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Abstract. We study a model of “organized” criticality, where a single avalanche propagates
through ana priori static (i.e., organized) sandpile configuration. The latter is chosen ac-
cording to an i.i.d. distribution from a Borel probability measpren [0, 1]. The avalanche
dynamics is driven by a standard toppling rule, however, we simplify the geometry by plac-
ing the problem on a directed, rooted tree. As our main result, we characterize avaiieh
critical in the sense that they do not admit an infinite avalanche but exhibit a power-law de-
cay of avalanche sizes. Our analysis reveals close connections to directed site-percolation,
both in the characterization of criticality and in the values of the critical exponents.
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1. Introduction
1.1. Motivation

Since its discovery by Bak, Tang and Wisenfeld [1,2], self-organized criticality
(SOC) has received massive attention in the physics literature. Variants of the orig-
inal sandpile model of [1] were studied and some of them even “exactly” solved
(see [4,5,10,11] or [7] for a recent review of the subject). However, despite great
efforts and literally thousands of published papers, the present mathematical un-
derstanding of SOC lags far behind the bold claims made by physicists. Much of
that failure can be attributed to the fact that the models used to demonstrate SOC
are difficult to formulate precisely and/or too difficult to study using the current
techniques of probability theory and mathematical physics. From the perspective
of the latter fields, the situation seems ripe for considering models which con-
cern at least some aspects of SOC, provided there is a decent prospect of a self-
contained rigorous analysis.

The general idea behind SOC models is very appealing. Consider for instance
Zhang’s sandpile model [12] di?, where each site has an energy variable which
evolves in discrete time-steps according to a simple “toppling” rule: If a variable
exceeds a threshold value, the excess is distributed equally among the neighbors.
The neighboring sites may thus turn supercritical and the process continues until
the excess is “thrown overboard” at the system boundary. What makes this dy-
namical rule intriguing is that, if the toppling is initiated from a “highly excited”
state, then the terminal state (i.e., the state where the toppling stops) tise
most stable state, but one of maewst-stablestable states. Moreover, the latter
state is critical in the sense that further insertion of a small excess typically leads
to further large-scale events. Using the sandpile analogy, such events are referred
to asavalanches

In this paper, we study the scaling properties of a single avalanche caused by
an overflow at some site of a critical (i.e., least-stable) state. However, as indi-
cated above, the full problem is way too hard and we have to resort to simpli-
fications. Our simplifications are twofold: First, we treat the energy variables of
the critical state as independent and, second, we consider the model on a directed,
rooted tree rather thad?. The first assumption is fairly reasonable, at least on
a coarse-grained scale, because numerical results [6] suggest a rather fast decay
of spatial correlations in the critical states. The second assumption will allow us
to treat the correlations between different branches of the avalanche as condition-
ally independent, which will greatly facilitate the analysis. Finally, the reduced
geometry allows for the existence of a natural monotonicity not apparent in the
full-fledged model.

While placing the model on a tree simplifies the underlying geometry, some
complexity is retained due to the generality of the single-site energy variable dis-
tribution. In fact, the set of underlying distributions plays the role of a parameter
space in our case. As our main result, we characterize the subspace of distribu-
tions for which the configurations of energy variables have exactly the behavior
expected from the SOC statew infinite avalanchebsut apower-law decayf
avalanche sizes. As it turns out, there is a close connection to site-percolation on
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the underlying graph, both in the characterization of criticality and in the values of
the critical exponents. However, the significance of this connection for the general
SOC models has not yet been clarified.

1.2. The model

In order to precisely define our single-avalanche model, we need to introduce some
notation. Letb > 1 be an integer and 18, be ab-nary rooted tree, with the root
vertex denoted byw. We use|s| = k to denote that € Ty, is on thek-th layer.
When |o| = k, we represent as ak-component object. Each component is an
integer in{1, ..., b}; hence the site label can be used to trace the pathdrbatk

to the root. Ifg is an¢-th level site with¢ > 0, we letm(s) denote the “mother-
site.” Explicitly, if o = (o1, . . ., o¢), thenm(e) = (01, ..., or—1). The edges ofy

are the usual directed edgfi’, o) € Tp x Tp: ¢ = m(0)}.

Let M be the space of all probability measures on the Bexagebra of [0 1].
Fixap e M and letP, = p™. LetE, denote the expectation with respecttp
The dynamical rule driving the evolution is defined as follows: Xet (X5)seT,
be the collection of i.i.d. random variables with joint probability distributin
and leto € (0, co). The process generates the sequence

X (t) = (xf,v)(t))o_e%, t=0,1,..., (1.1)
obtained from the initial condition
X ifo=0
X0 =172+ ho=2 (1.2)
Xe, otherwise,
by successive applications of the deterministic (Markov) update rule
X + xS, if Xy () > 1,
X0t +1) = {o, it X(t) > 1, (1.3)
X (t), otherwise.

Note that, ifX? (t+ 1) = X&) (t) for all ¢ € Tp, thenX”) (t) < 1 and the process
has effectivelystopped(However, we Ieixf,“)(t) be defined by (1.3) for atl > 0.)

Here is an informal description of the above process: Starting at the root we
first check whetheK & + v > 1 or not. If not, the process stops but if so, then this
value is distributed evenly among the “daughter” cells, which have their values
updated ton,“)(l) = X + %(Xg +0). The valuexg)(l) is set to zero and we
say that the root has “avalanched.” If none of the updated “daughter” values exceed
one, the process terminates; however, if there is any first-tewgth Xfy“)(l) >
1, thenX”) (1) is set to zero, the valux'’) (1) is evenly distributed among the
“daughters” ofe and we say that has “avalanched.” The process at future times
is described similarly.

Obviously, the variableX, play the role of the “energy variables” in the de-
scription of Zhang’s avalanche model in Section 1.1. In our case the critical thresh-
old is one, but, in (1.3), we chose to distribute the entire value of an “avalanching”
site rather than just the excess to the (forward) neighbors. This choice is slightly
more advantageous technically.
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1.3. Main questions and outline

Let 7O (t) = {0 € Tp: X (t) = 0, X”)(s) # 0 for somes < t} be the set of
sites that have “avalanched” by timeSimilarly, let®) = | J,. .7 (t) be the
set of sites that will ever avalanche. We §1s&)| to denote the number of sites in
the avalanched set (which includes the possibility@f?)| = cc). The setez®
and its dependence gnando are the primary focus of our study.

The first question is whether the procé€¥)(t) lives forever, i.e., is there an
infinite avalanche? More precisely, for what measyres M is the probability

AY) =P, (lo7"| = o0) (1.4)

non-zero for some value af? A related question is whether the average size of
the avalanched set is finite. The relevant object is defined by

2@ =E, (o). (1.5)

(Notice that, due to the directed nature of the dynamical rule, both quamsﬁiés
andy ) are monotone in the underlying measure ar)dAgain, we ask: For what
measurep we havey® = oo for someo? In addition, we might ask: Is the
divergence of the mean avalanche size equivalent to the onset of infinite avalanches
or can there be aimtermediate phase

To give answers to the above questions, we will parametrize thietdey val-
ues of a particular functiongl: M — [0, 1]. Here3(p) roughly corresponds to
the conditional probability in distributioR), that, given the avalanche has reached
a sites € T}, far away from the root, the sitewill also avalanche. (The definition
of 3 is somewhat technical and we refer the reader to Section 2.2 for more details.)
The characterization of the avalanche regime in termdothen very transparent:
There is aritical value e = %, such that the quantity®) for measure diverges
if 3(p) > 3c ando is sufficiently large, while it is finite for alb if 3(p) < 3¢. Simi-
larly we show, for a reduced class of measures,kté’@tfor measure vanishes for
allv ifand only if 3(p) < 3c. These results are formulated as Theorems 2.4 and 3.1
in Sections 2.2 and 3.1, respectively. (Outside the reduced class of measures, there
are some exceptions to the rule tm{,‘é) = 0 for measurep with 3(p) = 3c, i.e.,
there are some measures which avalancheatlsaticality, see Remarks 1 and 2
in Section 2 for more details. These examples are fairly contrived, so we exclude
them from further considerations.)

Note that, for both quantities (1.4) and (1.5), the transitions happen at the same
value,3¢, which rules out the possibility of an intermediate phase. To elucidate the
behavior of; nearjc, it is worthwhile to introduce appropriatzitical exponents
In particular, we ask whether there is a critical exponesnt0 such that

1P~ Ge=30)77  30) 1 30 (1.6)

an exponeng > 0 such that

AY ~ G —39".  3(0) Lse @.7)
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and, finally, an exponerdt> O such that ifj(p) = 3¢, then
P,(l</®| > n) ~n7Y/°, n — oo. (1.8)

All of these three relations of course include an appropriate interpretation of the
symbol “~” and, with the exception of the last relation, also an interpretation of
the limit “3(p) tends togc.”

The relations for the critical exponents are the subject of Theorem 4.1 in Sec-
tion 4. The upshot s that all three exponents takerban-field percolatiomalues,

y=1, p=1 os=2 (1.9)

Neither the fact that the critical valyg equals the percolation threshold for site
percolation oril', is a coincidence. Indeed, the avalanche problem can be charac-
terized in terms of a correlated-percolation probleniigr{see Section 2).

We finish with a brief outline of the paper: Section 2 contains our percolation
criteria for the existence of infinite avalanches leading naturally to the definition
of the functional. In Section 3 we show thgt = % is the unique critical “point”
of our model, thus ruling out the possibility of an intermediate phase. Section 4
proves the above relations for the critical exponents. Finally, in Section 5 we de-
velop a coupling argument which is the core of the proofs of the aforementioned
results in Sections 3 and 4. The principal results of this paper are Theorem 2.4
(Section 2.2), Theorem 3.1 (Section 3.1) and Theorem 4.1 (Section 4.1).

2. Percolation criteria
2.1. Simple percolation bounds

We start by deriving criteria for the presence and absence of an infinite avalanche
based on a comparison to site percolatiorilgnLet x, denote the maximum of
the support op, i.e.,

x. = supy € [0, 1]: p([y, 1]) > 0}, (2.1)

and let us definé, by

b
Op = ——X,. 2.2
b= p % (2.2)
It is noted that ifXz 4+ v < 6y, then the largest value that,(t) for anys € Ty
could conceivably achieve (just prior to its own avalanché)is

The following is based on straightforward percolation arguments:

Proposition 2.1.Letp € M and letZ® be the avalanche set.

DiIfp(l-5,1) > 7, thenP,(| | =o00) > Oforallv > 1— X,.
fp( H L, thenP, (|« 0 for all
eitherfp < 1orf > landp([1— 76p, 1]) < 7, thenP, (| | = o00) =
2) If eitherdly, < 1or 6y > Landp([1- £6b, 1)) < #, thenP, (j./®) 0
forall o > 0.
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In both cases we note that the quanﬁt;an the right-hand side of the inequal-
ities is the percolation threshold fd,. Obviously, this is no coincidence; indeed,
the proof of part (1) is easily generalizable to any transitive infinite graph.

Proof of Proposition 2.1Let us start with (1): A siter # @ is called occupied
if Xog >1— %, while the rooto is called occupied iXz + v > 1. Denoting
by ¥® the connected component of occupied sites containing the origin, it is not
hard to see that7® 5 ¥®). Indeed, assumin¥ s + » > 1, each daughter site
of the origin receives at Iea%t those daughter siteswith X, > 1 — % will be
triggered, which will in turn cause avalanches in the next generation of occupied
sites, etc. Evidently, whenever the occupied sites percolate, there is an infinite
avalanche.

