean scalar product, and let

Ŵp := Wp/
√

Leb(Wp) . (1.12)

Here and henceforth we adopt the notation (for A⊂ R2, ζ ∈ R, ξ ∈ R2)

ζ A := {ζ x : x ∈ A} and ξ +A := {ξ + x : x ∈ A}. (1.13)

Hence, Ŵp is Wp normalized to have a unit area. Note that Wp can be viewed as the unit ball in
the dual norm β ′p, standardly defined for y ∈ R2 as

β
′
p(y) = sup{x · y : x ∈ R2, βp(x)≤ 1}. (1.14)

Since Ŵp is a convex domain, its boundary is a simple curve, so we can set

γ̂p := ∂Ŵp. (1.15)
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Taylor [36] proved (after many partial proofs by others) with the help of the Brunn-Minkowski
inquality that ϕp = lenβp(γ̂p) so, indeed, γ̂p is a minimizer.

In Taylor [37], it is then shown that the minimizer is unique up to shifts. Writing ‖x− y‖ for
the `∞-distance between x and y and dH for the `∞-Hausdorff metric on compact sets in R2,

dH(A,B) := max
{

sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖

}
, (1.16)

Dobrushin, Kotecký and Shlosman [15, Theorem 2.3] expressed this quantitatively as follows:
For any rectifiable Jordan curve λ enclosing a region of unit Lebesgue area,

inf
ξ∈R2

dH
(
ξ + int(λ ),Ŵp

)
≤Cp

√
lenβp(λ )2− lenβp(γ̂p)2

lenβp(γ̂p)2 . (1.17)

Here Cp is a constant depending on βp. In [15], the bound is on dH
(
ξ +λ , γ̂p

)
, but as the interior

of both curves has the same Lebesgue measure, it readily extends to dH
(
ξ + int(λ ),Ŵp

)
. The

proof in [15] uses a generalized Bonnesen inequality for the metric on R2 induced by βp (see [15,
Section 2.5] or the monograph by Burago and Zalgaller [9, Theorem 1.3.1]).

An important consequence of the listed facts about the minimizers of (1.10) is that we are
able to derive an almost sure shape theorem for the isoperimetric sets of ΦC∞,0 and Φ̃Cn . More
explicitly, conditioned on 0∈C∞, let ÛC∞(r) denote the set of minimizers for (1.2) with G := C∞.
Similarly, write ÛCn for the set of minimizers for (1.7) with G := Cn and H := C∞. We have:

Theorem 1.6 (Limit shape — isoperimetric profile) Let d = 2 and p > pc(Z2). Then

max
U∈ÛC∞ (n)

inf
ξ∈R2

dH
(
n−1/2U, ξ +θ

−1/2
p Ŵp

)
−→
n→∞

0 (1.18)

and
max

U∈ÛC∞ (n)

∣∣|U |/n−1
∣∣ −→

n→∞
0 (1.19)

hold for P(·|0 ∈ C∞)-almost every realization of ω .

For the minimizers of (1.7) we similarly get:

Theorem 1.7 (Limit shape — Cheeger constant) Let d = 2 and p > pc(Z2). Then, for n suffi-
ciently large, all minimizers are connected (as subgraphs of Cn) and

max
U∈ÛCn

inf
ξ∈R2

dH
(
n−1U, ξ +

√
2Ŵp

)
−→
n→∞

0 (1.20)

and

max
U∈ÛCn

∣∣∣∣ |U |
(θp|B∞(n)|/2)

−1
∣∣∣∣ −→n→∞

0 (1.21)

hold for P-almost every realization of ω .

1.3 Discussion and open problems.

We finish the introduction with a brief discussion of various limitations of our results; we use
these as an opportunity to point out some open problems.
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(1) Free and periodic boundary conditions: As noted before Theorem 1.3, our results on the
Cheeger constant are limited to the quantity Φ̃Cn , which includes the edges “sticking out” of B∞(n).
Conjecture 1.1 is instead formulated for “free” boundary conditions (no edges sticking out) but
one can also take periodic boundary conditions (edges that “stick out” connect to vertices on the
opposite side of the box). A question is thus whether these cases can be resolved as well. The
reduction to an isoperimetric problem in R2 for the norm βp should still be feasible; a difficult
part is the analysis of the minimizers for the continuum isoperimetric problem. For p = 1, the
solution is half of the square (free b.c.) or a band around the torus (periodic b.c.). However, it is
not at all clear how this changes once p is significantly lowered below 1.
(2) Regularity of minimizers: Related to the previous problem is the question of regularity of the
norm βp (beyond its continuity which is automatic) and thus also the regularity of the limiting
curve. We believe that, as soon as p ∈ (pc(Z2),1), the limit shape is smooth and, in particular,
has no cusps or flat portions. However, we do not have any good ideas how to prove this.
(3) Near criticality: The limit shape is defined for all p > pc, but not for pc, for which there is no
percolation. Notwithstanding, one is naturally interested in the behavior of the shape in the limit
when p ↓ pc. In analog to the Ising model and super-critical percolation, we conjecture that the
limit is the Euclidean circle.
(4) Near p = 1: On the other hand, it is easy to show that when p→ 1, the boundary norm βp

converges to the `1-norm uniformly on {x ∈ R2 : ‖x‖2 = 1}. Consequently, Ŵp converges to the
unit box (for instance in the Hausdorff measure on R2).
(5) Size of the holes: Although the definition of the Cheeger constant ensures that a minimizer
can always be taken connected with a connected complement, neither our modified definition
nor that for the isoperimetric profile ensures the connectedness of the complement and, in fact,
they need not be such. Our proof gives an approximation, to the leading order in the size, of
the isoperimetric sets by a convex set in the continuum. The estimates on the Hausdorff distance
then show that the diameter of the potential “holes” is negligible compared to the diameter of the
whole set. We believe that they should not be significantly larger than the log of the diameter.
(6) Deviation tails: Another question of reasonable interest is whether one can derive (reason-
ably) sharp probabilistic estimates for finding isoperimetric sets of a given (large) volume whose
boundary length or shape significantly deviates from the limiting values. We in fact tend to expect
these tail-estimates to exhibit different scaling for positive and negative deviations; similarly to
those found for passage times in first passage percolation (Kesten [24]).
(7) Shape fluctuations: Not unrelated to this is the question of shape fluctuations. These have
been addressed in the context of “classical” Wulff constructions by Alexander [1], Hammond
and Peres [21], Hammond [18–20]. An interesting feature there is that the fluctuations are of
order n1/3. It is interesting to ponder about the connection to (still conjectural) n2/3-scaling of
transversal fluctuations for minimal-length paths in first passage percolation; cf Chatterjee [12],
Auffinger and Damron [4] for recent work on this. The problem of fluctuations of minimal-length
paths can be formulated in the present context as well, see Section 2.
(8) Higher dimensions: A final, and at this point completely open, problem is that of dimen-
sions d ≥ 3. In the context of Wulff construction for percolation and Ising model, generalizing
the two-dimensional proofs to higher dimensions required very considerable effort (Cerf [10],
Bodineau [7], see the reviews by Cerf [11] and Bodineau, Ioffe and Velenik [8]). Although some
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inspiration can be drawn from these for our problem as well, it will probably be limited to facts
about geometry of random surfaces and isoperimetric problems in Rd .

1.4 Outline.

The remainder of this paper is organized as follows: In Section 2 we introduce the notions of a
right-most path and its right-boundary length and use these to define the boundary norm βp. In
Section 3 we then derive concentration estimates that permit us to control the rate of convergence
of the right-boundary length (scaled by the geometric distance) to βp. Section 4 then shows that
circuits on the lattice can be matched with closed curves in R2, such that the right-boundary
length of the former is approximately the βp-length of the latter. This, in turn, is used in Section 5
to control the size of the boundary of subsets of C∞ or Cn and thereby prove the main theorems.

1.5 General notation.

In general, ‖x‖q will denote the `q-norm of x∈Rd . However, we will regularly write ‖x‖ for ‖x‖∞.
We set Bq(r) := {x ∈ R2 : ‖x‖q ≤ r} but, to simplify notation, we will often regard B∞(n) also
as the `∞-ball in Z2. The length of a curve λ with respect to the ‖ · ‖q-norm will be denoted
by lenq(λ ). The notation poly(x,y) stands for the closed linear segment in R2 from x to y. A
polygonal line is then the curve poly(x0, . . . ,xn) := poly(x0,x1) ◦ · · · ◦ poly(xn−1,xn) where “◦”
denotes the usual concatenation of curves. Finally, we shall write C,C′, C′′, etc. to denote non-
negative constants whose value may change line by line, unless stated otherwise.

2. THE BOUNDARY NORM

In this section we define the boundary norm βp that lies at the core of all of our arguments. A
key notion is that of a right-most path which, as we shall see later, will be used to characterize
the “shape” of finite sets in Z2.

2.1 Right-most paths and their right boundaries.

Consider an unoriented planar graph G = (V,E) embedded in R2. A path γ in G from x to y
of length |γ| = n, is a sequence of vertices (x0,x1, . . . ,xn) such that (xi,xi+1) ∈ E for every i ∈
{0, . . . ,n− 1} and x0 = x and xn = y. The path is called simple if it traverses each edge in G at
most once in each direction (that is γ is simple in the directed version of G). The path is called a
circuit if xn = x0; in this case we may identify indices modulo n (e.g. xn+1 = x1).

When both xi−1 and xi+1 are defined, the right-boundary edges at vertex xi are obtained by
listing all (oriented) edges emanating from xi counter-clockwise starting from, but not including,
(xi,xi−1) and ending with, but not including, (xi,xi+1). If xi−1 or xi+1 is undefined, which can
only happen at the endpoints of a non-circular path, the set of boundary edges at xi is empty. The
right boundary ∂ +γ of γ is the set of all right-boundary edges at all vertices of γ . Notice that if γ

visits a vertex multiple times, each visit may contribute distinct right-boundary edges to ∂ +γ . A
path is said to be right-most if it is simple and it does not use any edge (regardless of orientation)
in its right boundary. Let R(x,y) be the set of all right-most paths from x to y.
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FIG. 1 An example of a right-most path γ (solid edges) and its right-boundary ∂+γ

(dashed edges). The associated interface (wiggly curve on the medial graph) reflects on
the edges in γ and cuts through the edges in ∂+γ .

Now fix G := Z2. For ω ∈Ω and a right-most path γ , set

b(γ) :=
∣∣{e ∈ ∂

+
γ : ω(e) = 1}

∣∣. (2.1)

This is the right-boundary length of γ in configuration ω . Note that ∂ +γ may include an edge in
both orientations; both of these then contribute to b(γ). If x and y are connected in ω , we then
define the right-boundary distance by

b(x,y) := inf
{
b(γ) : γ ∈R(x,y), open

}
. (2.2)

Finally, to ensure containment of the arguments of b(·, ·) in C∞, for each x ∈ Rd we define the
“nearest vertex” [x] ∈ C∞ as follows: Suppose the probability space is large enough to carry a
collection of random variables {ηz}z∈Z2 that are i.i.d. uniform on [0,1] and independent of ω

under P. For x ∈ R2, we then let [x] denote the vertex z on C∞ which is nearest to x in the `∞-
norm, taking the one with a minimal ηz in case there is a tie. Obviously, [x] depends on ω and the
η’s but we will not make this notationally explicit.

The main result of Section 2 is:

Theorem 2.1 (The boundary norm) For any p > pc(Z2) and any x ∈ R2, the limit

βp(x) := lim
n→∞

b([0], [nx])
n

(2.3)

exists P-a.s. and is non-random, non-zero (for x 6= 0) and finite. The limit also exists in L1 and
the convergence is uniform on {x ∈ R2 : ‖x‖2 = 1}. Moreover,

(1) βp is homogeneous, i.e., βp(λx) = |λ |βp(x) for all x ∈ R2 and all λ ∈ R, and
(2) βp obeys the triangle inequality,

βp(x+ y)≤ βp(x)+βp(y), x,y ∈ R2. (2.4)
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FIG. 2 The boundary interface ∂ (wiggly line) winding around a finite connected sub-
graph of Z2 (solid edges). The black edges are those lying on the right-most circuit γ

associated with ∂ . The vertices enclosed by ∂ (gray and black bullets) are part of the set
vol(γ) to be defined and used later.

In other words, βp is a norm on R2.

The norm βp inherits all symmetries of the lattice as the following proposition shows.

Proposition 2.2 Let βp be defined as in Theorem 2.1. Then for all (x1,x2) ∈ R2,

βp
(
(x1,x2)

)
= βp

(
(x2,x1)

)
= βp

(
(±x1,±x2)

)
(2.5)

for any choice of the two signs ±.

The remainder of Section 2 is devoted to the proof of Theorem 2.1 and Proposition 2.2. As a
preparation, we will first need to introduce some geometric facts concerning right-most paths and
their right boundaries and also some relevant properties of bond percolation on Z2.

