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Colligative properties of solutions:
ll. Vanishing concentrations

Kenneth S. Alexander! Marek Biskup,? and Lincoln Chayes’

We continue our study of colligative properties of solutions initiated in ref. [1].
We focus on the situations where, in a system of linearlsizbe concentration

and the chemical potential scale like= ¢/L andh = b/L, respectively. We

find that there exists a critical valug such that no phase separation occurs
for & < & while, for¢& > &, the two phases of the solvent coexist for an interval
of values ofb. Moreover, phase separation begins abruptly in the sense that a
macroscopic fraction of the system suddenly freezes (or melts) forming a crystal
(or droplet) of the complementary phase whereaches a critical value. For
certain values of system parameters, under “frozen” boundary conditions, phase
separation also ends abruptly in the sense that the equilibrium droplet grows
continuously with increasiny and then suddenly jumps in size to subsume the
entire system. Our findings indicate that the onset of freezing-point depression
is in fact a surface phenomenon.

1. INTRODUCTION

1.1. Overview

In a previous paper (ref. [1], henceforth referred to as Part I) we defined a model
of non-volatile solutions and studied its behavior under the conditions when
the solvent undergoes a liquid-solid phase transition. A particular example of
interest is the solution of salt in water at temperatures near the freezing point.
In accord with Part | we will refer to the solute as salt and to the two phases of
solvent as ice and liquid water.
After some reformulation the model is reduced to the Ising model coupled

to an extra collection of variables representing the salt. The (formal) Hamilto-
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nian is given by

1—0')(
ﬁ%:—\]%axay—hgﬂx-i‘sz:Sx 2 . (11)

Here we are confined to the sites of the hypercubic laffitevith d > 2,

the variablesy € {+1, —1} marks the presence of liquid water,(= 1) and

ice (ox = —1) at sitex, while Sy € {0, 1} distinguishes whether salt is present
(Sx = 1) or absent§x = 0) atx. The coupling between th#s is ferromagnetic

(J > 0), the coupling between thés and thes’s favors salt in liquid water,
i.e., k > 0—this reflects the fact that there is an energetic penalty for salt
inserted into the crystal structure of ice.

A statistical ensemble of direct physical—and mathematical—relevance
is that with fluctuating magnetization (grand canonical spin variables) and a
fixed amount of salt (canonical salt variables). The principal parameters of the
system are thus the salt concentratcand the external field. As was shown
in Part | for this setup, there is a non-trivial region in tfeeh)-plane where
phase separation occurs on a macroscopic scale. Specificallg, forin this
region, a droplet which takes a non-trivial (i.e., non-zero and non-one) fraction
of the entire volume appears in the system. (For “liquid” boundary conditions,
the droplet is actually an ice crystal.) In “magnetic”’ terms, for eAdhere
is a unique value of the magnetization which is achieved by keeping part of
the system in the liquid, i.e., the plus Ising state, and part in the solid, i.e., the
minus Ising state. This is in sharp contrast to what happens in the unperturbed
Ising model where a single value bf(namely,h = 0) corresponds to a whole
interval of possible magnetizations.

The main objective of the present paper is to investigate the limit of in-
finitesimal salt concentrations. We will take this to mean the following: In
a system of linear sizé we will consider the above “mixed” ensemble with
concentratiort and external fieldh scaling to zero as the size of the systém,
tends to infinity. The goal is to describe the asymptotic properties of the typical
spin configurations, particularly with regards to the formation of droplets. The
salt marginal will now be of no interest because salt particles are so sparse that
any local observable will eventually report that there is no salt at all.

The main conclusions of this work are summarized as follows. First, in a
regular system of volumé = LY of characteristic dimensiah, the scaling for
both the salt concentration and external field.ist. In particular, we should
write h = bL~Y andc = £L~1. Second, considering such a system with
boundary condition favoring the liquid state and withand ¢ enjoying the
abovementioned scalings, one of three things will happensageeps from O
to infinity:



Colligative properties of solutions 3

(1) If bis sufficiently small negative, the system is always in the liquid state.

(2) If bis of intermediate (negative) values, there is a transition, at ggine
from the ice state to the liquid state.

(3) Most dramatically, for larger (negative) valuestpfthere is a region—
parametrized by (b) < & < &(b)—where (macroscopic) phase sep-
aration occurs. Specifically, the system holds a large crystalline chunk
of ice, whose volume fraction varies from unity to sopasitiveamount
as¢ varies from&i(b) to & (b). At & = &(b), all of the remaining ice
suddenly melts.

We obtain analogous results when the boundary conditions favor the ice state,
with the ice crystal replaced by a liquid “brine pocket.” However, here a new
phenomenon occurs: For certain choices of system parameters, the (growing)
volume fraction occupied by the brine pocket remains bounded away from one
as¢ increases frongy(b) to &(b), and then jumps discontinuously to one at
&(b). In particular, there are two droplet transitions, see Fig. 1.