Part (2) is proved in a similar fashion. Suppose first that- 1 and call a
site 0 # @ occupied ifX, > 1 — %Gb, and vacant otherwise. The definition
is as before for the root. As observed previouslyXi + v < 6y, then no site
receives more tha%&b from its parent. Under these circumstances, a vacant site
will never avalanche and, denoting the occupied cluster of the origigi by we
haveas®) c €®). Sincep([1— £6b, 1]) < & was assumed, we have thgt®)| <
oo almost surely and thus7®)| < co wheneverXg + v < 6y, It is then easy to
show, however, thate7®)| < oo almost surely for alb > 0. Indeed, lek > 0 be
an integer so large that

(Xe +0 — Op)b™™ < Gp — 1. (2.3)

If ois a site with|s| = k that has been reached by an avalanche, thesuld not
receive more than

% (b7 4 4+ b~ D) 1 bK(Xg +0) = b7 + b KXo + 0 — ) (2.4)

from its parent. Now, it is vacant, then the maximal possible valueXg(K) (i.e.,
prior to its own avalanche) is no larger thar-b—(x, + v — 6p). By (2.3), this
amount is strictly less thaf, so by our previous reasoningcannot give rise to
an infinite avalanche. By absence of percolation, there is a “baf$iedf vacant
sites above thék + 1)-st layer inTp, that every path from the root to infinity must
pass through. Our previous arguments show that the avalanche cannot go beyond
the union of occupied connected components rootegk akence,|.&®| < oo
with probability one.

The casd), < 1 is handled analogously. Indeed, a simple calculation reveals
that the right-hand side of (2.4) plus is eventually strictly less than one and the
avalanche terminates within a deterministiedependent) amount of time.o

The arguments in the proof immediately give us the following corollary:

Corollary 2.2. If 6y # 1 andp([1 — #6b, 1 — £)) = 0, then there is an infinite
avalanche if and only if occupied sites, i.e., sites T}, with value X, > 1 — 1

percolate. In addition, if % + v < 6, then.oZ® coincides exactly with the
occupied connected component of the root.
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Remark 1The exceptional caseg;, = 1, can only arise from the circumstance
thatx, = 1— %. (Notice that the proof of Proposition 2.1(2) does not apply because
the inequality (2.3) cannot be satisfied.) Bgr= 1, the situation is marginal and,

in fact, slightly subtle. Indeed, ¥, = 1—# andP(X > x,) = ¢, then the existence

of an infinite avalanche depends on the detailed asymptotR(&f > x, — ¢)

ase | 0, see Remark 2 in the next section. We exclude the céasesl from our

analysis because we believe that this “pathological” behavior is in no way generic.

2.2. Phase transition

As is seen from Corollary 2.2, in certain cases the avalanche problem reduces to the
usual (independent) percolation model. The general problem can also be presented
as a percolation phenomenon albeit with correlations. IndeeXlet. ., X, are

i.i.d. with distributionp and let

Xn—1 X1 0
Qﬁe)=Xn+ r;) +'°'+W+E, (2.5)
In the casen = 0, we Ieth)) = 6. Similarly, foro € Ty, we definlef) by (2.5)
with n = |g] and Xy, ..., X4 being the values along the unique path conneating
to the root. Explicitly, we sng) = 0 and define
1
QP =X, + - Quiy:  0# 2. (2.6)
Note that here plays the role of the quantitXy + ». Clearly, §]0> 2 fo),

whenevemn = |ag].

Proposition 2.3.Leto > 0 and letd = Xg + v. For eachs € Ty, let us calle
openif fo) > 1 andclosedotherwise. Thew € .«7® if and only ifo belongs to

the open cluster containing the root. In particular, percolation of open sites is the
necessary and sufficient condition for infinite avalanches.

Proof. By definition, Qg) =60 = Xg + 0. Now, if X,(t) = Q((,H) for a sitec € Ty
that avalanches at tinte= |o|, then any daughter sit€ of ¢ will have its value
updated to

1
Xp(t+1) =Xy + QY = QY. 2.7)

Hence, if the siter € Ty avalanches at time = ||, then Q,(f) = Xs(t) > 1. It
follows thater ®), with v = § — X, is the set of sites that are open and connected
to the root by a path of open siteso

Remark 2L et us indicate what makes the case= 1 — % so subtle. Given a
sequenceécy) of positive numbers, let us catle Ty, open if X, > X, — ¢,;b~1°l

and closed otherwise. Lettim = P(X > x,—ckb™*) and supposing, e.dopx =

1+ k=12, a general result of Lyons [9] implies that the open sites percolate. An
easy argument shows thatdfis connected taz by a path of open sites, then
fo) >1+bkop—-1- Dk Co) foro =0 — Xg. Thus, ifo > 14+ >, .o Ck,

then, by Proposition 2.3, there is an infinite avalanche with a non-zero probability.
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On a similar basis, we can write down the necessary and sufficient conditions
for divergence of the expected size of avalanches. The criterion will be based on
the asymptotic growth of the quantity

Zy0) =P(QY >1,k=0,...,n), n=>o0 (2.8)
Notice thatZ,(¢#) = 0 whenevet < 1.

Theorem 2.4.(1) For all p € M and all§ > 1, the limit
— — i 1/n
3=3(p) = lim_Zn(0) (2.9)

exists and is independent@f

(2) For all p, p’ € M, the functiona — j3(ap + (1 — a)p’) is continuous in
o € [0, 1].

(3) Letp € M and let % correspond top via (2.1). Let us defing, = %.
If 3(p) < 3c, thenE, (&™) < oo for all v € (0, c0), while if 3(p) > 3c,
thenE, (|7 @) = oo forall v > 1 — x,.

Theorem 2.4 defines a free-energy like functignahd gives the characteriza-
tion of the divergence of ), as already discussed in Section 1.3. The continuity
statement in part (2) indicates that the sets of “avalanching” and “non-avalanching”
measure® € M are separated by a “surface” (i.e., set of codimension one) of
phase transitions. We will not try to make the latter more precise; our main reason
for including part (2) is to have an interpretation of the ligiip) — 3¢, which
will be needed in the discussion of the critical behavior. Under additional mild re-
strictions onp, it will be shown in Section 4 thdﬂtp(w{(’))n = oo even for the
critical measurep, i.e., those satisfying(p) = 3c.

Proof of Theorem 2.4(1)Ve will start with the case8 = 1 andd > 6, which are
amenable to subadditive-type arguments. Examiipgn(0), we may write (by
conditioning onX4, ..., Xm)

Zoim(®) = B(Zn(Qi) [T 1(g0-1y)- (2.10)
j=0

Sinced — ng]e) is manifestly non-decreasing & so is the event on the right-
hand side of (2.8) and also, (9) itself. Notice that ifd > 6y, then Ql(f) < ¢ for

anyk > 0, while if & = 1, then the conditions in (2.8) foro@l(f) > 1. Thus,
for & = 1 we obtain the submultiplicative bound

Znim(1) > Zn(1)Zm(2), (2.11)
while for anyd > 6, we get the supermultiplicative bound
Znim(0) < Zn(0)Zm(0). (2.12)

By standard theoremsZ,(1)¥/" tends to a limit,31, while Z,(0)¥" for § >
Oy tends to a (possibly-dependent) limitsg. Moreover, (2.10) in fact implies
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that Z,:m(@) < Zn(6p + 6b™™) andjy is thus constant for alt > 6,. We will
usej, to denote the common value gf for > 6. Note thatZ, ()" < 31
while Zn(0)Y" > 3, foralln > 1 and alld > 6.
Sinced — Zn(#) is non-decreasing, to prove (2.9), we just need to show
that 3, equalss. If x, < 1— %, then3, = 0 and there is nothing to prove, so
let us suppose that, > 1 — % for the rest of the proof. As it turns out, we will
have to address a number of distinct cases. These are determined by whether the
inequality inx, > 1 — % is strict or not and by whether the quantity

Ke = p([X* — ¢, X*]) (2.13)

is strictly less thary1 or not for some (particulary > 0. Specifically, we will
distinguish the following cases:

CASE 1: X, > 1— £ andk, < 31 for somee > Owithx, —e > 1— L.

CASE 2: X, > 1— § butk, = 31 foralle > Owithx, —e > 1— ¢.

CASE3:x, =1- ¢.
As is easily observed, CASE 2 represents the situation whassigns no mass to
the interval(1 — &, x,), while CASE 3 corresponds to the similar situation when
this interval itself is empty. In view of the trivial inequaligy > p([1 — %, X4]),

we must eventually have. < 31 wheneverp has any mass ifll — %, Xx). Hence,
the first situation is clearly generic.

In order to address the first two cases (with> 1 — %) we need to establish
an inequality betweed(¢) and3] for all & € [1, 6). Explicitly, we claim that

for x, > 1— £ and any e [1, 6), there is arH (9) < oo such that
Zn(®) <H@®)3), n=>1 (2.14)

Indeed, lete > 0 be such thal, — 6 > €52 andx, —e > 1 — £ and pickm
so that

(x*—e)[1+%+~~+bm—1_l]+bimze. (2.15)
Consider the formula (2.8) fafm (1) but with the firstm coordinates restricted
to the event = {X4, ..., Xm > X, — €}. Notice that or€, the conditions involv-
ing Q(ll), ce, Qﬁnl) are automatically satisfied. By a derivation similar to (2.10-
2.11) we have
Znim(D) = k" Zn (). (2.16)

Along with the upper boun@nm(1) < 337%™, this implies (2.14) withH () =
(31/x¢)™. (We note that, sincg, is the supp of the support gf, we havex, > 0
foralle > 0.)

Now we are ready to prove thgt = 31 in all of the three cases above:
CASE 1: Suppose that, > 1— andk, < 31 for somee > Owithx,—e > 1—¢.
Letd > 6, be small enough th& = x, — e + % < 6p. Then

Zn(0) < keZn-1(0) + (1 — k) Zn-1(0c)

= Zn-1(0) |:IC€ +(1- Ke)Zn;(ef)] (2.17)

Zn—l(e)
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Using (2.14) and the boung,_1(9) > 37~ we obtain

Zo(0) < zn_1<6>[ch +@- n)H(ee)(::’j—l)"_l]. (2.18)

Let x.(n) denote the quantity in the square brackets, and let ua set2m in
(2.18) and iterate the bound times. This givesZom(@) < ke (M)MZn(9). If we
still entertain the possibility thags < 3., then them — oo limit gives 3, <
liMm— o k(M) = k¢, which contradicts the bouryd > .. Therefore, once, >
1— £ andx, < 31 for somee > 0 we havey; = 3.

CASE 2: Suppose now that, > 1 — % butx, = 31 forall e > O withx, — ¢ >
1- %. Notice that this in fact implies that = p({x,}). We first observe, using

(2.16) withn = 1, thatZm11(1) > «Mp([1— %9, X«]) whenevep, ¢ andm satisfy
(2.15). As a consequence of (2.11), we have

(2.19)

o [p([l—%e,x*h}mh_

Ke Ke

Now if p((1 — £6b, X)) > 0, we would havep (1 — £6b, X.]) > p({X.}) = ke
which would by (2.19) imply thags > x., a contradiction. (This fact will be
important later, so we restate it as a corollary right after this proof.) Hence, we
must havep ((1 — %Qb, X.)) = 0. To prove thats = 3+, letd > 6y be small

enough thatly = 1 + %(0 — 6p) < 6Bp. Now eitherXy = x, forallk =1,...,n,
or there is & such thatXy < 1 — %Qb. Noting that therQl(f) < fp, we thus have

Za(©) < p(6)" + D p () 0 ([0. 1~ £6b]) Zok(@0).  (2.20)
k=1

Using (2.14), this giveZn(0) < 3] + ngg_lp (0,1 — %Qb])H(eo), proving that
3« = 31 holds for CASE 2 as well.

CASE 3: Suppose finally that, = 1 — % and note that thefy, = 1. Immediately,
we haveZ,(1) = p({x.)" and thereforg1 = p({x}), while for anyd > 6, we
haveﬂEZO{fo) > 1) C Moy Xk > X — b=K(@ — 6y)}. Therefore,

Z0©) < [T P(Xk = x. = b74@ — b)), (2.21)
k=1

which implies thag, < limy_, o P(X1 > X, —b7K(@ — ) = p({x}) =31. O

This completes the proof of part (1) of Theorem 2.4. As mentioned earlier, we
would like to underscore one aspect of the above proof.