2.2 Geometry of right-most paths.

Our arguments will rely heavily on planar duality. Recall that with each planar graph G we can
associate another planar graph, its dual G?, by identifying the faces of G with the vertices of G?

and then, naturally, a dual edge e? with each primal edge e. If e is oriented, we orient e? so that
it points from the face on the left of e to the face on the right of e. (The dual of e? is then the
reversal of e.)
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With a planar graph G = (V,E) we can also associate the so-called medial graph, G] = (V],E]).
This is the graph with vertices V] := E and an edge (e,e′) ∈ E] whenever e and e′ are adjacent
edges on a face of G. We orient the edges in E] clockwise in each face of G; thanks to planarity,
edges will then be oriented counterclockwise around each vertex of G (or, equivalently, in each
face of G?). An interface is then an edge self-avoiding (oriented) path in G] which does not use
its initial or terminal vertex more than once, except to close a cycle. The medial graph of G is
also the medial graph of G?, once we reverse the orientation of its edges. Therefore, an interface
in G] run backwards is an interface in (G?)].

As Fig. 1 shows, when an interface ∂ visits an edge of G it either “reflects” on it or “cuts-
through” it (reflecting on its dual). More precisely, let e0, . . . ,en be the sequence of edges of G
(i.e., vertices of the medial graph) visited by ∂ . Whenever ei−1,ei,ei+1 are well defined, we
say that the interface reflects on ei if ei−1,ei,ei+1 lie on the same face of G; otherwise it cuts
through ei. Notice that unless ∂ is a cycle, it does not reflect or cut through e0, en.

For any connected finite subgraph H ⊂G, there is a unique interface ∂ in G] which surrounds H
and reflects only on edges which belong to H (see Fig 2). We shall call ∂ the outer boundary
interface of H. Necessarily, ∂ goes around H in the counterclockwise direction. Associated
with ∂ there are two circuits, γ in G and γ? in G? that describe equally well the outer “shape”
of H. Here γ is obtained by traversing ∂ and listing all edges of G on which the interface reflects
while γ? is obtained similarly from the reversal ∂? of ∂ viewed as an interface on G?. A key fact
for our purposes is that both γ and γ? are right-most and that the edges in ∂ +γ are (outer) boundary
edges of H (i.e. edges which emanate from vertices in H but not included in its edge-set):

Proposition 2.3 For each interface ∂ = (e1, . . . ,em), the sub-sequence (ek1 , . . . ,ekn) of the edges
that are not cut through by ∂ form a right-most path γ . This mapping is one-to-one and onto the
set of all right-most paths. In particular, γ is a right-most circuit if and only if ∂ is a cycle in the
medial graph. Finally, the edges in ∂ \ (ek1 , . . . ,ekn) (oriented properly) form ∂ +γ .

Proof. Consider an interface ∂ := (e1, . . . ,em). If ∂ reflects on ei, orient ei in the “direction” ∂

sweeps by it, if ∂ cuts through ei, orient ei so that it points left-to-right as it is traversed by ∂ . Let
(ek1 , . . . ,ekn) be as above. It is easy to check that, for each i = 1, . . . ,n− 1, the initial vertex of
each edge among eki+1, . . . ,eki+1 is the terminal vertex of eki . Calling this vertex xi, we obviously
have eki = (xi−1,xi) and so, setting x0 to the initial vertex of ek1 and xn to the terminal vertex of ekn ,
the sequence γ := (x0, . . . ,xn) is a path. The orientation of G] and the fact that ∂ is edge-simple
ensures that γ is simple. Moreover, the edges eki+1, . . . ,eki+1−1 are then the right-boundary edges
of γ at xi. Finally, γ is right-most because once ∂ cuts through an edge (making it part of ∂ +γ) it
cannot reflect on it later.

For the opposite direction, let γ := (x0, . . . ,xn) be a right-most path. The corresponding inter-
face ∂ = (e1, . . . ,em) is constructed as follows: The first edge in ∂ will be (x0,x1). Then, for each
k = 1, . . . ,N such that both (xk−1,xk) and (xk,xk+1) are on γ , we add to ∂ all right-boundary edges
emanating from xk in a counter-clockwise order and then also (xk,xk+1).

The construction ensures that ∂ is oriented in accord with G]. To see that ∂ is edge-simple,
suppose the opposite. Then ∂ uses a pair (ei,ei+1) one more time at a later index. If ∂ reflects
on ei+1, then ei+1 is an edge in γ and so it cannot be seen (and reflected upon) by ∂ again as γ

is itself simple. If, on the other hand, ∂ cuts through ei+1, then ei+1 is encountered twice as a
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right-boundary edge of a vertex in γ , which again cannot happen since γ is edge simple. Thus ∂

is edge simple. Similar considerations show that the first and last edge cannot repeat unless γ is
a circuit. This shows that ∂ is an interface. Since ∂ uses all edges of γ without cutting through
them, applying the mapping in the statement to ∂ will give back γ . This shows that the map ∂ 7→ γ

is onto. An inspection of the above shows that same applies to γ 7→ ∂ . �

Corollary 2.4 For any right-most path γ , the set of edges dual to ∂ +γ defines a right-most
path γ? on G?.

Proof. Consider the interface ∂ related to γ as stated in Proposition 2.3. Then its reversal ∂? is an
interface on G? and so it induces a right-most path γ?. Obviously, e? is an (oriented) edge in γ? if
and only if its primal edge e belongs to ∂ +γ . �

The graph G := Z2 is certainly planar and it will have both a dual and a medial. Using the
standard embedding of Z2 into R2, the dual of Z2 can be identified with Z2

? = (1/2, 1/2)+Z2 and
its medial Z2

] with a scaled and rotated copy of Z2. Proposition 2.3 explains our reliance on right-
most paths in the definition of βp. We finish with two simple lemmas that will be needed for the
proof of Theorem 2.1.

Lemma 2.5 There is a constant C > 0 such that for every right-most path γ ,

|γ|
3
−2≤

∣∣∂ +
γ
∣∣≤ 3|γ| . (2.6)

Proof. Let γ be a right-most path and ∂ its associated interface. Since the degree of each vertex
in Z2 is four, in every four steps, ∂ visits at least one edge of γ and at least one edge of ∂ +γ;
otherwise, it would not be edge-simple. Since no (oriented) edge is visited more than once, the
claim follows. �

We shall now define a way to concatenate two adjacent right-most paths such that the resulting
path is also right-most. Let γ = (u0,u1, . . . ,un) and γ ′ = (v0,v1, . . . ,vm) be paths and set

k := min{i : ui ∈ γ
′} and l := max{i : vi = uk}. (2.7)

Then the ∗-concatenation of γ and γ ′ denoted γ ∗ γ ′ is the path (u0, . . . ,uk,vl+1, . . . ,vm).

Lemma 2.6 For any γ ∈R(x,y) and γ ′ ∈R(y,z) we have γ ′′ := γ ∗ γ ′ ∈R(x,z). Moreover,∣∣(∂ +
γ
′′)\ (∂ +

γ ∪∂
+

γ
′)
∣∣≤ 2. (2.8)

Proof. The case x = z is trivial, since in this case γ ′′ = (x). Otherwise, clearly γ ′′ is a path from x
to z. Then let

γL := (u0, . . . ,uk), γM := (uk−1,uk = vl,vl+1) and γR := (vl, . . . ,vm). (2.9)

Note these are all right-most paths. From the construction it follows that ∂ +γL has no edges in
common with γM ∪ γR, and ∂ +γR has no edges in common with γL ∪ γM and that ∂ +γM has no
edges in common with γL ∪ γR. Hence, γ ′′ is right-most. Moreover, ∂ +γL ⊆ ∂ +γ , ∂ +γR ⊆ ∂ +γ ′

and |∂ +γM| ≤ 2. Since also ∂ +γ ′′ = ∂ +γL∪∂ +γM ∪∂ +γR, the claim follows. �
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2.3 Percolation inputs.

In this section we will assemble some useful facts concerning percolation on Z2. Percolation
on Zd is a well studied subject; see Grimmett [17] for a standard reference. For our purposes, we
will need the following three facts:
(1) Exponential decay of subcritical connectivities: Let C(0) denote the connected component

of 0 in ω . For each p < pc(Z2), there are C,C′ < ∞

P
(
|C(0)| ≥ n)≤Ce−Cn, n≥ 1. (2.10)

In particular, if x↔ y denote the event that x and y are connected by an open path in ω , then

P(x↔ y)≤Ce−C′‖x−y‖, x,y ∈ Z2. (2.11)

(2) Duality: The planar nature of Z2 permits us to encode a percolation configuration ω by means
of its dual counterpart ω? which is defined by

ω?(e?) := 1−ω(e). (2.12)

Note that P(ω?(e?) = 1) = 1− p, so the dual edges are occupied with dual probability p? :=
1− p. Thanks to Kesten’s celebrated result [23] we know that pc(Z2) = 1/2 and so P(ω ∈ ·) is
supercritical (p > pc(Z2)) if and only if P(ω∗ ∈ ·) is a subcritical (p? < pc(Z2)). In particular,
(2.11) applies to ω? for all p > pc(Z2).

(3) Comparison of graph and lattice distance: Whenever x↔ y, we can define Dω(x,y) as the
length of the shortest open path connecting x to y. (When x = y we set Dω(x,y) = ∞.) Thanks
to a result of Antal and Pisztora [3, Theorem 1.1] we know that, for any p > pc(Z2) there is
ρ = ρ(p,d) such that

limsup
‖y‖→∞

1
‖y‖

logP
(
0↔ y, Dω(0,y) > ρ‖y‖

)
< 0. (2.13)

In particular, Dω(x,y) is at large distances comparable with the lattice distance.
We will now use these facts to prove that the distance between the infinite cluster and any fixed
point on the lattice has exponential tails.

Lemma 2.7 Suppose p > pc(Z2). There are C,C′ > 0 such that for all x ∈ Z2 and r > 0,

P
(
‖[x]− x‖) > r

)
≤Ce−C′r (2.14)

Proof. On {‖[x]−x‖> r}, where r ∈N, there is no point of C∞ in the box of side 2r+1 centered
at x. By duality, this box is therefore circumnavigated by a dual path whose edges are open
(in ω?). In particular, there are vertices x+,x− ∈ Z2 of the form x± := x± n±e1, where e1 is
the unit vector in the first coordinate direction and n± ≥ r, whose dual neighbors lie on this
path. Since p > pc(Z2), the dual percolation is subcritical and the probability that this occurs is
exponentially small in n+ +n−. Summing over n± ≥ r, we get (2.14). �

The following lemma is an extension of (2.13), of which we will make frequent use.

Lemma 2.8 Suppose p > pc(Z2). There are α1,C,C′ > 0 such that for all x,y ∈ Z2,

P
(
Dω([x], [y]) > r

)
≤Ce−C′r, r > α1‖y− x‖. (2.15)
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Proof. In light of Lemma 2.7 and the translation invariance of P, it suffices to show that, for some
α,C,C′ ∈ (0,∞) and any y ∈ Z2,

P
(

0,y ∈ C∞, Dω(0,y) > αr
)
≤Ce−C′r, r > ‖y‖. (2.16)

We will invoke (2.13) and an short argument. Recall that B∞(r) := {y ∈ Z2 : ‖y‖ ≤ r}. Thanks
to the triangle inequality for Dω , on {0,y ∈ C∞, Dω(0,y) > 5ρr}, there must be a point z ∈
∂B∞(2r)∩C∞ such that {0↔ z, Dω(0,z) > 2ρr}∪{y↔ z, Dω(y,z) > 3ρr} holds. Hence,

P
(
0,y ∈ C∞, Dω(0,y) > 5ρr

)
≤ ∑

z∈∂B∞(2r)

(
P
(
0↔ z, Dω(0,z) > 2ρr

)
+P
(
y↔ z, Dω(y,z) > 3ρr

))
. (2.17)

Assuming ‖y‖∞ ≤ r, (2.13) along with r ≤ ‖z‖∞ ≤ 2r and r ≤ ‖y− z‖∞ ≤ 3r imply that both
probabilities on the right are bounded by Ce−C′r for some C,C′ > 0, independent of y and z. As
|∂B∞(2r)|= O(r), the bound (2.16) follows with α := 5ρ . �

Finally we prove that a right-most path γ cannot have too few open edges in ∂ +γ .

Proposition 2.9 For p > pc(Z2) there are α2,C,C′ > 0, such that for all n≥ 0,

P
(
∃γ ∈

⋃
x∈Z2

R(0,x) : |γ| ≥ n, |b(γ)| ≤ α2n
)
≤Ce−C′n. (2.18)

Proof. Recall that ω? is the dual configuration of ω , that is ω?(e?) = 1−ω(e). By Corollary 2.4
and 2.5, on the event in (2.18) there is a dual right-most path and, in particular, a simple path γ?

which ends at a dual neighbor of 0, has length n/3− 2 and contains less than α2n edges e with
ω?(e) = 0. As there are only four dual neighbors of 0, replacing ω? by ω for ease of notation, it
suffices to show

Pp?

(
∃γ : 0 ∈ γ , simple, |γ|= n, |{e ∈ γ : e /∈ ω}| ≤ α2n

)
≤Ce−C′n, (2.19)

where p? := 1− p is the dual to p and Pp? is the dual percolation measure.
To prove (2.19), let us define, for any α ≥ 0, the set

An,α :=
{
∃γ : 0 ∈ γ , simple, |γ|= n, |{e ∈ γ : e /∈ ω}| ≤ αn

}
. (2.20)

Note that An,α depends only on the edges in a box of side n centered at the origin. This permits
us to regard An,α as a subset of a finite sample space.