Thus, we claim that the onset of freezing point depression is, in fact, a
surfacephenomenon. Indeed, for very weak solutions, the bulk behavior of
the system is determined by a delicate balance between surface order devia-
tions of the temperature and salt concentrations. In somewhat poetic terms, the
predictions of this work are that at the liquid-ice coexistence temperature it is
possible to melt a substantial portion of the ice via a pinch of salt whose size

is only of the ordeiv1-1. (However, we make no claims as to how long one
would have to wait in order to observe this phenomenon.)

The remainder of this paper is organized as follows. In the next section
we reiterate the basic setup of our model and introduce some further objects of
relevance. The main results are stated in Sections 2.1-2.3; the corresponding
proofs come in Section 3. In order to keep the section and formula numbering
independent of Part I; we will prefix the numbers from Part | by “I.”

1.2. Basic objects

We begin by a quick reminder of the model; further details and motivation are
to be found in Part I. Len c Z9 be a finite set and I€tA denote its (external)
boundary. For eack € A, we introduce the water and salt variableg, €

{—1, +1} andSx € {0, 1}; on A we will consider a fixed configuratiosyp €

{—1, +1}97. The finite-volume Hamiltonian is then a function(efy, S») and
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phase
separation

Fig. 1. The phase diagram of the ice-water system with Hamiltonian (1.1) and fixed salt
concentratiorc in a Wulff-shaped vessel of linear size The left plot corresponds to the
system with plus boundary conditions, concentratica ¢/L and field parametdn = b/L,

the plot on the right depicts the situation for minus boundary conditions. It is noted that as
ranges in(0, oco) with b fixed, three distinct modes of behavior emerge, inlthes oo limit,
depending on the value bf The thick black lines mark the phase boundaries where a droplet
transition occurs; on the white lines the fraction of liquid (or solid) in the system changes
continuously.

the boundary condition;, that takes the form

1—0')(

BAA(ON, SAloan) = =3 D oxoy—h D ox+x D S > 1.2
<X5y> XeA XeA
XeA, yeZd

Here, as usualx, y) denotes a nearest-neighbor pairZfhand the parame-
tersJ, x andh represent the chemical affinity of water to water, negative affin-
ity of salt to ice and the difference of the chemical potentials for liquid-water
and ice, respectively.

The a priori probability distribution of the paifos, Sp) takes the usual
Gibbs-Boltzmann formP{?A (a5, Sp) o e #7aleaSaleen) - For reasons ex-
plained in Part I, we will focus our attention on the ensemble with a fixed total
amount of salt. The relevant quantity is defined by

Na =D S (1.3)

XeA
The main object of interest in this paper is then the conditional measure

PXEA’C’h(') — PXBA(. |N/\ — LclAH)’ (14)
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where|A| denotes the number of sites k. We will mostly focus on the
situations wherv;p, = +1 orosp = —1, i.e., the plus or minus boundary
conditions. In these cases we denote the above measnm;é’bﬁ}, respectively.

The surface nature of the macroscopic phase separation—namely, the
cases when the concentration scales like the inverse linear scale of the system—
indicates that the quantitative aspects of the analysis may depend sensitively on
the shape of the volume in which the model is studied. Thus, to keep this work
manageable, we will restrict our rigorous treatment of these cases to volumes
of a particular shape in which the droplet cost is the same as in infinite volume.
The obvious advantage of this restriction is the possibility of explicit calcula-
tions; the disadvantage is that the shape actually depends on the value of the
coupling constantl. Notwithstanding, we expect that all of our findings are
qualitatively correct even in rectangular volumes but that cannot be guaranteed
without a fair amount of extra work; see [17] for an example.

Let V. c RY be a connected set with connected complement and unit
Lebesgue volume. We will consider a seque(i¢e) of lattice volumes which
are just discretized blow-ups &f by scale factoL:

VL ={xeZ% x/L e V. (1.5)

(The sequence of x --- x L boxes(A) from Part | is recovered by let-
ting V. = [0,1)%.) The particular “shape¥ for which we will prove the
macroscopic phase separation coincides with that of an equilibrium droplet—
the Wulff-shaped volumewhich we will define next. We will stay rather suc-
cinct; details and proofs can be found in standard literature on Wulff construc-
tion ([2,4,5,7,8,12] or the review [6]). Readers familiar with these concepts
may consider skipping the rest of this section and passing directly to the state-
ments of our main results.

Consider the ferromagnetic Ising model at couplihg- 0 and zero ex-
ternal field and Iefl’f’J denote the corresponding Gibbs measure in finite vol-
umeA c Z9 and plus/minus boundary conditions. As is well known, there
exists a numbed; = Jc(d), with J.(1) = co and J.(d) € (0, 00) if d > 2,
such that for every > J. the expectation of any spin it with respect th’f’J
is bounded away from zero uniformly in ¢ Z9. The limiting value of this ex-
pectation in the plus state—typically called thgontaneous magnetizatien
will be denoted bym, = m,(J). (Note thatm, = 0 for J < J. whilem, > 0
for J > J..)