Corollary 2.5. Letp e M and suppose thatx> 1— ¢ andp((1— £6b, X.)) > O.
Then there is am > Owith X, — e > 1 — £ such thaj(p) > p([x. — €, X.]).
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Proof. See the argument following (2.19)0

Next we will prove the continuity oft — 3(ap + (1 — a)p’) as stated in
Theorem 2.4(2):

Proof of Theorem 2.4(2) hroughout this proof we will Writezr(,p)(e) instead of
just Z, (@) to emphasize the dependence on the underlying measlet pg, p1 €
M and letp, = (1 — a)po + ap1. Clearly, to prove (2), it suffices to show that
a — 3(pg) is right continuous at = 0.

Fix o > 0 and let(Tx) be a sequence of, @-valued i.i.d. random variables
with Prol(Ty = 0) = «a. Let (Xx) and (X}) be two independent sequences of
i.i.d. random variables, both independent(df), with dlstrlbutlonSpO andp1 ,

respectively. Le(X(“)) be the sequence defined by
X = TXe+ (L -T)Xg,  k>1 (2.22)

Clearly, (X(“)) are i.i.d. with joint distributionpﬁ. Let us uséP, to denote the
joint distribution of(Xx), (X}), and(Tk).

Let Q¥* be given by (2.5) withXa, ..., Xn replaced bei“), X,
Thenz¥* (0) is given by (2.8) withQ replaced byQ¥**) andP replaced by,,.
As will be seen shortly, the main object of interest is the conditional expectation
given the valuesTy):

Zna(01(T0) =P, (QYY > 1, ¢ = -, n|(T). (2.23)

Indeed, le¥ € [1, 6p] and, given(Ty), let (I;) be the connected blocks of sites

{0, ..., 1} such thaffy = 1 and let(Jj) be the connected sets of sites with= 0.

By (2.22), thexﬁ"‘) for k € I; are distributed according tag, while those for

k € Jj are distributed according @ . Then an analogue of (2.10) for the quantity
in (2.23) along with the bound&, (1) < Zn(0) < Zn(6) for 6 € [1, 6] allow us

to conclude that

[Tz @Iz < 2 (01m) < [127 @ TT25 0. 020
[ i

In order to estimate the right hand side of (2.24), note that the existence of
the limit in (2.9) implies that for alb > 0 there isCs € [1, c0), such that for
bothp = pgandp = p1,

ZP () < Cs(L+)"3(p)",  n>1 (2.25)

LetE, denote the expectation with respecPta Using (2.25) in (2.24), observing
that the total number of occurrences@f is less than R (Y), whereki(Y) =
Zj |Jj|, and noting thak;(Y) has the binomial distribution with parameter
underP, allows us to write

Z8PD(0) = By Zno (0 1(Tk)) < 1+ 0)"((X = @)3(po) + «C33(p1))".  (2.26)
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By takingn — oo, we get lim,j03(ps) < (14 d)3(po). But 6 was arbitrary,
hence, lim 03(ps) < 3(po). The argument for the lower bound, liy 3(p.) >
3(po), is completely analogous.oo

Finally, we also need to prove part (3) of Theorem 2.4:

Proof of Theorem 2.4(3By Proposition 2.3¢ € «7®) is exactly the event that

the path between (and including)and @ consists of siteg’ with fo) > 1,
wheref = Xg + v. But then

P,(oe o) =E,(Z,(Xa +0)), (2.27)

where the final average is oviiz. To get the expected size of ), we sum over
all o,
E, (12" ) = > E,(Zn(Xg + 0))b". (2.28)

n>0

The existence of the IimitZ%/"(e) independent o) (for 0 > 1) tells us that

E,(le7®|) < oo whenevery(p) < 3c, while E,(l7®)|) = oo oncez(p) > 3¢
ando > 1—x,. O

3. Absence of intermediate phase
3.1. Sharpness of phase transition

The goal of this section is to show that the phase transitions defined by pres-
ence/absence of an infinite avalanche and divergence of avalanche size occur at
the same “point,3c = %. This rules out the possibility of an intermediate phase.
Moreover, we will prove that the transition $econd ordein the sense that there
is no infinite avalanche gt= j3c.

Unfortunately, our proof will require certain restrictions on the underlying
measure. The delicate portion of [0l] is the region = [1— &6y, 1—1). Clearly,
some conditions are needed to ensure that there is not too much mass at the right-
end ofl —i.e., thatp ([(1— £ —e, 1— £)) — O sufficiently fast ag | 0—to avoid
the sort of counterexamples described in Remarks 1 and 2 of Section 2. With a lot
of additional work than what is about to hit, all of the forthcoming can be proved
under the assumption thathas anLP density, for ap > 1, in the intervall .
However, this requires dealing with “singularities” in the region abbv@ he re-
gion belowl is of no consequence because any directed path in the avalanched set
can only harbor a finite number of values from this set.) Notwithstanding, most of
the interesting mathematics—with only a fraction of unpleasant technicalities—is
captured by assuming that the measuteas a bounded density.

Definition 1. Let M’ be the set of Borel probability measurgson [0, 1] that
are absolutely continuous with respect to Lebesgue measuf@,dh with the
associated density, bounded in ° norm on[0, 1], i.e., |¢,llcc < 0o, and that
obeyp([1 - £,1]) > 0.
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The requirement thas has no positive mass in & %, 1] represents no ad-
ditional loss of generality since the opposite case, namrgly: 1 — %, actually
has3(p) = 0 and is therefore far away from having an avalanche (see Theo-
rem 2.4). It is worth noting that’ is a convex subset o¥. The ability to take
convex combinations of elements 6f(” will be crucial in the discussion of the
critical behavior, see Section 4.

Our second main theorem is then as follows:

Theorem 3.1.Suppose that € M’ and defingc = 3.
(1) If 3(p) < 3¢, thenP, (|7 )| = 00) = Ofor all v € (0, 00).
(2) If 3(p) > 3c, thenP, (|7 ®)| = c0) > Ofor all v € (1 — X, c0).

The proof of Theorem 3.1 requires introducing two auxiliary random vari-
ablesV,, and Q.. These will be defined in next two subsections, the proof is
therefore deferred to Section 3.4. The random variélle will be a cornerstone
of our analysis of the critical process, see Section 4. The underlying significance
of bothV,, and Q. is the distributional identity that each of them satisfies.

3.2. Definition of \,

In this section we define a random variabg, which is, roughly speaking, the
minimal value ofv that needs to be added to the root in order to trigger an infinite
avalanche. Fon > 1 let

Vo =inf{v € (0,00): XO(t +1) # X (1), t=0,...,n—1}. (3.1)

(A logical extension of this definition tn = 0 is Vo = 0.) In plain words, ifo >
Vn, then the avalanche process will propagate to at least-thdevel. ClearlyV,
is an increasing sequence; weVlgt denote then — oo limit of V,,. Formally,Ve
can be infinite; in fact, since the eveiM,, < oo} is clearly a tail eventP, (Vo <
00) is either one or zero.

Let us use¥, to denote the distribution function &,, i.e.,

¥n(9) = P, (Vi < 9). (3.2)

The aforementioned properties ¥, lead us to a few immediate observations
about¥,: First, ¥, is a decreasing sequence of non-decreasing functions. Sec-
ond, the limit
Y(@) = lim ¥,(0), 3.3)
n—oo

exists for ally € (0, o) and¥ (¥)) = P, (Vo < ¥). Third, we have¥ # 0 if and
only if P, (Ve < 00) = 1. Moreover, each d¥, is in principle computable:

Lemma 3.2.Letp € M. Then the sequen€¥,) satisfies the recurrence equation

¥rni1(W) =E, (%(‘Pn(xzbw))l{xggl—ﬂ}), n>0, (3.4)

where¥y () = l>o) and
Dp(y) =1-(1-y)P°, O0=<y<l (3.5)
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Proof. Let ’]I‘g’) denote the subtree @, rooted aiz and IetVn(”) denote the random
variable defined in the same way¥4sbut here for the treﬁ‘é”). Then we have

. Xog+ 9
— _ (o) . 28TV
(V1 <9} = (Xo 2 1=d)0{ min Vi? < ZZ5) (36)
But forall¢ € {1,...,b}, the Vn(")’s are i.i.d. with common distribution func-
tion ¥, so we have
P,( min V{9 <) = Op(Pn(@)). 3.7

oe{l,...,.b}
From here the claim follows by noting thka{é") are independent okgz. O

Corollary 3.3. Letp € M. Then the distribution function ofysatisfies the equa-
tion

¥(@)=E, (@b(w(xzb”))l{xggl_m), 9 > 0. (3.8)

Proof. This is an easy consequence of (3.4) and the Bounded Convergence Theo-
rem. O

On the basis of (3.8) and some percolation arguments, the answer to the impor-
tant question whethe? = 0 or not can be given by checking whethi¢y) = 0
for reasonable values of.

Proposition 3.4.Letp € M". Suppose tha¥' # 0. Then
inf{¢ >0: ¥(®) > 0} =1—x,. (3.9)

Proof. Let 9, denote the infimum on the left-hand side of (3.9). Note that-

1- % byp e M. Sincep is absolutely continuous with respect to the Lebesgue
measure on [A1], there is ary > 0 such thatx, —n > 1 — % and p ([x, —
n,%]) < t. Now  is the threshold for the site percolation @g, so the sites
with X, > X, — 5 do not percolate. LeG, = {¢ € Tp: |o] = n} be then-th
generation off'y. Pick two integerdN, N’ such thatN’ > N and letHy n- be the
event thatGy andGy are separated by a “barrier” of sitewith X, < X, — 7.

By taking N’ > N > 1, the probability ofHy - can be made as close to one
as desired.

Letd > o, and pickNg so large thattb=No is less tharizl. Find N, N’ > Ng
such that 1= P, (Hn,n') is strictly smaller tharP, (|| = o), i.e., we have
P,({l7P| = oo} N Hy,n) > 0. Now for anye e (0, ), we will produce a
configuration with an infinite avalanche that has a starting valeel — X, + €.
Draw a configuratioriX,) subject to the constraint th&i, > x, —e for all o € Ty
with |a] < N’. Let (X,) belong to the sefj.<”)| = oo} N Hy,n and definexX’,
by putting

X! =

g

[mvm, if o] < N, (3.10)

Xz, otherwise
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Let Xf;(”)(t) denote the process corresponding to the initial configurgidn and
initial valueo > 0, and Ietxg‘g)(t) be the corresponding process fot,) and.
Let 7”-®) and.<#) be the corresponding avalanche sets.

The configuration(X,) exhibits an infinite avalanche, so there is a siten
one of the aforementioned “barriers” separatiiyg andGy-, which belongs to an
infinite oriented path inside7 ). By the assumption that, — n > 1— 1 itis
clear that, ifo > 1 — X, + € andt = |o], then.e"®) will reachs. But X/, > X,
for all sites on the path from to o, so we have

b

where we used thdNg < % ande < g to derive the last inequality. Now the
set.o7(?) contains a path frora to infinity and, by (3.11) anK/, > X, for ¢
“peyond” ¢, this path will also be contained i), Consequently, an infinite
avalanche will occur in configuratio{X/) starting from a value > 1 — x, + ¢
whenever it did in configuratiofX,) starting fromd. This establishe8, = 1—x,
as claimed. O

X, @) = XD () = p—e— == >0, (3.11)

3.3. Definition of Q,

The second random variable, denoted @y, is a limiting version of the ob-
jects Q,(f)) defined in (2.5). LeY = (Y1, Y2, ...) be a sequence of i.i.d. random
variables with joint distributioi® = pN. These are, in a certain sense, the same
guantities as theX’s discussed earlier, however, tiés will be ordered in the
opposite way. Similarly to (2.5), let

©) 1 1 0
Qn,szk+5Yk+1+"'+ bn—kYn+ kT 1<k<n. (3.12)

For completeness, we also @éf)) =0.