Fixing an (arbitrary) ordering of {γ : 0∈ γ , simple, |γ|= n}, define the map Tn,α : An,0→ 2An,α

as follows: Given σ ∈ An,0, let γ be the simple σ -open path of length n from the origin that is
minimal in the above ordering. Then Tn,α(σ) is the set of all configurations that are obtained
from σ by closing at most αn edges in γ . We claim

An,α ⊆
⋃

σ∈An,0

Tn,α(σ). (2.21)

Indeed, given σ ′ ∈An,α , find the minimal (in the above ordering) simple path γ which has at most
αn closed edges in σ ′. Then set σ to be the configuration obtained from σ ′ by opening all edges
along this path. Clearly, σ ∈An,0 and σ ′ ∈Tn,α(σ), proving (2.21).
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For brevity let Pp?(σ) denote the probability of the configuration σ . (Recall that we regard σ

as a configuration on a finite set of edges only.) If σ ′ ∈Tn,α(σ) has k close edges on the minimal
σ -open path γ , then Pp?(σ

′) = ( p
1−p)kPp?(σ). The union bound then shows

Pp?(Tn,α(σ))≤
[bαnc

∑
k=0

(
p

1− p

)k(n
k

)]
Pp?(σ). (2.22)

Denoting

c(α, p) := sup
0≤s≤α

{
s log

p
1− p

−
(
s logs+(1− s) log(1− s)

)}
(2.23)

the Stirling bound gives us

Pp?(Tn,α(σ))≤Cnec(α,p)n Pp?(σ) (2.24)

and summing over σ yields

Pp?(An,α)≤ ∑
σ∈An,0

Pp?(Tn,α(σ))≤Cnec(α,p)n Pp?(An,0). (2.25)

But on An,0, the connected component of the origin has at least n edges, and thus order n vertices.
By (2.10), Pp?(An,0)≤ e−c′(p)n for some c′(p) > 0. Noting that c(p,α) ↓ 0 as α ↓ 0, choosing α

sufficiently small, we obtain exponential decay for Pp?(An,α). �

2.4 Proof of Theorem 2.1 and Proposition 2.2.

The proof of the theorem will come in several parts. First we will establish the existence of the
limit in (2.3) along multiples of integers.

Lemma 2.10 Let p > pc(Z2). Then for all x ∈ Z2, the limit in (2.3) exists pointwise P-a.s. and
in L1 and is non-random and finite.

Proof. For x = 0 the claim is trivial so fix some x ∈ Z2 \{0} and for 0≤ m < n define

bm,n := b
(
[mx], [nx]

)
. (2.26)

By virtue of Lemma 2.6, for any x,y,z that are connected in ω ,

b(x,z)≤ b(x,y)+b(y,z)+2. (2.27)

It thus follows
b0,n ≤ b0,m +bm,n +2, 0≤ m < n. (2.28)

This puts us in a position to extract the limit by subadditivity arguments.
We will specifically rely on Liggett’s version [28] of Kingman’s Subadditive Ergodic Theorem

which states that if (Xm,n)0≤m<n are non-negative random variables satisfying
(1) X0,n ≤ X0,m +Xm,n for all 0 < m < n,
(2) {Xnk,(n+1)k : n≥ 1} is stationary and ergodic for each k ≥ 1,
(3) the law of {Xm,m+k : k ≥ 1} is independent of m≥ 1, and
(4) EX0,1 < ∞,
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then the limit limn→∞ X0,n/n exists a.s. and in L1 and equals limn→∞ EX0,n/n < ∞ almost surely.
We proceed to check the conditions for the case at hand.

Define Xm,n := bm,n +2. Then (1) follows from (2.28). For (2) let us write b(x,y;ω) to explicate
the dependence on ω and let τzω denote the shift of ω by z. Since the lexicographic order was
used to define [v], we have

b
(
[u+ z]ω , [v+ z]ω ;ω

)
= b
(
[u]τzω , [v]τzω ,τzω

)
; u,v,z ∈ Z2, (2.29)

where the subindex [u]ω indicates which percolation configuration the bracket is taken in. From
here we get Xm,n = X0,n−m ◦ τm

x ; the conditions (2,3) then hold by the translation invariance and
ergodicity of the law P under the shift τx. As to (4), here we note that, by Lemma 2.5,

b
(
[x], [y];ω

)
≤ 3Dω

(
[x], [y]

)
. (2.30)

From here we get (4) using Lemma 2.8. The claim immediately follows. �

Remark 2.11 We note that the use of Subadditive Ergodic Theorem is not required for proving
the convergence (2.3) in the mean. This would come at no loss as almost sure convergence could
then be extracted from the concentration bounds in Theorem 3.1. However, we find the fact that
almost-sure convergence can be proved using soft methods more appealing.

Next we will show that βp is positive homogeneous and sub-additive on Z2:

Lemma 2.12 For βp as in Lemma 2.10,

βp(nx) = nβp(x), x ∈ Z2, n ∈ N, (2.31)

and
βp(x+ y)≤ βp(x)+βp(y), x,y ∈ Z2. (2.32)

Proof. The positive homogeneity (2.31) follows from the very existence of the limit. For the
triangle inequality (2.32) fix x,y ∈ Z2 and note that for all n≥ 1, by (2.27) and (2.29),

Eb
(
[0], [n(x+ y)]

)
≤ Eb

(
[0], [nx]

)
+Eb

(
[nx], [n(x+ y)]

)
+2

= Eb
(
[0], [nx]

)
+Eb

(
[0], [ny]

)
+2.

(2.33)

Dividing both sides by n and taking n→ ∞ we obtain (2.32) as desired. �

Lemma 2.13 Let βp be as in Lemma 2.10. Then for all (x1,x2) ∈ Z2,

βp
(
(x1,x2)

)
= βp

(
(x2,x1)

)
= βp

(
(±x1,±x2)

)
(2.34)

for any choice of the two signs ±.

Proof. We will prove that these symmetries hold in distribution for b([x], [y]). Since P (and the
definition of [x]) is invariant under rotations by 90◦, since right boundaries (and right-most paths)
remain such under these rotations, for all x1,x2 ∈ Z we have

b
(
[0], [(x1,x2])

) d= b
(
[0], [(−x2,x1)]

) d= b
(
[0], [(−x1,−x2)]

) d= b
(
[0], [(x2,−x1)]

)
. (2.35)

Using this together with the invariance of P with respect to translations, one obtains

b
(
[(x1,x2)], [0]

) d= b
(
[0], [(−x1,−x2)]

) d= b
(
[0], [(x1,x2)]

)
. (2.36)
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As to the reflections through the axes, while P (and the definition of [x]) is still invariant, right-
boundaries (and right-most paths) reflect into left-boundaries and left-most paths (which are the
obvious “left” counterparts of our standard “right” objects). However, a left-most path becomes
right-most when travelled backwards and so we get

b
(
[0], [(x1,x2)]

) d= b
(
[(x1,−x2)], [0]

) d= b
(
[(−x1,x2)], [0]

)
. (2.37)

Combining all of the above we see that the law of x 7→ b([0], [x]) has all of the stated symmetries.
Then βp inherits all these symmetries as the L1 limit in (2.3). �

In particular, the above two lemmas show that βp is homogeneous on Z2. As such it admits a
well-defined and unique homogeneous extension to a function βp : Q2→ [0,∞) via

βp(p/q) := βp(p)/q, p ∈ Z2, q ∈ N. (2.38)

We then note:

Lemma 2.14 The function βp : Q2 → [0,∞) from (2.38) extends continuously to R2. This ex-
tension is homogeneous and satisfies the triangle inequality as stated in (1-2) of Theorem 2.1.
Moreover,

sup
{

βp(x)
‖x‖

: x ∈ R2 \{0}
}

< ∞. (2.39)

Proof. It is easy to check that βp is homogeneous and obeys the triangle inequality on Q2.
This (and the finiteness of βp along, say, the coordinate directions) imply that x 7→ βp(x)/‖x‖ is
bounded on Q2 \{0}. In particular, βp(x)→ 0 as x→ 0 on Q2. Thanks to the triangle inequality,
x 7→ βp(x) is Lipschitz-continuous on Q2 and, by the denseness of Q2 in R2, it can be extended
continuously to all of R2. The bound (2.39) is inherited from the same bound on Q2 \{0}. �

Next we will show that βp is non-degenerate on the unit circle:

Lemma 2.15 For βp from Lemma 2.14,

inf
{

βp(x)
‖x‖

: x ∈ R2 \{0}
}

> 0. (2.40)

Proof. Invoking continuity and homogeneity, it suffices to prove this on Z2 \{0}. Fix an x in this
set. The union bound then yields

P
(
b([0], [nx])≤ αn/3

)
≤ P

(
‖[0]‖> n/3

)
+P
(
‖[nx]−nx‖> n/3

)
+ ∑
‖y‖≤n/3

P
(
∃γ ∈ ∪x∈Z2R(y,x) :

∣∣γ| ≥ n/3, b(γ)≤ αn/3
)
. (2.41)

Invoking Lemma 2.7 and Proposition 2.9 and setting α := α2, the right-hand side decays expo-
nentially in n with all constant uniform in x∈Z2 \{0}. It follows that Eb([0], [nx])≥Cn for some
C > 0 independent of x. Dividing by n and taking n→ ∞, we get (2.40). �

Proof of Theorem 2.1. The existence of βp as a norm, as well as the limit (2.3) for x ∈ Z2, was
established in the above lemmas; it remains to verify that the limit (2.3) applies to this extension
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for x that are not on the lattice. To this end, let ε ∈ (0,2π), define N := b2π/εc and let û0 . . . , ûN ∈
Q2 be such that

‖ûk− eikε‖2 ≤ ε/2, k = 0, . . . ,N, (2.42)
where eikε := (cos(kε),sin(kε)). Finally, choose M ∈ N so that Mûk ∈ Z2 for all k.

From the construction, for each x ∈ R2 \{0}, we may find k such that

x̂ := x/‖x‖2 obeys ‖ûk− x̂‖2 ≤ ε. (2.43)

Setting yn := bn‖x‖2/M
⌋
Mûk, we have yn ∈ Z2 and∥∥yn−nx
∥∥

2 ≤ n‖x‖2‖ûk− x̂‖2 +CM ≤ nε‖x‖2 +CM. (2.44)

Then using Lemma 2.8 for some α > 0 and all r > α(ε‖x‖2 +M/n), we observe

P
(
Dω([nx], [yn])/n > r

)
≤Ce−C′nr (2.45)

and so by Borel-Cantelli,

limsup
n→∞

Dω([nx], [yn])/n≤ αε‖x‖2, P-a.s.. (2.46)

Similarly, we also get

E
(
Dω([nx], [yn])/n

)
≤ α(ε‖x‖2 +M/n)+C/n . (2.47)

On the other hand, by (2.27) and (2.46),∣∣b([0], [nx])−b([0], [yn])
∣∣≤ b([nx], [yn])+2

≤ 3Dω([nx], [yn])+2.
(2.48)

Lemma 2.10 then yields

lim
n→∞

b([0], [yn])
n

= ‖x‖2βp(ûk), P-a.s and in L1. (2.49)

Finally, (2.43) and the fact that βp is an equivalent norm imply also∣∣‖x‖2βp(ûk)−βp(x)
∣∣≤Cε‖x‖2 (2.50)

for some C > 0.
Combining (2.46–2.50) we obtain both P-almost surely and in L1,

limsup
n→∞

∣∣∣∣b([0], [nx])
n

−βp(x)
∣∣∣∣≤ (3α +C)ε‖x‖2, (2.51)

and since this is true for all ε > 0, the existence of the limit for general x ∈ R2 is established.
To justify the claim about uniformity, note that there are only finitely many ûk’s for a given

ε > 0 and there are only at most order-n distinct values of [nx] when x ranges through the unit
circle in R2. The former ensures uniformity of (2.49), the latter implies that (2.45) still holds
when the quantifier ∀x∈ {z : ‖z‖2 = 1} is inserted into the probability on the left. The conclusions
(2.46–2.47) then also hold (for a given ω) uniformly in x with ‖x‖2 = 1 and, consequently, so
does the limsup in (2.51). The same applies to L1 convergence. �

Proof of Proposition 2.2. The symmetries of βp as function on Z2 as proved in Lemma 2.13 are
preserved under its extension to all of R2. �
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3. CONCENTRATION ESTIMATES

Theorem 2.1 defines the boundary norm βp as the almost sure limit (2.3). However, our applica-
tions will require control of the rate of convergence which we achieve by proving the following
concentration estimate:

Theorem 3.1 (Concentration for right-boundary distance) Let p > pc(Z2). For each ε > 0 there
is C > 0 and N > 0 such that for all x,y ∈ Z2 with ‖x− y‖> N,

P
(∣∣∣∣b([x], [y])

βp(y− x)
−1
∣∣∣∣> ε

)
≤ e−C log2 ‖y−x‖. (3.1)

Apart from this (measure theoretic) concentration estimate for the value of b(x,y), in order to
prove existence of the limiting shape of the isoperimetric sets, we will need to control the geo-
metric concentration of the paths minimizing, or nearly minimizing, b(γ). To this end, whenever
x,y ∈ C∞, let us call the path γ ∈R(x,y) ε-optimal if

b(γ)−b(x,y)≤ ε‖y− x‖. (3.2)

We will write Γε(x,y) for the set ε-optimal paths in R(x,y); the (absolute) minimizers then
constitute the set Γ0(x,y). Note that, since b(γ) is integer valued, Γ0(x,y) 6= /0 P-a.s. for any
x,y ∈ C∞ (assuming, of course, p > pc(Z2). Recall also the notation dH(A,B) from (1.16).