Let B be the Boreb-algebra on [01]N equipped with the standard product
topology. Suppose that([1 — £,1]) > O—which is assured i € M”. For

anyn > 1andd > 1, IetIP’ﬁg) be the conditional law o8 defined by
PO()=P(-|Q¥) =1 ¢=2,....n), (3.13)

The latter is well defined becau?éQf} >1) > 0forall¢t=2,...,n, {fo} >
1} are increasing anél(-) is FKG. Intentionally, the variabl¥; is not constrained
by the conditioning in (3.13).

Next we give conditions for the existence of the limiting law Jig, [P’ﬁe):
Proposition 3.5.Let p € M" and letdy > 6,. Then there exists numbers A
A(p,bp) < oo and¢ = ¢(p) > 0 such that for all bounded measurable func-
tions f = f(Yy,...,Yx) and allg, 8" € [1, O],

EQ (£) —ED(H)] < AN, nxk (3.14)
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In particular, wheneve# > 1, the limit law
P) = i ©).
P() = lim PY() (3.15)

exists and is independent 6f Moreover, the quantities ¢x, o) and ¢ (p) are
bounded away from infinity and zero uniformly in any convex\$et M’ with
finitely many extreme points.

The proof of Proposition 3.5 uses a coupling argument, which requires some
rather extensive preparations and is therefore deferred to Section 5. (The actual
proof appears at the end of Section 5.3.)

We will useE to denote the expectation with respecﬁ’twhenevq the latter
is well defined. Let us define a random varialf)e, on ([0, 1], B, P) by the

formula v
k
Qoo =2 i1 (3.16)

k>1
Notice thatQ. is supported in%, 6p], becauser is not constrained by the con-
ditioning in (3.13).
Corollary 3.6. Letp € M” and letd > 1. Let Qﬁf)l be as in(3.12) where the

variables Y, ..., Yy are distributed according t@’ﬁf’). Then (f)l tendsto Q in
distribution as n— oo. Moreover, for eaclly > 6, and each C< oo there are
constants D= D(p,0y) < oo and¢ = ¢(p) > 0such thatif (@) is a function
obeying the Lipschitz bound ¢@, 9¢],

|£©0)— f©@) <Clfllald -0, 0,6 €0, 6], (3.17)

where|| f [l = SURy <4, | T (0)], then

[EY(1(QYD) = B(f(Qu))| < DIl f ™" (3.18)

holds for allg € [1, 6p]. The quantities Dy, 6p) and¢ (p) are bounded away from
infinity and zero uniformly in any convex s€tc M?” with finitely many extreme
points.

The proof of Corollary 3.6 is given in Section 5.4. As already mentioned, a
principal tool for our later investigations will be the distributional identity €,
stated below.

Proposition 3.7.Letp € M". If X is a random variable with la®? = p, inde-
pendent of @Q,, then

P®@(X+Q—§Oe~

Qu = 1) — B(Quo € ). (3.19)

The proof of Proposition 3.7 will also be given in Section 5. Proposition 3.5
and the proof of Proposition 3.7 immediately yield an extension of Theorem 2.4(1),
stated as Corollary 3.8, which will also be useful in subsequent developments. The
proof of Corollary 3.8 is given in Section 5.4.
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Corollary 3.8. Suppose thap € M”. Then3(p) = fPT(QOO > 1). Moreover, the
limit
wp(©) = lim_ Zn(©)3(0)™" (3.20)

exists for alld > O and, for allfy > 6y, there are A= A'(p,0p) < co and¢’ =
¢’(p) > Osuch that

1Zn(@)3(0) ™" — v, (0)] < Ae¢™ (3.21)

holds for all@ e [0, 6] and all n > 1. Furthermore, the functiony, has the
following properties:

(1) w, (@) € (0, 00) for all @ > 1 while y,(0) =0foré < 1.

(2) 9 = w,(0) is non-decreasing and Lipschitz continuous foréalk 1. More
precisely, there is a C= C(p,f0) < oo such that|y, (@) — v,(@)] <
Cy,(00)|60 —¢'| forall 8,0 € [1, 6p].

(3) Ifp,p' € M’ andp, = (1—a)p+ap’ for eacha € [0, 1], thena — y,, (6)
is continuous irw € [0, 1] for all & > O.

The quantities Ap, o), ¢’(p) and C(p, 6p) are bounded away from infinity and
zero uniformly in any convex s&f ¢ M?” with finitely many extreme points.

Remark 3The Lipschitz continuity of) — v, (0) is a direct consequence of our
assumption that has aboundeddensitys, with respect to the Lebesgue measure
on [0, 1]. If ¢, is only in LP([0, 1]) for somep > 1, then the appropriate concept
will be Holder continuity with ap-dependent exponent. The same will be true for
various other Lipschitz continuous quantities later in this paper.

3.4. Proof of Theorem 3.1

With random variableQ, at our disposal, the sharpness of the phase transition in
our avalanche model is almost immediate.

Proof of Theorem 3.1Let p € M and abbreviatg = 3(p). Letx, be as in (2.1).
We begin by introducing the quantity

G = E(¥n (%) Liguz1). (3.22)
The recursive equation (3.4) and Proposition 3.7 then give

=~ = Xo+5Qc
Gus1 =P(Qw 2 DE, ®E(%(’”T")1{xg+%qm>l} Q2 1)

= 3E(0n(¥n($)Li0e2n)).
(3.23)
where we have used the fact that @(QOo > 1) from Corollary 3.8.
Let us first analyze the casbg < 1. By using Jensen’s inequality in (3.23) we
get that

1
Gn+1 £ 3Pp(Gp) < B(I)b(Gn)- (3.24)
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An inspection of the graph of — ®y(y) reveals that if (3.24) holds, theB, —
0. By Proposition 3.4, this is compatible with = 0 only if
Qoo

o <1-—x, P-almost surely (3.25)

However, a simple argument shows that ess3up = x*b%l whenever; > O.
This contradicts (3.25), becausg> b%l (asimplied byp € MP) forces 1-x, <
x*b%l. Thus, ifby < 1, then¥ must be identically zero.

Next we will attend to the casds > 1. We will suppose tha?,, — 0 and
work to derive a contradiction. Since—~ ¥, is a monotone sequence of mono-
tone functions, the convergencet6is uniform on [Q 1] and, in particular, on

the range of values thg{Qo takes. Using tha®y(y) > by — 3b(b — 1)y? for
all y € [0, 1] and invoking (3.23), we can write

Gny1 > b3(1— €n)Gn, (3.26)

wheree, = 3(b — 1)¥,(1). Sinceb; > 1 ande, — 0, we haveGny1 > Gy

for n large enough. An inspection of (3.4) shows that, sirce> 1 — %, we
have¥,(¥) > 0O for all 9 > %. HenceG, > O for alln > 0. But then (3.26)
forcesG, to stay uniformly bounded away from zero, in contradiction with our
assumption thaB,, — 0. Therefore, oncb; > 1, we must hav& £ 0. O

4. Critical behavior
4.1. Critical exponents

In this section we establish, under certain conditiong pthe essential behavior

of the model at the critical poirge = L. In particular, we describe the asymp-
totics for the critical distribution of avalanche sizes, the power law behavior for
the probability of an infinite avalanche g9 3¢ and, finally, the exponent for the
divergence ofy ® as3 1 jc.

Theorem4.1.Letp € M and let x be as in(2.1). Supposg(p) = 3¢, Where
dc= %. Then there are functions 7: (1 — X, o0) — (0, 00) and® : [0, co) —
[0, c0) such that the following holds:

Q) If p’ € M" andp, = ap’ + (1 — a)p satisfies;(p,) < 3c forall a € (0, 1],
then forallo > 1 — x,,

7(v)

Ey, (1771) = ————=[1+0@)], 0. 4.1
p177) = T P e®) el .1
(2) Forallv > 0,
) _ @(D)
Pyl = n) = W[l+ oD], n- oo, (4.2)

where@(v) > 0forv > 1 — X,.
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() If p’ € M" andp, = ap’ + (1 — a)p satisfies;(p,) > 3c forall a € (0, 1],
then for allo > 1 — x,,

P, (197 = 00) = (3(pa) —3¢) TW)[1+0(1)], alO0. (4.3

Remark 4The proof of Theorem 4.1 makes frequent use of the properties of the
random variable, defined in Section 3.2. The relevant statements are Proposi-
tions 3.5 and 3.7 and Corollaries 3.6 and 3.8, whose proofs come only in Section 5.
Modulo these claims, Section 4 is essentially self-contained and can be read with-
out a reference to Section 5.

Part (1) of Theorem 4.1 can be proved based on the already-available informa-
tion; the other parts will require some preparations and their proofs are postponed
to the next section.

Proof of Theorem 4.1(1).etp, p’ € M" be such thag(p,) < 3c = 3(p) for p, =
(1—a)p +ap’and alla € (0, 1]. Let y ) (a) = E,, (|7 )|). By (2.28),

20 =D K, (29 (X +v)) b, (4.4)

n>0

whereE,, is the expectation with respectXy in p, andZ,(f“) is defined by (2.8)
usingp .

In order to estimate the sum we will ug¢’ and¢” to denote the worst case
scenarios for the quantitie&'(p,, 90) and”’(p,) from Corollary 3.8. Explicitly,
we let A” = supy<, <1 A'(pa, 00) and¢” = info<g<1 ¢ (pa), Wheredp > 6y is to
be determined shortly. Note that' < co and¢” > 0 by uniformity of the bounds
on A (py, 6o) and¢’(p,,) in the convex selV = {p, : a € [0, 1]}. Then we have,
foralln > 1 and allg e [1, 6],

b"Z{)(0) = B"3(pa)" ¥y, () + b"3(pe)"En(6), (4.5)

wherey,, (0) is as in (3.20) whileE,(0) is the “error term.” Using the bounds
from Corollary 3.8,En(0) is estimated byE,(0)] < A’e <M. By continuity
ofa = y,, (0), we get

oo ¥p®) +0()
20200 = Rl *9

n>0

whereo(1) tends to zero ag | O uniformly on compact sets éf € [1, o].
Letz(v) = b™1E,(y,(Xz + v)) and note that (v) > O for allv > 1 — X,.
Let us take the maximum of, + v and 2, for the quantityfp above. Then (4.4)
and (4.6) imply
Q)

© () = — )
1" (@) o

) [1+0(D)], 4.7)
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whereo(1) tendsto zeroag | O, forallo > 1—x,. O

It remains to establish parts (2) and (3) of Theorem 4.1. To ease derivations,
instead of looking at the asymptotic size.@f®), we will focus on a slightly dif-
ferent set:

20 = |17 ) U7 =0. )
{o€Tp: Mo) e 70X}, otherwise.

(Here we takez ) = g whenevep’ < 1.) Clearly,2® is the original avalanche

set together with its boundary (i.e., the set of site§jinwhere the avalanche has

“spilled” some material). Since both sets are connected and both contain the root

(with the exception of the case “~*2) = §), their sizes satisfy the relation:

B9 = (b-1)| 70| +1. (4.9)

(This relation holds even it7@—X2) —= @) The asymptotic probability of the
events{|<7®| > n} asn — oo is thus basically equivalent to that gf2?)| >
(b —1)n}.

4.2. Avalanches in an external field

Following a route which is often used in the analysis of critical systems, our proof
of Theorem 4.1 will be accomplished by the addition of extra degrees of freedom
that play the role of aexternal field Let 1 € [0, 1] be fixed and let us color each
site of T, “green” with probability 4. Given a realization of this process, €t
denote the random set of “green” sitesTip. LetP, ;(-) be the joint probability
distribution of the “green” sites anX,). The principal quantity of interest is then

B (0, ) =P, (B NG +# 9). (4.10)

It is easy to check that, a5 | 0, the numbeB. (4, A) tends to the probabil-
ity P,(|2?| = o0). In particular, Theorem 3.1 guarantees tiat (@, 1) —
0asi | 0if 3(p) < 3¢, While Bx(0, 1) stays uniformly positive ag | 0
whenj(p) > 3c andé > 1.

Lety,(0) be asin Corollary 3.8 and le}, € (0, oo) be the quantity defined by

1 b-1-

5 = 5 B([E(w, (x+ )P @ = 2). (4.11)

Here X and Q. are independent with distributios = p andP, respectively.
It turns out that the asymptotics &, (¢, A) for critical p can be described very
precisely:

Proposition 4.2.Letp € M satisfy3(p) = 3¢. For eachd e (0, c0),

. Buo(0, 2
lim B2 @- 1)

30 T = Cp Yp (9) (412)
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Proposition 4.2 is proved in Section 4.4. Now we are ready to prove Theo-
rem 4.1(2):

Proof of Theorem 4.1(2)Ve begin by noting the identity

Bwo (0, 1)

= > P, (127 =@ - "t 1€ (0,1], (4.13)

n>1

which is derived by expressimy, (|2 | = n) as the difference between the prob-
abilitiesP, (12| = n) andP,(|12?| = n + 1). SinceBx (¢, 1) asymptotically
equalsv/ (c, w, (0) +0(1)) asA | 0 and sincen — P, (|8®| > n) is a decreas-

ing sequence, standard Tauberian theorems (e.g., Karamata’s Tauberian Theorem
for Power Series, see Corollary 1.7.3 in [3]) guarantee that

vp©) 1
r(3) vn
(Strictly speaking, the above Tauberian theorem applies only whéf) > 0; in

the opposite case, i.e., whén< 1, we haveZ?) = {&} and there is nothing to

prove.) In order to obtain the corresponding asymptoticﬁ”gc(q‘g%(”n > n), we
first note that, by (4.9),

P,(|1%9| > n)=c, [1+0(D)], n— oo, (4.14)

P, (17| > n) =P, (12%2 )| > (b— n +1). (4.15)
By applying (4.14) on the right-hand side and invoking the Bounded Convergence
Theorem, we immediately get the desired formula (4.2) with
Cp

ICETETE

» (v, (X +0)), (4.16)

whereE, is the expectation oveKg. Clearly,» — ©(v) is non-decreasing
becaus# — ,(0) is non-decreasing, whil®(») > 0 foro > 1 - x, be-
causey, (@) > 0ford > 1. O

Similarly we can also describe the asymptoticsPgf| 2| = o0) as3(p)
decreases down §e:

Proposition 4.3.Let p, p’ € M’ and definep, = (1 — a)p + ap’. Suppose
that3(p) = 3c and3(p,) > 3c forall a € (0, 1]. Then for allg € (0, o),
P, (15| = c0)
3(pa) — 3c
wherey, (0) is as in Corollary 3.8 and gis as in(4.11)

= by, 0) + o(1), al0, (4.17)

Proposition 4.3 is proved in Section 4.5. Now we are ready finish the proof of
Theorem 4.1(3):

Proof of Theorem 4.1(3By (4.9) we clearly have that
P, (17| = 00) = P, (|B*2 )| = o). (4.18)
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By conditioning onXz +v = @ and invoking (4.17), we conclude that the asymp-
totic formula (4.3) holds witlY” given by7 (v) = bcﬁEp(z//p(X@ +0)). O

As we have seen, Propositions 4.2 and 4.3 have been instrumental in the proof
of Theorem 4.1(2) and (3). The following three sections are devoted to the proofs
of the two propositions. After some preliminary estimates, which constitute a sub-
stantial part of Section 4.3, we will proceed to establish the critical asymptotics
(Section 4.4). The supercritical cases can then be handled along very much the
same lines of argument, the necessary changes are listed in Section 4.5.

4.3. Preliminaries

This section collects some facts about the quariigy(9, 1) and itsé and A de-
pendence. We begin by proving a simple identity Bas (4, 1):

Lemma4.4.Letp € M and let®y be as in(3.5). Then
Boo (0, 1) = 2 + (1 = D)1p>1) @b (E,Boo(Xo + £6, 1)), (4.19)

Proof.If 8 < 1, thenB (8, 1) = 4 and (4.19) clearly holds true. Let us therefore

suppose that > 1. Let%’f,&) denote the objec#® for the subtree of, rooted
ato. Then

b
(2O NG 40} =0 DU ({@ ¢ 9N U{@,ﬁxﬁ%g) NG + ﬂ}). (4.20)
o=1

The claim then follows by using the independence of the sets in the large paren-
theses on the right hand side of (4.20) under the medgyy¢). O
Our next claim concerns continuity propertiesB§ (6, 1) as a function ob:

Lemma 4.5.For eachp € M’ satisfyingz(p) < 3ce and eacly > 6, thereis a
number C= C(p, 6p) < oo such that

|Boo (@, 2) — Boo (8, 1)| < CBoo (6, )10 — 0| (4.21)

forall A > 0and allg, 6’ e [1, 6g]. The bound @p, 8y) < oo is uniform in any
convex selV C {p € M": 3(p) < 3c€} with finitely many extreme points.

Proof. Let us assume that > 6’. To derive (4.21), we will regardB., (0, 1)
and By (', A) as originating from the same realization ©f,) and the “green”
sites. ThenA = By (d, 1) — B (¢’, 1) is dominated by the probability (un-
derP, ;) that there is a site € Ty, 0 # @, with the properties:

1) QY >1foralld =mk(@) withk=1,..., |ol.

@ QY <1butQ? > 1.
B) 2% Ny + 0, where™ is the set® for the subtred” rooted ats.
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Indeed, any realization ofX,) and the “green” sites contributing td obeys
29N = gand# NG + . Butthen there must be a sit@n the inner bound-
ary of ) where the avalanche correspondingtstops but that corresponding

to # goes on. (Sincé, ' > 1, we must have # @.) Consequentlnyf/) >1
for any ¢’ on the path connectingto the root, bth,(f)/) <1< Q,(,g), justifying
conditions (1) and (2) above. Sin(‘éf’) < 6p, and since thé-avalanche continu-
ing on frome must eventually reach a “green” site, we see that also condition (3)
above must hold.

Let p € M” be such thag(p) < 3ce. Using the independence of the events
described in (1), (2) and (3) above, and recalling the definitions (2.8) and (3.13),
we can thus estimate

A<Bx0.h) Y, Zoa@)Pg(Qy=1>Qph). (422
oeTph~{D}

AbbreviateKn(@, 6" = P{)(QY) > 1> Q). Sincev, is independent of al
the otherY’s in the measur@ﬁg ), we have

Kn(@,0) = {p(L—L,1- 1)) 9" =9 <10 —0'|b~"+1). (4.23)
Hered, resp.)’ play the role onﬁf)z, resp. Q(g ) and the interval in the argument
of p exactly corresponds to the inequalities

QY =vi+ 19 =15 Y1+t =QY). (4.24)

To estimate the supremum, we recall thatlx) = ¢,(x)dx where¢, is
bounded. Then

Kn(@,0") < llgpllsc 10 — 01D, neN. (4.25)

Now, by Corollary 3.8,Z,(8) < C3(p)" for someC < oo uniformly in p on
convex sets\V' C {p € M’: 3(p) < 3c€} with finitely many extreme points
and uniformly ind < 6. Therefore, the right-hand side of (4.22) is bounded
by B (b0, 4)|60 — 0’| times a sum that converges wheneygr) < jce, uniformly

in p € N, where\ is as above. This proves the desired claim.

Letp € M’ and letQ~ be the random variable defined in Section 3.3, inde-
pendent of both the green sites aXgl Let us introduce the quantity
B% (1) = E(Boo(Qoo. 1)), (4.26)
The significance oB% (1) is that it represents a stationary form B (-, 1),
i.e., Bf (1) is a very good approximation dﬁp,i(%ff/) NG =0loe ad®),

whered’ = QY*?™ and wherez?" is the quantity©) for trees rooted ak
very far fromg. Let

502 = B([E(Boo(X+ $. 1)) 2| Qo 2 1), (4.27)

whereX and Q are independent with distributiofs = p andP, respectively.
For critical distributions B3, (1) andz, (1) are related as follows:
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Lemma 4.6.Letp € M’ be such thag(p) = 3c. Then
b-1
BXL(A)=1- —r s, (A)[1+0(D)], 210, (4.28)

Proof. SinceBy, (9, 1) — 0 asi | 0, we can expandy on the ﬂght hand side of
(4.19) to the second order of Taylor expansion, usezfat = P(Q~ > 1) and
applybz(p) = 1 with the result

BL (W) =4+ (1— B (1) — le %,(M[1+0®)], 210, (4.29)

(Here we noted thaB, (X + %Qoo) < B (0p) allows us to estimate the error
in the Taylor expansion by, (1) B (6h) O(1), which is s¢,(1)o(1) asi | 0.)
Subtracting1 — 1) B, (1) from both sides and dividing by, (4.28) follows. O

Note that, by the resulting expression (4.28)(1)/2 tends to a definite limit
asi | 0. In the supercritical cases, on the other hand, Lemma 4.6 gets replaced by
the following claim:

Lemma 4.7.Letp, p’ € M" and defing, = (1—a)p+ap’. Suppose that(p) =
3c and3(pq) > 3cforall a € (0, 1]. Let By (0, ) denote the quantity B(0) for
the underlying measure,. Then

b—1 1,0

Proof. Similarly as in Lemma 4.6, we will use th&,,(9,0,a) — 0 asa — 0,
whereBy (0, 0, ) denotes the quantitl., (¢, 0) for the underlying measure, .
However, instead of (4.29), this time we get

b—1
B (0, a) (1 — b3(pa)) = 5 % O[1+oD)]. al0, (4.31)

where we again used that the error in the Taylor approximation can be bounded
by »,,0(1). Dividing by 3(ps) — 3¢ # 0, (4.30) follows. O

4.4. Critical asymptotics

The purpose of this section is to finally give the proof of Proposition 4.2. We begin
by proving an appropriate upper boundBg (8, 1). Note that, despite being used
only marginally, equation (4.28) is a key ingredient of the proof.

Lemma4.8.Letp € M’ satisfyz(p) = 3c. For eachd > 1 there is a number
K (@) € (0, oo) such that

lim sup B0, 4)

20 < K(©). 4.32
ns! 7 < K(®) (4.32)
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Proof. Let 3 = 3(p). We begin by proving (4.32) fat = 1. Let

) = B(p (11~ £ 0, 1D Qe 2 1) (4.33)

and recall the definition of¢,(4) in (4.27). Using the inequality.. (¢, 1) >
B (1, 1)1i9>1) We derive thate, (1) > 1(p)Bso(d, 2)2. Inserting this in (4.28),
we have

5 /lll(p) Boo(1, 2)?[1+0(1)], 410 (4.34)

By (4) <1-—

Since the left-hand side is always non-negative, (4.32Yfet 1 follows with
K(@D)~2 =2Li(p).

Next we will show that for any < 6y, By (8, 1) is bounded above by &<
dependent) multiple 0B (1, 1). Indeed, pick ar > 0 such that, — 6 > eb%l
and letm be so large that (2.15) holds. Fix a directed patmaiteps inT, starting
from the root. By conditioning on the event thé} > x, — ¢ for all ¢ # @ in the
path, we haveB,, (1, 1) > p([% — ¢, 1) B (8, 1), i.e.,

Boo (0, 1) < C(0)Bso(L,2), 0 < 6, (4.35)

with C(0) = p([X« — €, 1])™™ < oo.

As the third step we prove that (4.32) holds for valddn slight excess ofy,.
(The reader will notice slight similarities with the latter portion of the proof of
Theorem 2.4(1).) Let > 0 be such that, —¢ > 1— %. By Corollary 2.5 and the
fact thatp € M’, we can assume thag = p([x, — €, X.]) < 3. If & > 6y is such
thatfe = X, — € + £6 < 6, then (4.19) and the bounbly(y) < by imply

Bo(@,1) <A+ (11— /l)b[;cg B (@, 1) + (1 — k¢) B (O, /1)], (4.36)

becauseX + %9 < 6 for all X in the support ofp. Since(1 — A)bke < bre < 1,
we have

A4+ (1= 2)A = k)bC(0e) Boo (L, 1)
1— (1— 2)br, '

Dividing by +/2 and taking the limit. | 0, (4.32) follows withK (¢) given by
b(1 - xe)CO)K(1)/(1 — bre).