Proposition 3.2 Let p > pc(Z2). There are α,C,C′ > 0 such that for all x,y ∈ Z2, we have:

(1) For any t > α‖x− y‖,

P
(
∃γ ∈ Γ0([x], [y]) : |γ|> t

)
≤Ce−C′t . (3.3)

(2) For all ε > 0, once ‖y− x‖ is sufficiently large (depending on ε),

P
(
∀γ ∈ Γε([x], [y]) : dH(γ, poly(x,y)) > ε‖y− x‖

)
≤Ce−C′ log2 ‖y−x‖, (3.4)

where poly(x,y) is the linear segment connecting x and y.

Remark 3.3 The estimates in (3.1) and (3.4) are stated in the form which is sufficient for the
purposes of this paper, but they are far from optimal as far as the actual decay goes. Indeed,
with modest changes to the proofs one should be able to improve these into e−C‖y−x‖1/2−ε

. (The
bottleneck is Proposition 3.5, where one would need to replace the penalty function h(t) by
something that is nearly linear in t.) However, we believe that even this may not be optimal.

The remainder of Section 3 is devoted to the proofs of Theorem 3.1 and Proposition 3.2. The
underlying idea is to write b([x], [y])−Eb([x], [y]) as a Doob martingale and apply an Azuma-type
concentration estimate. Unfortunately, such estimates generally require a representation using a
martingale with bounded increments which, due to the requirement that the optimizing paths be
open in the underlying percolation configuration, is not the case for the random variable b([x], [y]).
We will thus have to work with a modified right-boundary distance b̂(x,y) that has this property.
This is a quantity similar to b(x,y); the principal difference is that it allows, at a huge penalty, in-
clusion of non-fully open paths. This permits us to invoke a concentration estimate from Kesten’s
study [25] of the shortest-time paths in first-passage percolation (see Theorem 3.9 in Section 3.2).
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3.1 Modified right-boundary distance.

We proceed to introduce the modified right-boundary distance b̂(x,y) and derive a number of its
properties. Throughout we assume p > pc(Z2). For a path γ we set

p(γ) :=
∣∣{e ∈ γ : ω(e) = 0}

∣∣, (3.5)

where the opposite orientations of an edge are considered distinct. The modified version b̂(γ) of
b(γ) is defined for a right-most, but not necessarily open, path γ with endpoints x and y by

b̂(γ) := b(γ)+h(‖y− x‖)p(γ), (3.6)

where we set, once and for all,
h(t) := max

{
log4 t,1}. (3.7)

For x,y ∈ Z2 we then define the modified boundary distance:

b̂(x,y) := inf
{
b̂(γ) : γ ∈R(x,y)

}
. (3.8)

The set of minimizers in (3.8) will be denoted by Γ̂(x,y) = Γ̂(x,y; ω).
The first lemma controls the length of any optimal path for b(x,y) and b̂(x,y). Part 3 is identical

to part 1 of Proposition 3.2; we restate it here so that we can include its proof already at this point.

Lemma 3.4 For p > pc(Z2), there are α > 0, C,C′ > 0 such that for all x,y ∈ Z2,

(1) b̂(x,y)≤C‖y− x‖h
(
‖y− x‖

)
.

(2) If t > αh
(
‖y− x‖

)
‖y− x‖, then

P(∃γ ∈ Γ̂(x,y) : |γ|> t)≤Ce−C′t . (3.9)

(3) If t > α‖y− x‖, then

P(∃γ ∈ Γ0([x], [y]) : |γ|> t)≤Ce−C′t . (3.10)

Proof. For (1), let γ be any path (not necessarily open) from x to y that is shortest in the lattice
distance. Since b(γ),p(γ) ≤ 3|γ| = 3‖x− y‖ and h≥ 1, we get b̂(γ)≤ 6‖y− x‖h

(
‖y− x‖

)
.

For part (2), let α2 be as in Proposition 2.9. If t > 6α2‖y− x‖h
(
‖y− x‖

)
, then by part (1) any

γ ∈ Γ̂(x,y) obeys b(γ) < t. Hence,

P
(
∃γ ∈ Γ̂(x,y) : |γ|> t

)
≤ P

(
∃γ ∈R(x,y) : |γ|> t, b(γ) < t

)
, (3.11)

which decays exponentially in t by Proposition 2.9. Part (2) thus holds with α := α2.
Lastly, for part (3), by Lemma 2.7 and (2.30), if t > 3α1‖y− x‖

P
(
b([x], [y]) > t

)
≤ P

(
3Dω([x], [y]) > t

)
≤C′e−C′′t . (3.12)

But, on {b([x], [y]) ≤ t} ∩ {∃γ ∈ Γ([x], [y]) : |γ| > (α2)−1t} there is a path γ ∈ R([x], [y]) with
|γ| > (α2)−1t and b(γ) ≤ t. By Proposition 2.9 this has probability at most C′e−C′′t . Therefore,
we get (3.10) as soon as t > 3α1(α2)−1‖y− x‖+C. �

Next we wish too argue that with high probability, the quantities b̂(x,y) and b([x], [y]) are
(relatively) close to each other once ‖x− y‖ is large:
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Proposition 3.5 For p > pc(Z2), there are C,C′> 0, such that for all x,y∈Z2 with N := ‖x−y‖
large enough,

P
(∣∣b([x], [y])− b̂(x,y)

∣∣≥C h(N) log2(N)
)
≤ e−C′ log2(N). (3.13)

The core of the proof boils down to the following observation:

Lemma 3.6 For p > pc(Z2), there is C > 0 such that for ‖x− y‖ large enough,

P
(
∃γ ∈ Γ̂([x], [y]), not open

)
≤ e−C log2 ‖x−y‖. (3.14)

Proof. Set N := ‖x−y‖ and let AN be the event that [x] and [y], as well as any γ ∈ Γ̂([x], [y]), stay
inside the box x +[−N2,N2]2 and that any dual connected component interesting this box is cir-
cumnavigated by a self-avoiding circuit of open edges whose length does not exceed log2(N).
Thanks to Lemmas 2.7, 3.4 and the exponential decay of dual connectivities, P(AN) ≥ 1−
e−C log2(N) once N is sufficiently large.

Assume now that AN occurs and that some γ ∈ Γ̂([x], [y]) contains a closed edge e. Then its dual
edge e? is part of a dual connected component and is thus surrounded by an open self-avoiding
(and, in particular, right-most) circuit λ of length at most log2(N). Suppose first that [x] and [y]
do not lie in the interior of λ . Then γ would visit at least one vertex of λ ; we set z, respectively, w
to the first, respectively, last vertex in λ visited by γ . Let γL denote the sub-path of γ that connects
[x] to z, write γR for the sub-path of γ that connects w to [y] and let λM denote the sub-path of λ

which connects z to w (which may coincide). Define γ ′ := (γL ∗λM)∗ γR ∈R([x], [y]) and note

b̂(γ ′)≤ b̂(γ)−h
(
‖y− x‖

)
+3|λ |. (3.15)

Since 3|λ | ≤ 3log2(‖y− x‖) < h(‖y− x‖) this would mean that γ is not optimal.
If, on the other hand, [x] does not lie in the interior of λ , then we set z to be the first vertex

in λ that is on some self avoiding open path from [x] to ∞ (chosen according to some a priori
ordering of paths). Such a path must exist since [x] ∈ C∞; we denote its segment from [x] to z
by γL. With the remaining paths defined as before, we see that (3.15) still holds, which leads to
a contradiction again. The case of [y] in the interior of λ (alone or together with [x]) is treated in
the same way. The probability in (3.14) is thus bounded by P(A c

N). �

Proof of Proposition 3.5. Let x,y ∈ Z2 be such that ‖x− y‖ is large enough for the arguments to
follow. By Lemma 3.6, with probability at least 1− e−C log2 ‖y−x‖, any path γ ∈ Γ̂([x], [y]) must be
open. When this is the case, we clearly have

b
(
[x], [y]

)
= b̂
(
[x], [y]

)
(3.16)

and so we only need to worry about the difference b̂(x,y)− b̂([x], [y]). By Lemma 2.7, with
probability at least 1− e−C log2 ‖y−x‖∥∥[x]− x

∥∥< log2 ‖y− x‖ and
∥∥[y]− y

∥∥< log2 ‖y− x‖. (3.17)
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For any u,v,w∈Z2, by ∗-concatenating a shortest (right-most) lattice path from u to v with a path
γ ′ ∈ Γ̂(v,w), Lemma 3.4(1) yields

b̂(u,w)≤C‖v−u‖h(‖w−u‖)+ b̂(v,w)
(

h(‖w−u‖)
h(‖w− v‖)

∨ 1
)

. (3.18)

Thanks to (3.7) and (3.17) we have

h(‖y− x‖)
h(‖y− [x]‖)

−1≤C′
log‖y− x‖
‖y− x‖

(3.19)

and so, using also Lemma 3.4(1),

b̂(x,y)≤ b̂
(
[x],y

)
+C h

(
‖y− x‖

)
log2 ‖y− x‖. (3.20)

By further comparing b̂([x],y) and b̂([x], [y]) and reversing the roles of b̂(x,y) and b̂([x], [y]), we
thus get ∣∣b̂(x,y)− b̂([x], [y])

∣∣≤C h
(
‖y− x‖

)
log2 ‖y− x‖ . (3.21)

Then, (3.13) follows from (3.16) and (3.21). �

It will now come as no surprise that b̂(x,y) and b([x], [y]) are also close in expectation.

Lemma 3.7 For p > pc(Z2) there is C > 0, such that for all x,y ∈ Z2 with ‖y− x‖� 1,∣∣Eb([x], [y])−E b̂(x,y)
∣∣≤Ch

(
‖y− x‖

)
log2 ‖y− x‖. (3.22)

Proof. Fix x,y such that ‖y−x‖ is large enough and set r := Ch(‖y−x‖) log2 ‖y−x‖, where C is
as in Proposition 3.5. By Cauchy-Schwarz,

E
∣∣b([x],[y])− b̂(x,y)

∣∣
≤ r +E

(∣∣b([x], [y])− b̂(x,y)
∣∣1{|b([x],[y])−b̂(x,y)|>r}

)
≤ r +C′′e−C′ log2 ‖y−x‖(Eb([x], [y])2 +Eb̂(x,y)2).

(3.23)

Now it follows from (2.30), Lemma 2.8 and Lemma 3.4(1) that

E
(
b([x], [y])2)≤ C̃‖y− x‖2 and E

(
b̂(x,y)2)≤ C̃‖y− x‖2h((‖y− x‖))2 (3.24)

for some C̃ > 0. The left hand-side in (3.22) is then bounded by 2r as soon as ‖y− x‖� 1. �

3.2 Concentration for modified right-boundary distance.

Having controlled the differences between right-boundary distance and its modified counterpart,
we now proceed to show that b̂(x,y) concentrates stretched exponentially around its mean.

Proposition 3.8 Suppose p > pc(Z2). There are constants C,C′ > 0 such that for any x,y ∈ Z2

with ‖x− y‖ large enough and any t ≤ ‖x− y‖ 3
2 ,

P
(∣∣b̂(x,y)−E b̂(x,y)

∣∣> t
)
≤C exp

(
− C′t
‖x− y‖1/2(h(‖x− y‖))3/2

)
. (3.25)
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Note that b̂(x,y) is bounded by Lemma 3.4(1) and so the expectation exists. As already alluded
to, the proof will be based on a concentration estimate for martingales with bounded increments.
(In fact, the boundedness of increments is the principal reason why we state this for b̂(x,y) rather
than b(x,y).) Such estimates have appeared in various forms in the literature; here we will invoke
Theorem 3 in Kesten [25] whose slightly simplified form reads as:

Theorem 3.9 (Kesten [25]) Let {Fk}∞
k=0 be an increasing family of σ -algebras and let us set

F∞ :=
∨

∞
k=0 Fk. Suppose that (Mk;Fk)∞

k=0 is a martingale whose increments ∆k := Mk−Mk−1,
k = 1,2, . . . , obey

|∆k|2 ≤ α and E[∆2
k |Fk−1]≤ E[Uk|Fk−1], k ≥ 1, (3.26)

for some α > 1 and for some sequence {Uk}∞
k=0 of positive F∞-measurable random variables

that satisfy

P
( ∞

∑
k=1

Uk > t
)
≤Ce−C′t , t ≥ α, (3.27)

for some C,C′ > 0. Then, M∞ := limn→∞ Mn exists almost surely and there is C1 > 0, which may
depend on C,C′, and a universal C2 > 0, such that

P
(
|M∞−M0| ≥ t

)
≤C1 exp(−C2t/

√
α), t ≤C′α3/2. (3.28)

Proof. This is a shortened version of the statement of Theorem 3 in Kesten [25] bypassing the
sharper, but less illuminating, estimate (1.28). Our bound (3.28) corresponds to Kesten’s equation
(1.29) simplified with the help of α > 1. �

Proof of Proposition 3.8. Let {ek : k = 0, . . .} be a fixed ordering of the edges of Z2. Define the
sigma-algebras Fk := σ(ω(e1), . . . ,ω(ek)). We will apply Theorem 3.9 to the martingale

Mk := E
(

b̂(x,y)
∣∣Fk

)
(3.29)

for some fixed x,y ∈ Z2. Our main task is to verify the conditions (3.26–3.27).
Let us write b̂(x,y;ω) to explicate the dependence of this object on the underlying percolation

configuration ω and let

gk(ω) :=
∫
{0,1}

P
(
dω
′(ek)

)∣∣ b̂(x,y;ω
′)− b̂(x,y;ω)

∣∣, (3.30)

where ω ′ is equal to ω except at edge ek where it equals the integration variable ω ′(ek). Set
∆k := Mk−Mk−1 for the martingale increment. Thanks to the product nature of P, we get

|∆k| ≤ E
(
gk
∣∣Fk

)
(3.31)

by the usual duplication argument.
Recall that Γ̂(x,y; ω) is the set of minimizers of b̂(γ; ω) among all paths in R(x,y). In order

to estimate the right-hand side of (3.31), fix an arbitrary ordering of R(x,y) and for each ω ,
let γ̂(ω) = γ̂(x,y; ω) ∈R(x,y) denote the path in Γ̂(x,y; ω) which is the smallest in the above
ordering. For two percolation configurations ω,ω ′ that differ only in the state of the edge ek,

b̂(x,y;ω
′)− b̂(x,y;ω)≤ b̂

(
γ̂(ω); ω

′)− b̂
(
γ̂(ω); ω

)
≤
(
1+h(‖y− x‖)

)
1Ak(ω), (3.32)
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where
Ak :=

{
ω : ek ∈ γ̂(ω)∪∂

+
γ̂(ω)

}
. (3.33)

Bounding the prefactor by 2h(‖y− x‖) and interchanging the roles of ω and ω ′, we obtain∣∣ b̂(x,y;ω
′)− b̂(x,y;ω)

∣∣≤ 2h(‖y− x‖)
(
1Ak(ω)+1Ak(ω

′)
)
. (3.34)

This immediately gives the left condition in (3.26) with α := 16h(‖y− x‖)2.
For the condition on the right of (3.26), we first invoke Jensen’s inequality to get

E
(
|∆k|2

∣∣Fk−1
)
≤ E

(
g2

k

∣∣Fk−1
)
. (3.35)

Using Jensen also with respect to the integration in (3.30), we are naturally led to consider inte-
grals of the right-hand side of (3.34) squared. Here we use(

1Ak(ω)+1Ak(ω
′)
)2 ≤ 2(1Ak(ω)+1Ak(ω

′)) (3.36)

and note that the integral of 1Ak(ω
′) over ω(ek) and then ω ′(ek) yields the same result as the

integeral of 1Ak(ω) over ω(ek) and then ω ′(ek). It follows that

E
(
|∆k|2

∣∣Fk−1
)
≤ 16h

(
‖y− x‖

)2E
(
1Ak

∣∣Fk−1). (3.37)

The condition on the right of (3.26) holds with Uk := 16h(‖y− x‖)21Ak .
Having checked (3.26), we now turn to condition (3.27). Writing h for h(‖y− x‖) and γ̂ for

the path γ̂(x,y;ω), Lemma 2.5 tells us
∞

∑
k=1

Uk = 16h2(|γ̂|+ |∂ +
γ̂|
)
≤Ch2|γ̂|. (3.38)

Therefore by Lemma 3.4(2), there is some C0 > 0, such that

P
( ∞

∑
k=1

Uk > t
)
≤Ce−C′t , t > C0h(‖x− y‖)3‖x− y‖. (3.39)

We now reset α :=C0h(‖x−y‖)3‖x−y‖ and conclude that all the conditions in the theorem hold.
The result then follows immediately from (3.28). �

3.3 Proof of Main Statements.

We are now ready to prove the main statements of this section.

Proof of Theorem 3.1. Let us collect all the inequalities which have been established so far. Fix
some ε > 0 and let x,y ∈ Z2. From Theorem 2.1 we know that if ‖y− x‖ is large enough (inde-
pendent of the direction of y− x),∣∣Eb([x], [y])−βp(y− x)

∣∣≤ ε‖y− x‖. (3.40)

Next, by Proposition 3.5, with probability at least 1− e−C log2 ‖y−x‖,∣∣b([x], [y])− b̂(x,y)
∣∣≤C′h(‖y− x‖) log2 ‖y− x‖ ≤ ε‖y− x‖. (3.41)

Lemma 3.7 in turn gives∣∣Eb([x], [y])−E b̂(x,y)
∣∣≤C′h(‖y− x‖) log2 ‖y− x‖ ≤ ε‖y− x‖. (3.42)
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Finally, by Proposition 3.8, with probability at least 1− e−C‖y−x‖1/2(h(‖y−x‖)−3/2
,∣∣b̂(x,y)−E b̂(x,y)

∣∣≤ ε‖x− y‖ . (3.43)

Combining (3.40–3.43) and invoking the triangle inequality, we find that∣∣b([x], [y])−βp(y− x)
∣∣≤ 4ε‖y− x‖. (3.44)

holds with probability at least 1− e−C log2 ‖y−x‖. It remains to divide (3.44) by βp(y− x) and use
that βp is equivalent to ‖ · ‖. �

Proof of Proposition 3.2. Part 1 is identical to Lemma 3.4(3) so we only need to prove part 2.
Note first that a qualitative version of this statement, one without an explicit decay estimate, can
be proved without invoking the concentration bound in Theorem 3.1. Unfortunately, this would
not be enough for our later use of this claim.

Fix x,y ∈ Z2 with ‖x− y‖ large, pick ε > 0 and let N := d4α/εe, where α is as in part 1 of
this proposition. Define the sequence of vertices uk := (1− kN−1)x+ kN−1y where k = 0, . . . ,N.
Then, for each k = 1, . . . ,N we pick a path γk ∈ Γ([uk−1], [uk]) that is minimal in a (previously
assumed) complete ordering of R([uk−1], [uk]). Finally, set γε := ((. . .(γ1 ∗ γ2)∗ . . .)∗ γN).

We claim that with probability at least 1− e−C log2 ‖y−x‖ the path γε satisfies the conditions
on the left of (3.4). Indeed, clearly γε ∈ R([x], [y]). Moreover, since ‖uk − uk−1‖ is of order
N−1‖y− x‖, once ‖y− x‖ is large enough we have∣∣b(γk)−βp(uk−uk−1)

∣∣≤ ε‖uk−uk−1‖/3, (3.45)

with probability at least 1− e−C log2 ‖y−x‖. This follows from the optimality of γk, Theorem 3.1
and the equivalence of βp with ‖ · ‖. The same arguments also show∣∣b([x], [y])−βp(y− x)

∣∣≤ ε‖y− x‖/3, (3.46)

with similar probability (albeit different constants). Summing over k = 1, . . . ,N, invoking sub-
additivity of βp and Lemma 2.6, with probability at least 1− e−C log2 ‖y−x‖,

b(γε)≤
N

∑
k=1

b(γk)+C′N

≤
N

∑
k=1

βp(uk−uk−1)+(ε/3)
N

∑
k=1
‖uk−uk−1‖+C′N

≤ βp(y− x)+(ε/2)‖y− x‖ ≤ b
(
[x], [y]

)
+ ε‖y− x‖,

(3.47)

where we have used the positive homogeneity of βp. This implies γε ∈ Γε([x], [y]).
At the same time, by Lemma 3.4(3) (or part 1 of this proposition), with probability at least

1− e−Cε‖y−x‖,
|γk| ≤ α‖uk−uk−1‖< ε‖y− x‖/2, k = 1, . . . ,N. (3.48)

Also, by Lemma 2.7 with probability of the same order ‖uk− [uk]‖ ≤ ε‖y− x‖/4. Together the
last two statements imply that for k = 1, . . . ,N, any z ∈ γk and any w ∈ poly(uk−1,uk) we have
‖z−w‖< ε‖y− x‖ (notice that Nε > 2). This shows

γε ⊆ poly(x,y)+B∞(ε‖y− x‖) . (3.49)
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Since γε , viewed as curve in R2, is continuous and connects [x] and [y], which are at most ε‖y−
x‖/4 away from x and y respectively, it follows from (3.49) that

poly(x,y)⊆ γε +B∞(ε‖y− x‖). (3.50)

This shows that dH(γε ,poly(x,y))≤ ε‖y−x‖ with probability at least 1−e−Cε‖y−x‖. Since ε‖y−
x‖ ≥ log2 ‖y− x‖ as soon as ‖y− x‖ is large, a union bound finishes the proof. �

4. APPROXIMATING CIRCUITS BY CLOSED CURVES

In this section we develop tools to describe the shape of large finite sets in the lattice using simple
curves in R2. This will then directly feed into our main results in Section 5.

4.1 Key propositions.

Recall the notion of a right-boundary circuit γ and the correspondence with outer boundary inter-
face ∂ as detailed in Proposition 2.3. By “rounding the corners” on edges on which the boundary
interface reflects, ∂ can be identified with a simple closed curve — i.e., a map from [0,1] to R2

which is injective on [0,1) and has equal values at 0 and 1. We will write

vol(γ) := V ∩ int(∂ ) (4.1)

to denote the set of points surrounded by this curve; cf Fig. 2. Note that γ ⊂ vol(γ) if and only if
(the interface ∂ associated with) a right-most circuit γ is oriented counterclockwise.

Our proofs require that we approximate vol(γ) by a set in R2 whose boundary is a rectifiable
simple closed curve λ :

Proposition 4.1 (Circuits to curves) Suppose p > pc(Z2). For each ε > 0 there is C > 0 such
that for all R > 1 the following holds with probability at least 1− e−C log2 R: For any right-most
circuit γ which is oriented counterclockwise and obeys

(1) γ is open,
(2) γ ⊆ [−R,R]2∩Z2,
(3) |γ| ≥ R1/5,
(4) |γ| ≤ |vol(γ)|2/3,

there is a simple closed curve λ such that
(1) dH

(
vol(γ), int(λ )

)
≤ 1+ ε

√
|vol(γ)|.

(2)
∣∣|vol(γ)|−Leb(int(λ ))

∣∣≤ ε
∣∣vol(γ)

∣∣.
(3) b(γ)≥ (1− ε)lenβp(λ ).

Note that, in (1) above, we have invoked the natural embedding vol(γ)⊂R2 to assign meaning
to dH((vol(γ), int(λ )). Our next claim tells how to go back from curves to circuits:

Proposition 4.2 (Curves to circuits) Let λ be any rectifiable simple closed curve in R2 such that
int(λ ) is convex and R,ε > 0. Writing λR := Rλ (as a map [0,1]→ R2) let AR,ε,λ denote the
event that there is a counterclockwise-oriented right-most circuit γ satisfying

(1) γ is open,
(2) dH

(
vol(γ), int(λR)

)
≤ εR,
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(3)
∣∣|vol(γ)|−Leb(int(λR))

∣∣≤ εR2,
(4) b(γ)≤ (1+ ε)lenβp(λR).

For each p > pc(Z2) and ε > 0 and λ as above, there is C > 0 such that

P
(
AR,ε,λ )≥ 1− e−C log2 R, R > 1. (4.2)

A natural method to go between paths on the lattice and continuous curves is by way of polyg-
onal approximations. These have been invoked already in various studies of two-dimensional
“Wulff construction” in statistical mechanics (Alexander-Chayes and Chayes [2], Dobrushin,
Kotecký, Shlosman [15], etc). However, the reliance on polygonal approximations is limited
only to the proofs of the above propositions.

4.2 Polygonal approximations.

Let λ be a rectifiable curve. For r > 0 we define its r-polygonal approximation Pr(λ ) inductively
as follows. Set t0 := 0, x0 := γ(t0) and, for k = 1,2, . . . until tk = 1 define

tk := inf
{

t ∈ (tk−1,1] : ‖λ (t)− xk−1‖> r
}
∧1,

xk := λ (tk).
(4.3)

Since λ is rectifiable, the process stops after a finite number of steps; i.e., there is N with

N ≤
⌈
len∞(λ )/r

⌉
< ∞ (4.4)

such that tN = 1 and xN = λ (1). We then set Pr(λ ) := poly(x0, . . . ,xN), i.e., Pr(λ ) is the
concatenation of the line segments poly(xi,xi+1), i = 0, . . . ,N−1.

A few remarks are in order. First notice that

‖xk− xk−1‖= r, k = 0, . . . ,N−1, and 0 < ‖xN− xN−1‖ ≤ r, (4.5)

and then, by definition of the length of a curve,

lenρ

(
Pr(λ )

)
≤ lenρ(λ ) (4.6)

for any norm ρ on R2. A slight complication is that Pr(λ ) may not be simple and so there could
be several bounded connected components of R2 \Pr(λ ). For a rectifiable closed curve λ in R2,
we thus introduce the notion of the hull of λ as follows: For x 6∈ λ let wλ (x) denote the winding
number of λ around x. Since λ is closed and rectifiable, wλ (x) ∈ Z and so we can set

hull(λ ) := λ ∪
{

x 6∈ λ : wλ (x) is odd
}
. (4.7)

It follows that hull(λ ) is closed, connected and bounded.