Finally, it remains to prove (4.32) for genertal> 6. But for that we just need
to observe that

Bxo (8, 1) < (4.37)

Boo(0, 1) < [1 = (L= )P ™M +@ = )P B (@ + 67K, 2) (4.38)

as follows by conditioning on the fird layers of T to be green-free. By tak-
ing k large enoughty, 4+ Ob~X is arbitrary close td, so the result follows by the
preceding arguments.O

Lemma 4.8 allows us to write the following expression By, (0, 1):
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Lemma 4.9.Letp € M’ satisfy3(p) = 3c. Lete(4, 0) be defined by
B (@, 1) = v, (0) B;O(l) +€(4,0), (4.39)

wherey,, (0) is as in(3.20) Thenlim; o e(4, §)2~2 = 0 uniformly on compact
sets of).

Proof. Recall the notatiorf;)ff)1 from (3.12), and IetEﬁf’) denote the expectation
with respect to the measuﬂaée) in (3.13). We will first show that

Boo (0. 2) = Zn(@)b"EY (Boo(QY), 1)) + &n(4) (4.40)

holds with ané, (1) satisfying lim, 0 é,(1)A~Y/2 = 0 for alln > 1. LetGn denote
then-th generation oy, i.e.,Gn = {0 € Tp: |o| = n}, and letH, = J;,.n Gm-
Recall the notatior:@ff)) for the objectZ® on the subtre@‘g’) of Ty, rooted atr
and IetQ((,e) be as described in (2.6). Givervac Gy, let (o) = (mX(0): k =
1, ..., n} be the path of connectingto the root.

A moment’s thought reveals that4fNHy, = @ (i.e., if there are no green sites
in the firstn — 1 generations ofy,), then in order for2® N¥ + @ to occur, the

following must hold: First, there is@ e Gp, such thale) > 1foralld e n (o).

Second, the avalanche starting from thigith an initial amounthf) reache¥/.
Introducing the event

= ({29 ng 200 N 1QV 2 1), (4.41)
0eGnp oen (o)
we thus have
Py, (Un) < Boo(0, 2) < Py i (Un) + Py ({4 NHy # 0}). (4.42)

SinceP, (¥ NH, # @) = O(4), it clearly suffices to show tha, , () has the
same asymptotics as claimed on the right-hand side of (4.40).
Sincelty is the union ob" events with the same probability, the upper bound

P,.1(Un) < b"Za(O)EY (Boo(QY), 1) (4.43)
directly follows using the identity
Ey(Boo(@. D) [T Lig0ny) = Z0OEP (B(QM). 1) (4.44)
oen (o)

To derive the lower bound, we use the inclusion-exclusion formula. The exclusion
term (i.e., the sum over intersections of pairs of events from the union in (4.41))
is estimated, using the bound in Lemma 4.8, to be less Kn@)?b?" 1, where
6 =6 V 6. This proves (4.40).

Since3(p)b = 1, Corollary 3.8 tells us thaZ,(9)b" = w,(0) + o(1). The

final task is to show tthﬁQ)(Boo(Qf)l, 1)) can safely be replaced by its limiting

version, B}, (4). We cannot use Corollary 3.6 directly, becatdse> B (0, 1) is



A model of organized criticality 27

known to be Lipschitz continuous only fér > 1. However, by Lemma 4.4 we
know thatB, (9, 1) = 4 for § < 1, which means that we can write

Boo(0, 2) = Boo (0 V 1, ) + [% = Bao (1, )]1p<1).- (4.45)

Now, B&o(a, 1) = B (0 Vv 1, 1) is Lipschitz continuous i@ for all § > 0, so by
(4.21) and (3.18),

EY (BL(QY) 1) — E(BL(Que, 2)| = DBx(@, 2)e™"  (4.46)

n,1>

wherec > 0andD = D(#) < co. To estimate the contribution of the second term
in (4.45), we first note that— By, (1, 1) is a constant bounded betweeB., (4, 1)
and zero. Hence, we thus need to estimate the diﬁermﬁ@le’)l <1 -

?IB(QOO < 1). But that can be done using Proposition 3.5: ket L%J and use

the monotonicity of) — Qfﬂ and (3.14) to estimate
PO(QY) < 1) —P(Qu < )| wan)

<PO@QY) > 1) -PQY > 1) < AeW, '

where A” = A/(1 — e ¢). By combining all the previous estimates and invoking

(4.32), we find that the diﬁerendﬁﬁg)(Boo(fo)l, 1)) — BX, () is proportional

to <"/, where¢’ > 0. Using this back in (4.40) the claim follows by taking

the limits4 | O andn — oco. O

Lemmas 4.8 and 4.9 finally allow us to prove Proposition 4.2:
Proof of Proposition 4.2Note that, by using (4.39) in (4.27) and the definition
of ¢, in (4.11), we have

%%p (1) = By (Mc,?+0o(h),  Alo. (4.48)

Then the fact thaB’ (1) tends to zero ag | O forces, in light of (4.28), that
b-15,(2) — Lasi | 0. This in turn gives that

B (A1) = vVA(c, +0(1), 410 (4.49)
Plugging this back in (4.39) proves the desired claim.

4.5. Supercritical case

Here we will indicate the changes to the arguments from the previous two sections
that are needed to prove Proposition 4.3. We begin with an analogue of Lemma 4.8:

Lemma 4.10.Let p, p’ € M’ and definep, = (1 — a)p + ap’. Suppose that
3(p) = 3c andj(p,) > 3¢ forall a € (0,1]. Then for eacl® > 1, thereis a
constant K(@) € (0, oo) such that

@) —
Iimsup—Ppa(l% | =00)

K’(9). 4.50
al0 3(pa) — 3¢ =K® (4.30)
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Proof. The only important change compared to the proof of Lemma 4.8 is the
derivation of the bound fof = 1. Indeed, in this case we use tha, (0) >

B (0, ) Bx (1, 0, a) in (4.30), whereBy (1, 0, a) is the quantityB.. (8, 1) for

A =00 =1andp = p,. Applying B, (0,a) > O for all a e (0,1], as
follows by Theorem 3.1(2), we find that (4 50) holds with(1) = g=;. Once we
setd = 0, the rest of the proof can literally be copieda

Next we need to state the appropriate version of Lemma 4.9:

Lemma4.11.Letp, p’ € M’ and definep, = (1 — a)p + ap’. Suppose that
3(p) = 3cand3(pq) > 3cforall a € (0,1]. Then

P, (18?| = c0) Ey (P, (|12Q%)] = c0))
(24 — 9 a
3(pa) — 3¢ vo©) 3(pa) — 3¢

+o), «l0, (451)

whereE, is the expectation corresponding%or measurep,, .

Proof. Also in this case the required changes are only minuscule. First, we have an
analogue of (4.40),

P, (|93<9>| = 00) = b"Z{) O) EY), (P,, (|%’(Q371)| = 00)) + & (), (4.52)

whereE is the expectatlom:(‘)) and Z(p“) the objectZ,(9) for the underlying
measureoa and wheré],(a) is the quantity in (4.40) fol = 0 andp = p,. We
claim that ,
lim —0® (4.53)
al03(pa) — 3c
for all finite n > 1. Indeed, the entire derivation (4.41-4.46) carries over, provided
we setd = 0. The role of the “small parameter” is now taken over;y,) — 3c.
A computation shows that (a) = O((G(pa) — 3¢)?) asa | 0, proving (4.53).
To finish the proof, it now remains to note tHatz{* (@) — b"z{ () as
a | 0 and that, by Corollary 3.8 and the fact thgd) = 3¢, we haveb”Z,(f)(H) =
w,(@)+o0(l)asn - co. O

Recall the definition o€, in (4.11). To prove Proposition 4.3, we will need to
know some basic contmuny properties @f in p. Note that these do not follow
simply from the continuity ofx — ,,(9), because also the expectauErm
(4.11) depends on the underlying measure.

Lemma 4.12.Letp, p’ € M’ be suchthap, = (1—a)p+ap’ satisfieg(p,) > 0
forall o € [0, 1]. Let ¢, be as in(4.11) Thenlim, oC,, = C,.

Proof. Let v, 0) = Ep, (yp,(Xg + %9)). In general,y,, (0) is Lipschitz con-
tinuous foré > 1. Thus,y,, converges uniformly tay, on compact sets df.
Hence, we just need to show

gﬁﬁa(w;@oo)zmoo > 1) = E(v} (Qx0)?| Qoo > 1). (4.54)
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Choosen > 1 and replacd@fa, E and Qo by their finiten versions. By Corol-
lary 3.6, the error thus incurred is uniformly small an € [0, 1]. Hence, it is
enough to show that

“mEﬂA%A¢®ﬂQ@>1) EO (i QY2 QY =1), (455

for somed € [1, 6y], where]Ew) denotes the expectation with respecl?ﬁf)> for
measurep. However, in (4. 55) only a finite number of coordinates are involved
and the result follows. O

With Lemmas 4.10, 4.12 and 4.11, we can finish the proof of Proposition 4.3:
Proof of Proposition 4.3From (4.51) we have

b—-1 2—2

5 (0) = B%,(0, @)°c, ” + 0(3(pa) — 3¢), al0. (4.56)

Using this in (4.30) and invoking Lemma 4.12, we have
B%(0, @)
3(pa) — 3¢

The proof is finished by plugging this back into (4.51) and invoking the continuity
ofa = y, (). O

=bd+o(1), alO (4.57)

5. Coupling argument

5.1. Coupling measure

The goal of this section is to define a coupling of the measIB’E@sand IP’,(f)I)

that appear in (3.14). As the first step, we will erl’ég)(-) as the distribution

of a time-inhomogeneous process. To have the process running in forward time
direction, we will need to express all quantities in terms of the (more or less)
original variableg Xy), which relate to thé&'’s through

Xk =Yn-k+1 OF Yk = Xn—k+1, l1<k<n, (5.1)

see Section 3.3. Abusing the notation sligh}ﬂﬁf)(-) will temporarily be used to
denote the distribution of th¥1, ..., X, as well. We will return to thé/’s in the
proofs of Propositions 3.5 and 3.7.

Let Zn(9) be as in (2.8) and note that, sinpec M’, we haveZ,(¢) > 0
foralln > 0Oand allé > 1. Given 1< k < n—1 and, fork > 1, a se-
quence(X, ..., Xk=1) € [0, 1]x1, we Iett(e)() = t(e)( [X1, ..., Xk_1) be
given by

Znok1(x + Q)
©) )
Znk(Qly %

tr(flz(x) = 0<x<1, (5.2)

where the indicator ensures that we are not dividing by zero(Xhe. . ., Xk—1)-
dependence dﬁz will be often left implicit.
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To interpret these objects, let us consider the ¢ase 1. Suppose that we
wish to elucidate the distribution of; knowing that the processill survive long
enough to produce aKn_1. (The variableX,, corresponds t&’1, which will be
uncorrelated with the othéf’s.) The only prior history we know is the value &f
obviously we are only interested in the cése 1. The total weight of all configu-
rations is justZ,_1(0); hence the denominator of (5.2). NowXf takes value,
the weight of configurations in which the process survives is like the weight of a
string of lengthn — 2 with an effective §” given by x + £0. HenceZn_a(x + £0)
in the numerator. (Notice that ¥ + %9 < 1, this automatically vanishes.) We
conclude thall’ﬁ,a)(xl e dx) = tr(f?(x)p(dx).

A similar reasoning shows that the probability{ofi € dx} given the values
of X1, ..., Xk=1 equalstfﬁ(x)p (dx). This allows us to viewPﬁg) as the distribu-
tion of an inhomogeneous process:

Lemmab5.1.Forall > 1, alln > 1 and all Borel-measurable sets @ [0, 1]",

n-1

PO(A) =E(1a [Tt 0WIXa, -, X)) (5.3)
k=1

Proof. The result immediately follows from the formula

n-1 n-1
1

®) - - I | 4
I It Xkl X1, ..oy Xk— 1 5.
L1 nk (Xl X1, -y Xie-1) Zn_l(g)[k . {xk+%QE’_)1>1}]’ .4

the identityQ” = Xy + Q' and the definition oP{’ (), see (3.13). o

Next we will define the coupled measure. The idea is to use the so-called Vaser-
shtein coupling, see [8], which generates new (coupled) pairs from the “maxi-
mal overlap” of the individual distributions. L&t ¢’ > 1 and let us suppose
that the corresponding sequencés= (Xq,..., Xk—1) € [O, 1]"—l and X' =
(X1, ..., Xy_p) € [0, 1]%~1 have been generated. Assume also that a sequence
(w1, ..., wk—1) € {0, 1}k"1 satisfyingw, < 1{x(=x;} foralll < ¢ < k-1 has
been generated. (This sequence marks down hemas coupled withX;. Note
that we could have that, = X, even whenX, and X; are not coupled.) Ldtbe
the quantitytf@ for the sequenc¥ and lett’ be the corresponding quantity for the
sequenceX’. Let

R(-) = RGP CIXe oo Xecns X X pion, o onc) (5.5)

be the transition kernel of the joint process, which is a probability measure on
[0, 1]x[0, 1] x {0, 1} defined by the expression

R(dx x dx’ x {w})

) AT(X) p(dX)ox (dX'), ifo=1, (5.6)
[ Zg [t =YL V() = L) p(dx)p (), if =0,
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Heret(x) A t’(x) denotes the minimum df(x) andt’(x) and f(x) — t'(X)]+
denotes the positive part bfx) — t'(x). The quantityg = O, k8>2 ' IS given by

q= /t(x) At (X) p(dx) =1— /[t(x) — (0], p(dx). (5.7)

The interpretation of (5.6) is simple: In order to sample a new tiiglg X, wk),
we first choosevy € {0, 1} with Prob(wx = 1) = q. If ok = 1, the pair(Xk, X})
is sampled from distributior%t(x) At (X) p(dx)dx (dx)—and, in particularXy
gets glued together with;—while for the casesx = 0 we use the distribution in
the second line of (5.6).

Remark 51t turns out that whenever the above proces¥eand X’ have glued
together, they have a tendency to stay glued. However, the above couptiog is
monotone, because the processes may come apart no matter how long they have
been glued together. Our strategy lies in showingdftands to one rapidly enough

so that the number of “unglueing” instances is finite almost surely.

LetPY: a4 (. -) be the probability measure on,[0]" x [0, 1]" x {0, 1}" assigning
mass

PO =S [ @@L, 1}HRé6kxx/ (dexdxix (o)) (5.8)

(k)
to any Borel-measurable sBtc [0, 1]"x[0, 1]"x {0, 1}". Here (9{,}2 o (AXk X
dx x{wx}) = Rﬁeg)(dxkxdx{(x{wkﬂxl, s XK1 XY, s X1 O, -, WK—1)-

As can be expected from the constructi@rﬁ?)() and IP’,(f,)(-) are the first and
second marginals ard-f )(-), respectively:

Lemmab5.2.Letd, 8’ > 1. Then

PO (A x [0, 11"x{0, 1)) = B (A) (5.9)
and
PO ([0,1]"x A x {0, 1)) = BY)(A), (5.10)

for all Borel-measurable A- [0, 1]".

Proof. To prove formula (5.9), leK = (X, ..., Xk—1) andX’ = (X, ..., X[ _;)
be two sequences from [0k, If Qw) > 1 and the same holds for the cor-

responding quantity for the sequenkg lett(-) = t((’)( ) UE) = (9)() and
let R(-) andq be as in (5.6) and (5.7), respectively. Using (5.7) we have, for all
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Borel setC c [0, 1],

/ R(dx x dx’ x {w})
wel0,1) Y Cx101] (5.11)

= [(000 A¥00+ 100 ~ Y 001) (@0 = [ t00p (@)
C C

In other words, the first marginal of the coupled process is a process bvith
the transition kernel(-)p (-), which, as shown in Lemma 5.1, generdﬂ’é@. This
proves (5.9); the proof of (5.10) is analogous

Clearly, the numbeq represents the probability that the two processes get cou-
pled. The following lemma provides a bound that will be useful in controltjing

Lemmab5.3.Letd, 0 > 1,1 <k<n-—1land X= (Xy,..., Xk-1) € [0, 1]"—l
and X = (X1, ..., X,_,) €0, 1]%-1. Let Q be the quantity @1 corresponding

to X and let Q be the quantity 9@1 corresponding to X If Q A Q' > 1, then

0.0 Zn-k(QA Q)
On,k: X, x" = Zok(QV Q) (5.12)

Proof.Lett be the quantityr(fﬁ for the sequencX and lett’ be the corresponding

guantity for the sequenck’. By inspection of (5.2) and monotonicity &f —

Zn(9),

Zn k21X + £(QA Q)
Zn—k(QV Q) ’

and similarly fort’(x). From here the claim follows by integrating with respect

top(dx). O

t(x) >

(5.13)

5.2. Domination by a discrete process

The goal of this section is to show that the coupled measure defined in the pre-
vious section has the desirable property that, after a finite number of steps, the
processesX and X’ get stuck forever. Since the information about coalescence
of X and X’ is encoded into the sequenee we just need to show that, eventu-
ally, wx = 1. For technical reasons, we will concentrate from the start on infinite
sequencetok)ken: Let Prﬁ‘w/)(-) be the law of(wk)ken € {0, 1}V induced by the
distribution]P’ﬁa’H’)(-) and the requiremerﬁ,ﬁg’e/) (wk =1, k>n)=1.

The coalescence ok and X’ will be shown by a comparison with a sim-
pler stochastic process df, 1}¥ whose law will be distributionally lower than
P,ﬁe’e/)(-), i.e., in the FKG sense. Let be the partial order ow, " € {0, N
defined by

w0 & k<o, k> 1. (5.14)
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Next, note that, by, > 1 — b, we have 1—- b(1 — x,) > Gb — 1. Choose a

numberd, € (6p—1, 1—b(1-x,)) and, noting thap([l— b 2. %.]) > 0, define
a collection of weightg4,(s)) by

1-7,(9) _ N p(l-2,1-12))
4p(8) = o-o<s,b p(IL— 2, x])

seNU{0}. (5.15)

Note thats = /(s) is increasing. It is also easy to verify thas(-) € (0, 1], so
any of these weights can be interpreted as a probability. This allows us to define a
process offw; )keN € {0, 1N, with the transition kernel

pp(a)f( =1|w’1,...,a)|’(_l) =/1,,(min{05 j < k—l:a)f(_j_le}), (5.16)

where, for definiteness, we sef, = 0. Let P,(-) denote the law of the entire
process with transition probabilitigs, (- | -) and “initial” value wy = 0.

Proposition 5.4.Let p € M’ and leto, be as above. For all > 1 and all6, 6’

with 1l < 6,0" < 0, the measure rfg’g/)(-) stochastically dominateﬁp(-) in
partial order <.

Let ¢, be fixed for the rest of this Subsection. In order to give a proof of
Proposition 5.4, we first establish a few simple bounds.

Lemma5.5.Letp € M and letd, be as above. Let » 0 and supposé, ¢’ > 1
satisfy0 < 0 — 0" < ¢,b~ for some k> 0. Then

Zn(9’)
k 5.17
2@ = o ®: (5.17)
Proof. Consider a configuratioiXy, ..., X,, which contributes taZ,(¢) but not

to Zn(6"). This implies that there is ahe {1,...,n} Wherle) >1 bthE,e/) <
1. With this in mind, we claim the identity

n n

HlQ(")>1 H Q¥ >

n n
. [HlQ”” 1}] Q ”><1<Q<ﬁ)}[ [1 1{QE€)21}]

m=£(+1

(5.18)

Thence,

-1

n
0
Za(0) — Zn(0) = ZE(zn_K(Qg ) Lo 120 I 1 Qgi’)zl})' (5.19)
) m=1

=1
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Sinced — 0 < 5,b7%, we haveQ”) — 1 < Q¥ — Q) < 5,b=*C for any¢
contributing on the right-hand side. In particular, we h@é@ <1+ %", which
implies Zn_g(Qf)) < Zn_¢(1+ %). Then

Zn(0) — Zn(0")

n s ©) (9) (5.20)
< Z Zn—(1+ Fp)E(P([l - Qe 11 =) H 1 Q¥" >1)
=1 =1
; _10® 1_1H6) i i
or, replacingo ([1 — 5Q,”;, 1 — 5 Q,_7)) by its maximal value,
Zn(0) — Zn(9/)
(5.21)

< Zzn A+ B) 2@ sup p(L-p.1- %))
9— ﬂ/gépbfkfﬂrl

On the other hand, by simply demanding thgt > 1 — - 5” (which implies
26) >1+ ébﬂ) in (2.10) we have for all k ¢ < nthat

Za(©) > Zn-e(1+ E)p (11 = 52 %0) Ze-a0). (5.22)
Using (5.22) in (5.21), and applying (5.15), we have

1-7,K)

Zn(0) — Zn(0") < 7,

Zn (@), (5.23)

whereby the claim directly follows. o

Next we prove a bound between kernels (5.6) and (5.16):
Lemma5.6.Letl < k < n—1and letw = (o),...,0_;) € {0, 1}k,
X = (X1,..., Xk=1) € [0,1]°L, X' = (X}, ..., X[_y) € [0, 1]t andw =
(@1, ..., 0k-1) € {0, 3L Forall 0,0’ > 1andallt = 1,...,k — 1, let Q)
correspond to X vig2.5), and let q,‘” correspond to X Suppose that

Q”>1 Q" >1 and

s o) < Lix=x, 1< j <k-1. (5.24)
If Rr(fkg)z X' () is the quantity defined i(6.8), then

0,0’
Ol xollon=1}) = py(af = 1| ek, ... 0f_y), (5.25)

forall 9,0’ with1 < 0,0’ < 6.
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Proof.Note that, since k 6,6’ < 6, and 146, > 6, we have 1< Qgg), Qgé") <

146, and thug Q) — Q¥7| < 5, forall ¢ = 1,...,k — 1. This allows us to
define the quantity

s=max{t: 0< ¢ <k, [Q? — Q¥ <5,b7). (5.26)

By Lemmas 5.3 and 5.5, we halR{{wx = 1}) > 1,(s), whereR(.) stands for the
quantity on the left-hand side of (5.25). Recall our convengigr= 0 and let

s =minf0<j<k-1:ep_;_5=0} (5.27)

In other wordsg' is the length of the largest contingent block of 1'siihdirectly

precedingy;, . We claim thats > s'. Indeed, by our previous reasoning, we have
|Q|(f)_)s,_1 - Qf_/)s,_ﬂ < J,. By our assumptions, & a)] < 1{><,-:x’j} and, there-
fore, Xj = X’j forall j =k —¢/,...,k— 1. This implies

Q¥ - Q)| < 6,0 (5.28)

and hences > §'. Using thats’ is the argument of in (5.16) we haveR({wx =
1) > 4,(8) > 2,(8) = py(wy = 1| @), ..., o _;). This proves the claim. O

Now we are ready to prove Proposition 5.4:

Proof of Proposition 5.4The inequality (5.25) is a sufficient condition for the ex-
istence of so-called Strassen’s coupling, see [8]. In particular, the inhomogeneous-
time process generating the triple$x, X, wx) can be coupled with the process
generatingy, in such a way that (5.24) holds at all times less thaiihe (v, ")
marginal of this process will be, by definition, concentrated®n= «'}. Since

wg = 1fork > n, P(9 ) _almost surely, the required stochastic domination fol-
lows. O

5.3. Existence of the limiting measure

The goal of this section is to show that, under proper conditions, the praecess
with distribution P, (-) equals one except at a finite number of sites. Then we will
give the proof of Proposition 3.5. Let

@ =2,0) [Tz 2, (K), if ne NU {0},
TR0 4, (K), if N = oo

and observe thap, is the probability of seeing a block of 1's of lengthin the
prime configuration. We begin with an estimateldk):

(5.29)

Lemma 5.7.For eachp € M, there is Gp) < oo andw > 0such that
1—7,(k) < C(p)e ™k (5.30)

Moreover, the quantity (&) is bounded away from infinity uniformly in any sub-
set\ ¢ M’ with finitely many extreme points.
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Proof. Let ¢, be the density op with respect to the Lebesgue measure ari]0
Then
sup p(1-5,1- B)) < 6,07 IPslloo- (5.31)
0—0'<5,b=n
The claim then follows by inspection of (5.15) withh = logb and an appropriate
choice ofC(p). The bound or€ (p) is uniform in anyN with the above properties,
because the bourd, || p < oo is itself uniform. O

The preceding estimate demonstrates that the discrete process locks, and in fact
does so fairly rapidly. Indeed, we now hapg, > 0, which ensures that eventually
the configuration is all ones, and further that fhetend to zero exponentially. It
remains to show that the waiting times till locking are themselves exponential.