Lemma 4.3 Let λ be any rectifiable curve.
(1) For all r > 0 we have dH(hull(λ ), hull(Pr(λ )))≤ r.
(2) If λ is a closed curve, then for all r > 0 and some C independent of λ ,

Leb
(
hull(λ )4hull(Pr(λ )

)
≤Cr(len∞(λ )∨ r). (4.8)

Proof. Let λ [a,b] denote the image of [a,b] under λ . Both parts follow from the observation

poly(xk−1,xk), λ [tk−1, tk] ⊆ xk−1 +B∞(r), k = 1, . . . ,N. (4.9)
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This immediately gives (1); for (2) we notice that the symmetric difference is covered by the
union of sets xk +B∞(r), k = 1, . . . ,N. In light of (4.4), the bound (4.8) follows. �

As a next step, we will show that the non-simplicity of polygonal approximations can be readily
overcome by a perturbation argument.

Lemma 4.4 For any closed polygonal curve λ , any ε > 0 and any norm ρ on R2, there is a
simple closed polygonal curve λ ′ such that

(1) dH
(
hull(λ ), int(λ ′)

)
< ε ,

(2) Leb
(
hull(λ )4 int(λ ′)

)
< ε ,

(3) lenρ(λ ′)≤ lenρ(λ )+ ε .

Proof. The curve λ = poly(x0, . . . ,xn) is composed of linear segments poly(xi,xi+1) meeting at
vertices xi. By a limiting argument, we may assume that

(a) no two linear segments are parallel,
(b) each linear segment contains no other vertices than its endpoints,
(c) no more than two linear segments intersect at each point.

Let z be a self-intersection point of λ . Then there are two linear segments of λ that intersect at z
and, by (b), four components of R2 \λ that meet at z, two of which may be the same component.
A little thought then reveals that two of these components have winding number even and two
of them odd, with (necessarily) even components separated from each other by the odd ones and
vice versa.

We will now introduce another polygonal line λ ′ as follows. Let 0≤ i < j≤ n be such that the
line segments intersecting at z are exactly poly(xi,xi+1) and poly(x j,x j+1). Now pick a point z′

in the component of R2 \λ that is adjacent to segments poly(xi,z) and poly(x j,z) and let z′′ be a
similar point in the component adjacent to segments poly(z,xi+1) and poly(z,x j+1). Then set

λ
′ := poly(x0, . . . ,xi,z′,x j,x j−1, . . . ,xi+1,z′′,x j+1, . . . ,xn). (4.10)

Notice that the sequence of points xi+1, . . . ,x j is now run backwards; we have thus changed the
orientation of one cycle in λ .

For z′ and z′′ close enough to z, (a-c) above apply to λ ′ and λ ′ is thus a polygonal line with
n+2 vertices but one less intersection point than λ . Moreover, R2 \λ ′ has one fewer component
than R2 \λ as two components K1 and K2 of the R2 \λ — necessarily meeting at z with same
parity of the winding number — have “joined” to one, say K, of R2 \λ ′. Obviously, K1,K2 ⊆ K
and the closure of hull(λ )4hull(λ ′) equals the closure of K \(K1∪K2). Hence, given ε > 0 there
is δ > 0 such that if ‖z−z′‖,‖z−z′′‖< δ , then (1-3) hold. Proceeding similarly, we can gradually
eliminate all intersection points of λ in a finite number of steps and thus prove the result. �

Having ensured that the polygonal approximation of a right-most circuit will ultimately lead
to a simple curve, our next task will be to show that we can pass from a polygonal approximation
of a closed curve to a right-most circuit. As it turns out, we will only need to do this for curves
that arise as boundaries of convex sets. So it will be helpful to have:

Lemma 4.5 Let λ be a simple closed curve such that int(λ ) is convex. Then Pr(λ ) is simple
for any r which satisfies 0 < r < 1

2 diam∞(λ ).
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Proof. Assume 0 < r < 1
2 diam∞(λ ) and define Pr(λ ) = poly(x0, . . . ,xN) as above. It is easy to

check that N ≥ 3. Now consider a sequence of curves {λk : k = 0, . . . ,N} where λk is obtained by
concatenating poly(x0, . . . ,xk) with λ [tk,1]. Pick k ∈ {0, . . . ,N−1}. We claim that if λk is simple
with int(λk) convex, then the same holds for λk+1. Indeed, convexity of int(λk) implies

poly(xk,xk+1)∩λ
(
[tk, tk+1]c

)
= /0 (4.11)

because otherwise λ ((tk, tk+1)c) = poly(xk,xk+1) and thus N = 2, contradicting our choice of r.
But when (4.11) is in force, λk+1 is simple and int(λk+1) must be convex, as it is the intersection
of two convex sets: int(λk) and a closed half-plane whose boundary is the straight line containing
xk and xk+1. As λ0 := λ is simple with int(λ ) convex, the claim follows by induction. �

Having reduced the problem to λ given by a simple polygonal curve, we observe:

Lemma 4.6 Let λ := poly(x0, . . . ,xN) be a simple closed polygonal curve in R2 and for R > 0
denote λR := Rλ . There is a constant C = C(λ ) > 0 such that the following holds: If for some
δ > 0, R≥ 1, points x̃0, . . . , x̃N ∈ Z2 with x̃N = x̃0 and open paths γk ∈R(x̃k−1, x̃k),

dH
(
γk, poly(Rxk−1,Rxk)

)
< δR (4.12)

holds for each k = 1, . . . ,N, then there is also an open right-most circuit γ that obeys
(1) dH

(
vol(γ), int(λR)

)
< 1+CδR,

(2)
∣∣|vol(γ)|−Leb(int(λR))

∣∣< Cδ 2R2,
(3) b(γ)≤ ∑

N
k=1 b(γk)+2N.

Moreover, if λ is oriented counterclockwise, then so is the boundary interface associated with γ .

Proof. Let λ be as in the conditions of the lemma, set λk := poly(xk,xk+1) where k = 0, . . . ,N−1
and let ε := mink len∞(λk). For any such λ we may find δ > 0 small enough such that

(i)
(
λk +B∞(δ )

)
∩
(
λ j +B∞(δ )

)
= /0 if |k− j|> 1,

(ii)
(
λk +B∞(δ )

)
∩
(
λk+1 +B∞(δ )

)
⊆
(
xk+1 +B∞(ε/3)

)
for all k = 0, . . . ,N−1,

where all indices are modulo N. In this case, the complement of the set λ +B∞(δ ) consists of one
finite and one infinite open connected components whose boundaries are simple closed curves,
which we denote by λ− and λ+, respectively. Moreover, they satisfy

int(λ−)⊆ int(λ )⊆ int(λ+) and λ +B∞(δ ) = int(λ+)\ int(λ−) (4.13)

and
dH
(
int(λ−), int(λ )

)
≤ δ and dH

(
int(λ+), int(λ )

)
≤ δ . (4.14)

We may choose C = C(λ ) large enough such that conclusions (1-3) will be trivially satisfied
if δ is not small enough for (i) and (ii) to hold. Hence, we continue assuming that they do. Now
let γk for k = 1, . . . ,N be the right most open paths in the conditions of the lemma. We shall
construct γ as follows. First set γ ′ := (. . .((γ1 ∗ γ2) ∗ . . .) ∗ γN−1. This gives a right-most path
from x0 to xN−1 whose vertices we enumerate as γ ′ = (u0, . . . ,uM). To close the circuit we need
to carefully add the last path γN = (v0, . . . ,vL). To this end, we find the first vertex uk′ in γ ′ which
lies in RxN−1 +B∞(Rε/3)∩ γN and then the last occurrence vk of this vertex in γN . Then, we also
find the first vertex v j with j > k such that v j lies in (Rx0 +B∞(Rε/3))∩ γ ′ and similarly the last
occurrence u j′ of this vertex in γ ′. We thus set γ := (u j′ , . . . ,uk′ ,vk+1, . . . ,v j) and claim that it
satisfies conclusions (1-3) of the lemma.
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Indeed, the construction ensures that γ is a right-most circuit and, in view of condition (4.12),
that γ ⊆ λR + B∞(Rδ ). At the same time, from (i–ii) above it follows that γ passes through
Rxk +B∞(Rε/3) in the order of increasing k. This shows

int(Rλ
−)⊆ hull(γ)⊆ int(Rλ

+) . (4.15)

Combining this with (4.14) and the fact that dH
(
vol(γ), hull(γ)

)
≤ 1, conclusion (1) holds. More-

over, (4.15) together with (4.13) and
∣∣|vol(γ)|−hull(γ)

∣∣< C|γ| imply∣∣|vol(γ)|−Leb(int(λR))
∣∣≤CLeb

(
λR +B∞(Rδ )

)
≤C′R2

δ
2len∞(λ )≤C′′R2

δ
2 . (4.16)

This proves conclusion (2). Finally applying Lemma 2.6 for b(γ ′) and a similar argument as in
its proof for b(γ) yields conclusion (3). �

4.3 Proof of approximation claims.

We are now ready to prove Propositions 4.1 and 4.2.
Proof of Proposition 4.1. Let ε > 0 and, given R large enough, set r := dR1/100e. Let AR,ε be the
set of configurations ω such that

x,y ∈ B∞(R)∩Z2, ‖y− x‖ ≥ r =⇒ b
(
[x], [y]

)
≥ (1− ε/2)βp(y− x). (4.17)

and, for any simple path γ on Z2,

γ ⊆ B∞(R)∩Z2, |γ| ≥ R1/5, γ is open =⇒ γ ⊆ C∞. (4.18)

Using Theorem 3.1 for (4.17), and the exponential bound for the probability that x,y are connected
but not part of C∞ for (4.18), we find that for each p > pc(Zd) there is C > 0 such that

P(AR,ε)≥ 1− e−C log2 R, R > 1. (4.19)

Assuming that R is large enough, we will now prove that the claim in proposition holds for
all ω ∈AR,ε .

Let γ := (z0, . . . ,zM) be a right-most circuit satisfying the premises (1-4) of the claim. Note
that, by (4.18), γ ⊂ C∞. We may identify this circuit with a curve Γ in R2 by following (at linear
speed) the edges of the path γ . This permits us to consider the r-polygonal approximation, Pr(Γ),
of Γ “started” from z0. The curve Pr(Γ) will “almost” satisfy conclusions (1-3) of the lemma,
except that it may not be simple. We shall therefore first show that conclusions (1-3) hold for
Pr(Γ) with hull(Pr(Γ)) in place of int(λ ) and then use Lemma 4.4 to extract a simple curve λ ′

out of Pr(Γ) for which (1-3) will hold verbatim.
The premises (3) and (4) imply that |vol(γ)| ≥ R3/10. Lemma 4.3(1) and r� εR1/10 then show

dH
(
vol(γ),hull(Pr(Γ))

)
≤ 1+dH

(
hull(Γ),hull(Pr(Γ))

)
≤ 1+ r ≤ ε

√
|vol(γ)|,

(4.20)

i.e., conclusion (1) holds. Using also Lemma 2.5, we similarly get∣∣|vol(γ)|−Leb
(
hull(Pr(Γ))

)∣∣≤ ∣∣Leb(hull(Γ))−Leb
(
hull(Pr(Γ))

)∣∣+ |γ|
≤Cr|γ| ≤ (1+ ε)|vol(γ)|,

(4.21)
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i.e., (2) holds as well. For (3), notice that since r is integer, it follows from the construction
that Pr(Γ) = poly(zl0 , . . . ,zlN ) for some integers 0 =: `0 < `1 < · · ·< `N ≤M. We now use that
zi ∈ C∞ for all i and also ‖zlk − zlk−1‖= r for k = 1, . . . ,N−1 and (4.17) to get

b(γ)≥
N−1

∑
k=1

b
(
γ([lk−1, lk])

)
≥

N−1

∑
k=1

b(zlk−1 ,zlk)

≥ (1− ε/2)
N−1

∑
k=1

βp(zlk − zlk−1)

= (1− ε/2)
[
lenβp(Pr(Γ))−βp(zlN − zlN−1)

]
.

(4.22)

The bounds lenβp(Pr(Γ)) ≥C′diam(γ) ≥C′R
1
10 and βp(zlN − zlN−1) ≤C′′r imply that also con-

clusion (3) holds.
To complete the proof, we now use Lemma 4.4 with ρ := βp and ε small enough to extract a

simple closed curve λ ′. The triangle inequality then ensures that conclusions (1-3) hold for λ ′

with 2ε instead of ε . �

Proof of Proposition 4.2. Let λ be a simple curve with a convex interior and ε > 0 be given. We
may assume that λ is oriented counterclockwise. By Lemma 4.3 and Lemma 4.5, for r > 0 small
enough the polygonal approximation Pr(λ ) = poly(x0, . . . ,xN) of λ is simple and satisfies

dH
(
int(λ ), int(Pr(λ ))

)
≤ ε (4.23)

and ∣∣Leb(int(λ ))−Leb(int(Pr(λ )))
∣∣≤ ε. (4.24)

Thanks to Proposition 3.2(2) and Theorem 3.1, once R is sufficiently large then the following
holds with probability at least 1− e−C log2 R: For each k = 1, . . . ,N there exists an open path
γk ∈R([Rxk−1], [Rxk]) such that

b(γk)≤ (1+ ε)Rβp(xk− xk−1) (4.25)

and
dH
(
γk,poly(Rxk−1,Rxk)

)
≤ εR. (4.26)

Applying Lemma 4.6, we extract a right-most open circuit γ satisfying conclusions (1-3) of
Lemma 4.6 with δ := ε . In conjunction with (4.23–4.24), this readily yields the conclusions (1-3)
of the proposition but for a re-scaling of ε by a constant that might depend on λ .