Lemma5.8.Letp € M’ and, forn> 1, let&(n) = {«’ € {0, BV: a/J =1j>
n}. Letao > 0 be such thap(a) = 3o .o € P px < oo forall a € (0, ag).
Then

P,(E(M)°) < ne#N, n>1, (5.32)

where
u(p) = Sup{a >0:¢0(a) < 1}. (5.33)

We note that both quantitiesy and . (p) are nontrivial. Indeedyg > w > 0
and, sincepe can be written aP.o = 1—> .o Pn > 0, we have that (p) > 0.

Proof. An inspection of (5.16) shows that “blocks of 1's” form a renewal process.
Indeed, supposg for¢ =1, ..., k—1 mark down the lengths of firkt—1 “blocks

of 1's” including the termmatmg zero (i. efg = n refers to a block ofi — 1 ones
and followed by a zero). Denotingx_1 = ZJ 151 , thek-th block’s length is then

& =min{j > 0: wH'Nk , =0 (5.34)

As is seen from (5.16),) can be continued into an infinite sequence of i.i.d.
random variables ol U {oco} with distribution Prol§¢x = n+ 1) = p,, wherep,
is as in (5.29). The physical sequence terminates after thékflistoo is encoun-
tered. LetG, (k) be the event thafy, . . ., & are all finite anoz, 1< > n. Then,
clearly,£(n)¢ = Up_1 Gn(K).

The probability ofGn (k) is easily bounded using the exponential Chebyshev
inequality:

Prob(Gn(K)) < p(@)*e™",  0<a <ao. (5.35)

Noting thatZEzlw(a) < nfora < u(p), the claim follows. O

Now we are finally ready to prove Proposition 3.5:
Proof of Proposition 3.5Let p € M” andn be fixed. Lek < nand suppose that
is a function that depends only on the fikstf the Y-coordinates. Lefiy > 6, and
letd, 6’ e [1, 6]. Noting thatP{ (-|Q¥), e dQ) = P{?,(), we have

|E(€)1(f) Egﬁ/)(f” IE(H)

n+l(|E(Qn+1n)(f) —]Eﬁg/)(f)|). (5.36)
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Since Qﬂl,n € [1, 6p] by our choice ofd, we just need to estimau@]ﬁg)(f) —

EY)(1)] by the right-hand side of (3.14) for &l ' e [1, f).
Introduce the quantity

Dn(f) = sup{|[EQ () —EY)(f)]: 0,0’ € [1, 60]}. (5.37)

We need to shovD,(f) is exponentially small im. By Lemmas 5.1, 5.2, and
Proposition 5.4, the probability that; # X for somen — k < i < n under
the coupling measurﬁﬁg’g/)(-) is dominated by the probability that = 0 for
somen —k < i < nunderP,(.). Since f depends only on the fir$t of the Y
variables (i.e., théast k of the X variables), the coupling inequality gives us

[ED(f) —E ()| < 2]l flloo By (E( = K)°), (5.38)

where€(n — k) is as in Lemma 5.8.
Let u = u(p) be asin Lemma 5.8. Then (5.32) and (5.38) give

Dn(f) < 2| f loo(n — k) 400 < 4(4e) L) f e 240 (5.30)

This proves (3.14) witly = %y andA = 4(ue)~t. The boundg > 0 andA < oo
are uniform in sets\" ¢ M’ with finitely-many extreme points, because the
boundu(p) > 0 is itself uniform. The existence of the limit (3.15) and its in-
dependence df is then a direct consequence of (3.14]n

5.4. Distributional identity

Here we will show the validity of the distributional identity (3.19). The proof we
follow requires establishing that the distribution@f, has no atom aQ., = 1:

Lemma5.9.Letp € M’. ThenP(Q = 1) = 0.

Proof. Notice that the almost-sure bou(u;!ﬁ)1 < Qo < Qf?"l) holds foralln > 1,
with Qf]l)l 1 Qo and Qggbl) 4 Quo asn — oo. Therefore,

P im P(oW (6h)
P(Qw =1) = lim P(Qyy <1 Qu7 > 1). (5.40)
But Y1 is unconstrained unddt(-) which by 0 < Qﬁfﬁ) - Qﬁ,l)l < (6 — b™"
allows us to write
P(QY, <1, Q% > 1) < Lhs. of (5.31) (5.41)

Hence,ﬁP?(Qr(ﬂ <1, Q,(fti) > 1) - 0 ash — oo and we havé®(Qu = 1) = 0,
as claimed. o

Proof of Proposition 3.7Let X be a random variable with distributi@®{(-) = p(-),
independent o1, Yo, ..., and letd > 1. For alla € R, define the (distribution)
functions )

F?@ =PY(QY) = a). (5.42)
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and
~ ©)
F?@) =P P® (x +-">a QY) > 1). (5.43)

0) D A0 D 0 0 :
SlnceQ( ) Q,ﬂll’z, X =YrandYs + %Q,ﬂjl 5= Qr(1-:1,1’ these functions obey
the reIat|on

FO@=F"0)F%@, n=1ack (5.44)
Let F(a) = P(Qu > @) and let

F(a) = P@P(X + Q—t;"’ >a, Qu > 1) (5.45)

Both F(-) andF (-) are non-increasing, left-continuous and they both have a right-
limit at everya € R. In particular, both functions are determined by their restric-
tion to any dense subset&f The proof then boils down to showing that there is a
setA C R dense inR such that

lim F% (@) = F(a) ae AU{1}, (5.46)
n—oo

and
lim F%(a) = F(a), aeA. (5.47)
n—oo

Indeed, then (5.44) implieB (a) = F(1)F(a) for all a € A, which by continuity
extends to alh € R, proving (3.19).

Let A be the set of continuity points of botfi(-) and F(-). Clearly, A is
countable and hencA is dense inR. The limits in (5.46) will be taken in too
stages; first we take the limit of the distribution and then that of the event. Since
Q(l) < fo)l < Qfg,bi for anym < n, we have, by (3.15),

Bro® . 0 ; 0 B¢ )
P(Qpy = @) < liminf F9(@) < Ilrr]rl)sotépFrﬁ '@ <P(Qy) >a)  (5.48)

forall¢ > 1 and allm > 1. Them — oo of the extremes exists by monotonicity.
Since Q((’b) > Qoo, the right-hand side converges kqa). As for the left-hand
side, it is clear that the evefiQ. > a} implies that eventually{Q(l) > a}
occurs. Thus the limit of the extreme left is at least as bﬂg(@;oo > a). However,

the latter equal$- (a) because, by assumpticajs a continuity point ofF. This
proves (5.46). The argument for the limit (5.47) is fairly similar; the right-hand
side will directly converge td- (a), while the limit of the left hand side will be no
smaller thar® ® @(X + %Qoo > a, Qo > 1). However, by Lemma 5.9 we have
thatP(Qs = 1) = 0 and thus the limit equalB (a), becaus@ € A. O

Proof of Corollary 3.6.The proof on(Q) — Qo is immediate from (5.46). To
prove (3.18), we note that (3.17) and (2.5) imply the deterministic bounds

| 1(Q5 D) = F(Q™)] < Cll flloo b6, (5.49)
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and
[ £(Qoo) = F(Q)] < Cll flloc b0, (5.50)

where we used tha(pgffl < G for 8 < 6y. The bound (5.49) implies that
[ES) (f(Q5 1)) — B (F(QM))| < €'l flloce™™, (5.51)

whereC’ < oo andy > 0, while the bound (5.50) guarantees thaf (Qx)) can

be replaced bﬁ(f(Q(eb))) with a similar error. Then (3.18) withr2replacingn
boils down to the estimate of

(S (f(QiD) —E(f(QUD) | (5.52)
But, by Proposition 3.5, the latter is bounded Ay f || ,e~¢". Combining all of
the previous estimates, the claim followsz

Proof of Corollary 3.8 We begin by showing that(p) = ﬁP\@(QC><> > 1). Indeed, we
can use thaZ,(0) = 0 for6 < 1to compute

B(Z0(Qw)) = P(Qu = DE®E(Zn-1(X + §Qu) | Qe > 1)
=P(Qw = DE(Zn-1(Q)) = --- = P(Qeo = Y™,

where we used Proposition 3.7 to derive the second equality. Frong(ere=
IP’(QC><> > 1) follows by noting that[P’(QC><> > 1)Z,(1) < ]E(Zn(QOO)) < Zn(6h)
and applying Theorem 2.4(1).

In order to prove the existence of the limit (3.20), we first notice that

(5.53)

Zn+1(0) ©) (O
=P > 1). 5.54
Zn(G) n+l(Qn+1,1 = ) ( )
Next we claim thal[P’gizl(Qf_ﬁll > 1) — 3(p), for & > 1, decays exponentially

with n. Indeed, lety > 6, andd < [1, 6], pick k = Lﬁj, uste(:) Qfﬁl 1 <
Ql(f’i) and apply Proposition 3.5, to get

(Q(l) >1) - Aet < Pr@l(Qﬁll 1) < @(Ql(ﬁ) > 1) + Ae™¥, (5.55)

where A < oo is proportional toA(p, 6o) from (3.14). On the other hand, we
clearly have

P(Q1 > 1) <P(Qw > 1) <P(Q > 1). (5.56)

But the right and left-hand sides of (5.56) differ only B§Q[") < 1, Q9 > 1),
which can be estimated as in (5.41) by a number tending to zero exponentially fast
ask — oo. From here we have

‘ Zn+1(9)

I ) < Aed, 0 e[1,60], 5.57
Z0©@)3(0) '5 ¢ = [1. &l (5.57)
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whereA’ = A'(p, 8p) < coand;” = ¢’(p) > 0. The uniformity of these estimates
is a consequence of the uniformity of the bourds: co and¢ > 0 and that as in
(5.41).

The existence of the limit (3.20) fat € [1, 6g] is a direct consequence of
(5.57) and the identity

n-1

: _ . Zk410) 11 Zr10)
6) = lim Z,@ n=| — = ——, (5.58
v @ = fim 2@ = 502w = sozaer €59

and the fact that the corresponding infinite product convergesfdFer 1 we
haveZ,(6) = 0 and the limit exists trivially. To prove thét— v, (0) is Lipschitz
continuous fol¥ > 1, we first note that, by (5.23) and the result of Lemma 5.7,

1Z0(0) = Zn(0)| < CIO = 0"y, (G0)3() ™", 6.0" €[L,60],  (5.59)

whereC = C(p, fp) < oo is on sets\" ¢ M’ with finitely many extreme points.
From here the bound in part (2) directly follows.

Let zr({’)(e) denote explicitly thatZ,(9) is computed using the underlying
measurep. The continuity ofa — ,, (0) then follows using three facts: First,

o zﬁpa)(e), being an expectation with respectdp, is continuous. Second, by
Theorem 2.4(2)g — 3(p,) is also continuous. Third, the infinite product (5.58)
converges uniformly im. O
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