To get also conclusion (4), we note that, thanks to (4.25) and Lemma 4.6(3), for R large enough,
the path γ obeys

b(γ) ≤
N

∑
k=1

b(γk)+2N ≤ (1+ ε)R
N

∑
k=1

βp(xk− xk−1)+2N

≤ (1+2ε)R lenβp

(
Pr(λ )

)
≤ (1+2ε)R lenβp(λ ).

(4.27)

Here the last two inequalities follow by the definition of the length of a curve and the fact
that Pr(λ ) is a polygonal approximation of λ . Resetting ε the proof is done. �
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5. PROOF OF MAIN THEOREMS

In this section we will ultimately prove the main theorems of this work. However, before we get
down to actual proofs we need some preliminary considerations.

5.1 Symmetries of the Wulff shape.

As our first preliminary step, we need to check a few basic properties of the Wulff shape. We
already observed that that βp is symmetric with respect to reflections through the coordinate axes
and diagonals in R2. As a consequence of these symmetries, we can derive:

Lemma 5.1 Let p > pc(Z2) and let Wp be as in (1.11). Then
(1) Wp is a compact convex set, contains the origin and has a non-empty interior.
(2) Wp is symmetric with respect to reflections through coordinate axes of R2 and the diagonal

line {(x1,x2) ∈ R2 : x1 = x2}.
(3) Wp is the unit ball in the dual norm β ′p(y) := sup{x · y : x ∈ R2, βp(x)≤ 1}.
(4) There is r with 1/2≤ r ≤ 1/

√
2 such that the normalized Wulff shape Ŵp obeys

B1(r)⊆ Ŵp ⊆ B∞(r). (5.1)

Proof. By definition, Wp is closed, convex and contains the origin. The boundedness and non-
triviality of the interior follows from the uniform boundedness of n̂ 7→ βp(n̂) away from 0 and ∞

for n̂ on the unit circle. The symmetries of Wp are inherited from those of βp, as shown in
Lemma 2.2. This proves parts (1) and (2); for (3) we first check that β ′p is a norm and then note
that {x : β ′p(x)≤ 1} is just a rewrite of the definition of Wp.

For part (4), let r := max{x1 ≥ 0: (x1,0) ∈ Ŵp} and note that, by the symmetries in part (2), in
addition to (+r,0) ∈ Ŵp also (−r,0),(0,+r),(0,−r) ∈ Ŵp. Then Ŵp ⊇ B1(r) by convexity. We
claim that also Ŵp ⊆ B∞(r). For if not, then for some x := (x1,x2) with x1 > r we would have
n̂ · x≤ βp for all n̂ on the unit circle. The symmetries of βp would then imply

n̂ · (2x1,0) = n̂ ·
(
(x1,x2)+(x1,−x2)

)
≤ 2βp(n̂), ‖n̂‖2 = 1, (5.2)

and so (x1,0)∈Ŵp, in contradiction with the definition of r. As 2r2 = Leb(B1(r))≤Leb(Ŵp) = 1,
we must have r ≤ 1/

√
2. Also r ≥ 1/2 as Leb(B∞(1/2)) = 1. �

5.2 Percolation preliminaries.

Our next set of preliminary considerations deals with percolation. The following is a slightly
stronger version of Proposition 1.2 of Benjamini and Mossel [5].

Lemma 5.2 For each p > pc(Z2) there is C > 0 such that for all n≥ 1, with probability at least
1− e−C log2 n, for any n′ ≤ n− log2 n,

C∞∩B∞(n′) = Cn∩B∞(n′). (5.3)

Proof. The statement in [5] claims that (5.3) holds with probability tending to 1 as n→ ∞. How-
ever, a careful look at the proof reveals that the probability of the complement of the event (5.3)
is exponentially small in n−n′. A direct duality argument is also possible. �
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Our next lemma provides uniform bounds on the density of the infinite cluster inside suffi-
ciently large subsets of the lattice.

Lemma 5.3 Let p > pc(Z2). For each ε > 0, there is C > 0 such that for all R > 1 with
probability at least 1− e−C log2 R, if γ is any right-most circuit satisfying

(1) γ ⊆ B∞(R),
(2) |vol(γ)| ≥ log20 R,
(3) |γ| ≤ |vol(γ)|2/3,

then ∣∣∣∣ |vol(γ)∩C∞|
|vol(γ)|

−θ(p)
∣∣∣∣< ε. (5.4)

Proof. Fix ε > 0, let R > 1 and set r := blog2 Rc. For u ∈ Z2 let Bu :=
(
(2r)u +[−r,r)2

)
∩Z2.

Note that |Bu| = 4r2 ≤ C log4 R and that {Bu : u ∈ Z2} form a partition of Z2. By Durrett and
Schonmann [16, Theorems 2 and 3] and a simple union bound, there is C > 0 such that

AR :=

{
u ∈ Z2, Bu∩B∞(R) 6= /0 ⇒

∣∣∣∣∣
∣∣C∞ ∩ Bu

∣∣
|Bu|

−θ(p)

∣∣∣∣∣< ε

}
(5.5)

occurs with probability P(AR)≥ 1− e−C log2 R for some C > 0.
Now suppose that AR occurs and let γ be a circuit satisfying conditions (1–3). Abbreviate

A := vol(γ), set Ar to the union of all boxes Bu for which Bu ⊆ A and let Ar denote the union of all
boxes Bu for which A∩Bu 6= /0. Clearly, Ar ⊆ A⊆ Ar. At the same time, Ar \Ar is the collection
of all boxes Bu that have at least one vertex in A and at least one vertex outisde A. Such boxes
must include a vertex of γ and so there are at most |γ|< |A|2/3 of them. As condition (2) implies
|A|2/3|Bu| � |A| once R sufficiently large, we have

|Ar| ≤ |A|+ |A|2/3|Bu| ≤ |A|(1+ ε) and |Ar| ≥ |A|− |A|2/3|Bu| ≥ |A|(1− ε). (5.6)

Hence, on the event AR,

|A∩C∞| ≤ |Ar ∩C∞| ≤ (θp + ε)|Ar| ≤ θp|A|(1+Cε) (5.7)

and
|A∩C∞| ≥ |Ar ∩C∞| ≥ (θp− ε)|Ar| ≥ θp|A|(1−Cε) (5.8)

are in force. Writing ε for Cε , we get (5.4). �

5.3 Key propositions.

We are now ready start addressing the proofs of Theorems 1.2 and 1.3. The key arguments for
both of these are the same and so we encapsulate them into propositions. The first of these will
lead to lower bounds on the isoperimetric profile and the Cheeger constant:

Proposition 5.4 (Lower bound) Let p > pc(Z2) and pick ζ > 2/5. For each ε > 0 there is C > 0
such that for all n > 1 the event{

U ⊂ C∞∩B∞(n), connected, |U | ≥ nζ ⇒
∣∣∂C∞U |√
|U |
≥ (1− ε)θ−1/2

p ϕp

}
(5.9)
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occurs with probability at least 1− e−C log2 n.

Proof. Let ε > 0, n > 1 and let Un be the collection of all connected subsets of C∞ ∩B∞(n)
with |U | ≥ nζ . We will occasionally regard U ∈Un as a graph GU obtained by restricting C∞ to
vertices in U . The proof comes in a sequence of six steps.
STEP 1 (Identifying a right-boundary circuit): The graph GU is a connected subgraph of the
planar graph Z2 and so there is a unique boundary interface ∂ that separates GU from the unique
infinite connected component of Z2\GU . By Proposition 2.3, this boundary interface then defines
a unique right-boundary path γ ⊆U , oriented counterclockwise, such that

U ⊆ vol(γ) and b(γ)≤ |∂C∞U |. (5.10)

STEP 2 (A lower bound on |γ|): Clearly, |γ| ≥ C|∂ | for some C > 0 and |∂ | is proportional to
the length of the simple closed curve in R2 that ∂ can be identified with. Since |U | ≤ |vol(γ)| ≤
C Leb(int(∂ )), the isoperimetric inequality in R2 tells us

|γ| ≥C|∂ | ≥C′
∣∣Leb(int(∂ ))

∣∣1/2 ≥C′′
√
|U |. (5.11)

Using that |U | ≥ nζ we have |γ| ≥ n1/5 once n is large enough.

STEP 3 (An upper bound on |γ|): Once we know |γ| ≥ n1/5 � log2 n, Proposition 2.9 implies
that, for some α > 0, on an event with probability at least 1− e−C′ log2 n,

b(γ) > α|γ|, U ∈Un. (5.12)

Consequently, if we have |γ| ≥C
√
|U |, then (5.10) and (5.12) yield

|∂C∞U | ≥ αC
√
|U |. (5.13)

The conclusion in (5.9) then follows once C is so large that αC ≥ θ
−1/2
p ϕp. We may thus assume

without loss that |γ| ≤C
√
|U | for some C > 0. Let U ′

n be the subset of Un where this holds.
STEP 4 (Approximation of γ by a curve): Consider the event that for every right-most circuit γ

arising from a U ∈U ′
n , there is a simple closed curve λ satisfying

(1) dH
(
vol(γ), int(λ )

)
≤ 1+ ε

√
|vol(γ)|.

(2)
∣∣|vol(γ)|−Leb(int(λ ))

∣∣≤ ε
∣∣vol(γ)

∣∣.
(3) b(γ)≥ (1− ε)lenβp(λ ).

Since γ ⊆ B∞(n), |γ| ≥ n1/5 and |vol(γ)|2/3 ≥ |U |2/3 ≥C
√
|U | ≥ |γ|, Proposition 4.1 with R := n

and ε as above implies that this event occurs with probability at least 1− e−C log2 n.
STEP 5 (Comparing volumes): Lemma 5.3 with R := 2n and the aforementioned bounds |γ| ≥
log20 n and |γ| ≤ |vol(γ)|2/3 tell us that, on an event of probability at least 1− e−C log2 n,

|U | ≤
∣∣C∞∩vol(γ)

∣∣≤ (1+ ε)θp
∣∣vol(γ)

∣∣ (5.14)

for any set U ∈U ′
n .

STEP 6 (Wrapping up): The definition of ϕp yields

lenβp(λ )≥ ϕp
√

Leb(int(λ )). (5.15)
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On the event where the conclusions of STEPS 3, 4, and 5 apply — which has probability at least
1− e−C log2 n — we then have

|∂C∞U | ≥ b(γ)≥ (1− ε)lenβp(λ )≥ (1− ε)ϕp
√

Leb(int(λ ))

≥ (1− ε)3/2
ϕp
√
|vol(γ)| ≥ (1− ε)3/2

√
1+ ε

ϕp θ
−1/2
p

√
|U |

(5.16)

for all U ∈U ′
n . A simple adjustment of ε then yields the desired claim. �

Next we will formulate a proposition that will ultimately yield desired upper bounds on the
isoperimetric characteristics in our main theorems.

Proposition 5.5 (Upper bound) Let p > pc(Z2) and, given ε > 0 and n > 1, let A ′
n be the event

that there exists a set U satisfying:

C∞∩B1(n/4)⊆U ⊆ C∞∩B∞(n), connected, (5.17)

1
2
(1−
√

ε)
∣∣C∞∩B∞(n)

∣∣≤ |U | ≤ 1
2

∣∣C∞∩B∞(n)
∣∣ (5.18)

and
|∂C∞U |√
|U |
≤ (1+ ε)θ−1/2

p ϕp. (5.19)

Then for each ε > 0 there is C > 0 such that

P(A ′
n)≥ 1− e−C log2 n, n > 1. (5.20)

Proof. Without loss of generality, it suffices to prove this for ε sufficiently small and n sufficiently
large. We again proceed along a sequence of steps.
STEP 1 (Finding a candidate for U): Let γ̂p be the Wulff curve given by (1.15). By definition

Leb(int(γ̂p)) = 1 and lenβp(γ̂p) = ϕp. (5.21)

From Lemma 5.1 we know that int(γ̂p) is convex. Thus, we may use Proposition 4.2 with ε as
above, λ := γ̂p and

R :=
√

2(1− ε
2/3)n, (5.22)

to conclude that with probability at least 1− e−C log2 n there is a right-most circuit γ oriented
counterclockwise and satisfying

(1) γ is open,
(2) dH

(
vol(γ),RŴp

)
≤ εR,

(3)
∣∣|vol(γ)|−R2

∣∣≤ εR2,
(4) b(γ)≤ (1+ ε)Rϕp.

We now set U := vol(γ)∩C∞ and prove that U obeys (5.17–5.19) for ε small enough.
STEP 2 (Trivial conditions): First of all, U is connected because γ ⊂ U and any vertex in U
is connected by an open path (i.e., its path to infinity in C∞) to γ , which is open as well. Also
C∞∩B1(n/4) ⊆U for small ε thanks to conclusion (2) and Lemma 5.1(4). As (1 + ε)R/

√
2 ≤ n

when ε is small enough, Lemma 5.1(4) also shows

vol(γ)⊆ (1+Cε)RŴp ⊆ B∞

(
(1+Cε)R/

√
2
)
⊆ B∞(n). (5.23)
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In particular, U ⊆ C∞∩B∞(n) and so (5.17) holds.
STEP 3 (Comparison of volumes): We proceed to check (5.18). Since |γ| is of order n and
|vol(γ)| is of order n2, Lemma 5.3 is at our disposal once n is large enough. This yields∣∣|U |−θp|vol(γ)|

∣∣≤ ε
∣∣vol(γ)

∣∣ (5.24)

on an event of probability at least 1− e−C log2 n. On the same event, we also have

(1− ε)θp ≤
|C∞∩B∞(n)|
|B∞(n)|

≤ (1+ ε)θp. (5.25)

Thanks to property (3) above, from (5.24–5.25) and (5.22) we get

|U | ≤ (θp + ε)
∣∣vol(γ)

∣∣≤ (θp + ε)(1+ ε)R2

≤
θp + ε

θp

1+ ε

1− ε
(1− ε

2/3)
2n2

|B∞(n)|
∣∣C∞∩B∞(n)

∣∣. (5.26)

For ε small and n large, this yields |U | ≤ 1
2 |C

∞∩B∞(n)|. Similarly, we derive

|U | ≥ (θp− ε)
∣∣vol(γ)

∣∣≥ (θp− ε)(1− ε)R2

≥
θp− ε

θp

1− ε

1+ ε
(1− ε

2/3)2 2n2

|B∞(n)|
∣∣C∞∩B∞(n)

∣∣ (5.27)

and so, for ε small and n large, |U | ≥ 1
2(1−

√
ε)2|C∞∩B∞(n)|.

STEP 4 (Surface-to-volume ratio): As to (5.19), since U includes all vertices in C∞ which lie in
vol(γ), by Proposition 2.3 every edge in ∂C∞U must also be in ∂ +γ (in some orientation). Hence,
using also conclusion (4) above,

|∂C∞U | ≤ b(γ)≤ (1+ ε)Rϕp. (5.28)

But |U | ≥ (θp− ε)(1− ε)R2 by (5.27) and so |∂C∞U | ≤ (1+Cε)θ−1/2
p ϕp

√
|U | for some C > 0.

Adjusting ε , the inequality (5.19) follows. �

5.4 Proofs of limit values and shapes.

We are now ready to establish the almost sure limits of the (properly scaled) isoperimetric profile
and Cheeger constant. We will do this by proving (matching) upper and lower bounds. Below,
we will use the notation ΦC∞(n) := ΦC∞,0(n) and P0(−) := P(−|0 ∈ C∞). Note that P0� P.
Proof of Theorems 1.2–1.3, lower bounds. Fix ε > 0, pick ζ ∈ (2/5, 1/2) and let An denote the
event in (5.9). We claim that there is (a random) n0 with P(n0 < ∞) = 1 such that An occurs,
(5.25) holds and Cn ⊂ C∞ is valid for all n ≥ n0. This follows in light of the summability of
P(A c

n ) on n and the Borel-Cantelli lemma, the Spatial Ergodic Theorem (or Lemma 5.3), and
Lemma 5.2, respectively.

As a first step we note that we may restrict attention to sets U with |U | ≥ nζ . Indeed, since C∞

is infinite and connected and Cn ⊂ C∞, we have |∂C∞U | ≥ 1. So if |U |< nζ , then

|∂C∞U |
|U |

≥ n−ζ � n−1/2 (5.29)
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and so U cannot contribute to ΦC∞(n) and Φ̃Cn provided the limits take the anticipated values.
(Alternatively, we can also invoke (1.4).)

Since any finite connected U ⊂ C∞ with 0 ∈U and |U | ≤ n will obey U ⊆ C∞ ∩B∞(n), the
inequality in An applies to all minimizers of ΦC∞(n) (once n� 1). To get a similar conclusion
for minimizers U of Φ̃Cn , we note that, without loss of generality, we can assume that U is
connected. Indeed, if it is not, we can replace it by one if its connected components U ′ which is
also a minimizer and satisfies (5.29) and U ′ ⊂ C∞∩B∞(n) by definition.

We can thus take a connected U ⊂ C∞ ∩B∞(n) with |U | ≥ nζ that minimizes either ΦC∞(n)
or Φ̃Cn and use it to derive a lower bound on these quantities. As An occurs,

|∂C∞U |
|U |

=
1√
|U |
|∂C∞U |√
|U |
≥ 1√

|U |
(1− ε)θ−1/2

p ϕp. (5.30)

For the isoperimetric profile, |U | ≤ n then implies

liminf
n→∞

n1/2
ΦC∞(n)≥ (1− ε)θ−1/2

p ϕp, P0-a.s., (5.31)

while for the Cheeger constant we instead use |U | ≤ 1
2 |C

∞∩B∞(n)| and (5.25) to get

liminf
n→∞

nΦ̃Cn ≥ 1− ε√
1+ ε

1√
2

θ
−1
p ϕp, P-a.s.. (5.32)

Letting ε ↓ 0, the almost-sure lower bounds in (1.6) and (1.8) are proved. �

Proof of Theorems 1.2–1.3, upper bounds. Fix ε > 0 and let A ′
n be the event in Proposition 5.5.

Using Borel-Cantelli, there is n0 such that A ′
n occurs and (5.25) holds for all n≥ n0 almost surely

with respect to both P and P0
p. Using Lemma 5.2, we may also assume that for n≥ n0, (5.3) holds

P-a.s.
Suppose n≥ n0 and let U be a set satisfying the properties defining A ′

n . From (5.18) and (5.25)
(and ε < 1) we get

2(1−
√

ε)2
θpn2 ≤ |U | ≤ 2(1+ ε)θpn2 (5.33)

whereby (5.19) implies

|∂C∞U |
|U |

=
1√
|U |
|∂C∞U |√
|U |
≤ 1√

|U |
(1+ ε)θ−1/2

p ϕp ≤
1
n

1√
2

1+ ε

1−
√

ε
θ
−1
p ϕp. (5.34)

In light of (5.3) we have U ⊂ Cm and |U | ≤ 1
2 |C

m| for any m≥ n+ log2 n. It follows that

limsup
n→∞

nΦ̃Cn ≤ 1√
2

1+ ε

1−
√

ε
θ
−1
p ϕp, P-a.s. (5.35)

Similarly, since (5.17) guarantees that on the event {0 ∈C∞} the origin will be included in U and
since it is also connected, we can use it to bound ΦC∞(r) via (5.34) whenever r is between the
values of the right-hand side of (5.33) evaluated for n and n+1. This yields

limsup
r→∞

r1/2
ΦC∞(r)≤ (1+ ε)2

1−
√

ε
θ
−1/2
p ϕp, P0-a.s. (5.36)

Taking ε ↓ 0, the upper bounds in (1.6) and (1.8) hold. �
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Proof of Theorem 1.5. The characterization of the limit value was used to establish Theorems 1.2–
1.3. The symmetries of the norm have been shown in Lemma 2.2. �

Moving over to limit shapes, we first note a simple corollary of the preceding proofs. Recall
that UC∞(n), UCn are the set of minimizers of ΦC∞(n), resp. Φ̃Cn .

Corollary 5.6 (Tightness of used volume) Let p > pc(Zd). For each δ > 0 there is n0 = n0(δ )
with P(n0 < ∞) = 1 such that the following holds for all n≥ n0:

inf
U∈ÛC∞ (n)

|U |
n
≥ (1−δ ) (5.37)

and

min
U∈ÛCn

|U |
|B∞(n)|

≥ 1
2

θp(1−δ ) (5.38)

Moreover, each U ∈ ÛC∞(n) and U ∈ ÛCn is connected and

|∂C∞U |√
|U |
≤ (1+δ )θ−1/2

p ϕp . (5.39)

Proof. Suppose the event in (5.9) occurs for n ≥ n0. If, for arbitrarily large n’s, a connected
set U 3 0 satisfies |U | < n(1− δ ), then (5.29–5.30) with ε such that

√
1−δ ≤ 1− ε , show that

|∂C∞U |/|U | exceeds the established a.s. limit value of n1/2ΦC∞(n). So U cannot be a minimizer
of ΦC∞(n) for n sufficiently large. The same argument applies to connected minimizers U ∈ ÛCn .
However, by (5.25), |U | ≤ 1

2(1 + δ )θp|B∞(n)| for all minimizers when n ≥ n0 and so (for δ

small) U must be connected.
To see that (5.39) holds for any minimizer once n is large enough, note that the opposite

inequality would imply, using the first part of (5.30), that the already established limit values in
(1.6) and (1.8) are larger by a factor of at least (1+δ ) than what they should be. �

Proof of Theorems 1.6–1.7. The limits (1.19) and (1.21) are now a direct consequence of Corol-
lary 5.6, the natural constraints on the minimizers and also (5.25). Let ε > 0 be arbitrarily small
and suppose that n is large enough such that the event in (5.9) for some ζ ∈ (2

5 , 1
2), the conclu-

sions of Corollary 5.6 with δ := ε and Lemma 5.3 with R = n hold for such ε . Pick U to be any
minimizer of either of the two problems. Setting

W̃n :=

{
θ
−1/2
p n1/2Ŵp, for Theorem 1.6,
√

2nŴp, for Theorem 1.7,
(5.40)

it will be enough to show that

dH(U,ξ +W̃n)≤C
√

Leb(W̃n)ε (5.41)

for some ξ ∈ R2 and C = C(p) > 0
Consider the right-boundary circuit γ ⊆U as in STEP 1 of the proof of Proposition 5.4. By the

inequality (5.39),

b(γ)≤ |∂C∞U | ≤ |U |1/2(1+ ε)θ−1/2
p ϕp. (5.42)
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Proposition 4.1 implies that there is a simple closed curve λ approximating γ so that properties
(1-3) in STEP 4 of the proof of Proposition 5.4 hold. Thanks to (5.25) and |vol(γ)| � 1 is large,

|U | ≤ (1+ ε)θp
∣∣vol(γ)

∣∣≤ 1+ ε

1− ε
θp Leb(int(λ )). (5.43)

Since also by property (3) in STEP 4 of the above proof

b(γ)≥ (1− ε)lenβp(λ ) (5.44)

the scaled version λ̂ of λ normalized so that Leb(int(λ̂ )) = 1 satisfies

lenβp(λ̂ )≤ (1+ ε)3/2

(1− ε)3/2 ϕp, (5.45)

i.e., λ̂ is a near-minimizer of the Wulff variational problem. The generalized Bonnesen inequality
(1.17) then gives

dH(int(λ̂ ), ξ
′+Ŵp)≤Cε, (5.46)

for some ξ ′ ∈ R2 and C > 0.
To get from this a bound on the distance between the Wulff shape and U , we use the triangle

inequality. Setting ξ :=
√

Leb(int(λ ))ξ ′, the left-hand side of (5.41) is bounded above by

dH
(
U,vol(γ)

)
+ dH

(
vol(γ), int(λ )

)
+
√

Leb(int(λ )) dH
(
int(λ̂ ),ξ ′+Ŵp

)
+ dH

(
ξ +

√
Leb(int(λ ))Ŵp,ξ +W̃n

)
.

(5.47)

We shall show that each term is bounded above by Cε

√
Leb(W̃n) where C > 0 does not depend

on n, ε or U . This will validate (5.41) as needed.
First, notice that (5.43) gives a lower bound on Leb(int(λ )). To get the opposite bound, we

use the definition of ϕp together with (5.44) and (5.42)

Leb(int(λ ))≤
len2

βp
(λ )

ϕ2
p
≤ |U |(1+ ε)2

(1− ε)2 θ
−1
p . (5.48)

The restriction on the size of U and (5.25) imply that

|U | ≤ (1+ ε)θpLeb(W̃n) (5.49)

Combining this with (5.46), (5.48) and STEP 4 of the proof of Proposition 5.4, the two middle

terms in (5.47) are bounded above by Cε

√
Leb(W̃n).

As for the last term in (5.47), it is bounded by∣∣∣√Leb(int(λ ))−
√

Leb(W̃n)
∣∣∣diam

(
Ŵp
)
. (5.50)

In order to estimate this difference we use the upper and lower bounds on Leb(int(λ )) in (5.43)
and (5.48) in conjunction with the upper and lower bounds on |U | given by (5.49) and Corol-
lary 5.6. This yields again the bound CεLeb(W̃n) for (5.50).

Finally, let r := dH(U,vol(γ)). As U ⊆ vol(γ), there must be an x ∈ vol(γ) such that the
box x+B∞(r) has no intersection with U . But once r ≥ log10 n, Lemma 5.3 implies that

|U | ≤ (θp + ε)
∣∣vol(γ)

∣∣− (θp− ε)
∣∣B∞(r)

∣∣ (5.51)
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Plugging this into (5.42) instead of (5.43) and applying lenβp(λ̂ ) ≥ ϕp yields |B∞(r)| ≤ Cε|U |.
In light of (5.49), this is only possible if r ≤CεLeb(W̃n). �
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temperature. Commun. Math. Phys. 199, no. 1, 117–167.

[23] H. Kesten (1980), The critical probability of bond percolation on the square lattice equals 1/2. Com-
mun. Math. Phys. 74, no. 1, 41-59.

[24] H. Kesten (1986). Aspects of first passage percolation. École d’été de probabilités de Saint-Flour,
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