Next we will recall the basic setup for the analysis of surface phenomena.
For each unit vecton € RY, we first define the surface free energyn) in
directionn. To this end let us consider a rectangular BogN, M) c R¢
with “square” base of sid&l and heightM oriented such that is orthogonal
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to the base. The box is centered at the origin. WeZI*,@}i,, denote the Ising
partition function inV (N, M) N Z¢ with plus boundary conditions. We wiill
also consider the inclined Dobrushin boundary condition which takes walue
at the sitesx of the boundary o/ (N, M) N Z9 for whichx - n > 0 and—1
at the other sites. Denoting the corresponding partition functiofipy;", the
surface free energy; (n) is then defined by ’

1 Zﬂ:,J,n
n=— lim lim log —N-M_ 1.6
TJ( ) M—=00o N—> oo Nd_l g Z—lil_"lsll ( )

The limit exists by subadditivity arguments. The quantifyn) determines the
cost of an interface orthogonal to vector

As expected, as soon ds > Jg, the functionn — z3(n) is uniformly
positive [14]. In order to evaluate the cost of a curved interfagén) will
have to be integrated over the surface. Explicitly, we wildet J; and, given
a bounded se¥ c RY with piecewise smooth boundary, we define Wielff
functional #; by the integral

W5V = /a ra)dA, (1.7)

where dA is the (Hausdorff) surface measure and the position-dependent
unit normal vector to the surface. Theulff shape Ws the unique minimizer
(modulo translation) o/ — # (V) among bounded sets c RY with piece-
wise smooth boundary and unit Lebesgue volume. We&Wat) denote the
sequence diVulff-shapedattice volumes defined frotdd = W via (1.5).

2. MAIN RESULTS

We are now in a position to state and prove our main results. As indicated
before, we will focus on the limit of infinitesimal concentrations (and external
fields) wherec andh scale as the reciprocal of the linear size of the system.
Our results come in four theorems: In Theorem 2.1 we state the basic surface-
order large-deviation principle. Theorems 2.2 and 2.3 describe the minimizers
of the requisite rate functions for liquid and ice boundary conditions, respec-
tively. Finally, Theorem 2.4 provides some control of the spin marginal of the
corresponding Gibbs measure.

2.1. Large deviation principle for magnetization

The control of the regime under consideration involves the surface-order large-
deviation principle for the total magnetization in the Ising model. In a finite
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setA c Z94, the quantity under considerations is given by

Ma =D ox. (2.1)

XEA

Unfortunately, the rigorous results available at presentifor 3 do not cover

all of the cases to which our analysis might apply. In order to reduce the amount
of necessary provisos in the statement of the theorems, we will formulate the
relevant properties as an assumption:

Assumption A Let d > 2 and let us consider a sequence of Wulff-shape
volumes W_. Let J > J. and recall that IF’\TV’LJ denotes the Gibbs state of the
Ising model in W, with £-boundary condition and coupling constant J. Let
m, = m,(J) denote the spontaneous magnetization. Then there exist functions
M+ 3. [-m,, m]— [0, co) such that

o 1
lim lim o1 Iong’J(|ML —mLY < eLd) = — M+, 3(M) (2.2)

el]0Lo>

holds for each m € [—m,, m,]. Moreover, there is a constant w1 € (0, 00)
such that

d-1
my =+ m) d
w1

Moy () = (S5

is true for allm € [—m,, m,].

(2.3)

The first part of Assumption A—the surface-order large-deviation princi-
ple (2.2)—has rigorously been verified for square boxes (and magnetizations
near+m,) ind = 2 [8,12] and ind > 3 [5,7]. The extension to Wulff-
shape domains for ath € [—m,, m,] requires only minor modifications in
d = 2 [16]. Ford > 3 Wulff-shape domains should be analogously control-
lable but explicit details have not appeared. The fact (proved in [1&] for2)
that the rate function is given by (2.3) fal magnetizations in-fm,, m,] is
specific to the Wulff-shape domains; for other domains one expects the formula
to be true only whemm, = m| is small enough to ensure that the appropriately-
sized Wulff-shape droplet fits inside the enclosing volume. Thus, Assump-
tion A is a proven fact fod = 2, and it is imminently provable fat > 3.

The underlying reason why (2.2) holds is the existence of multiple states.
Indeed, to achieve the magnetizatiare (—m,, m,) one does not have to alter
the local distribution of the spin configurations (which is what has to be done
form & [—m,, m,]); it suffices to create dropletof one phase inside the other.
The cost s just the surface free energy of the droplet; the best possible dropletis
obtained by optimizing the Wulff functional (1.7). This is the content of (2.3).
However, the droplet is confined to a finite set and, once it becomes sufficiently
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large, the shape of the enclosing volume becomes relevant. In generic volumes
the presence of this additional constraint in the variational problem actually
makes the resulting costrger than (2.3)—which represents the cost of an
unconstrained droplet. But, in Wulff-shape volumes, (2.3) holds regardless of
the droplet size as long a3 < m,. An explicit formula for.Z.._j(m) for
square volumes has been obtainedlig= 2 [17]; the situation id > 3 has

been addressed in [10, 11].

On the basis of the above assumptions, we are ready to state our first main
result concerning the measul'ﬁic’h with ¢ ~ ¢/L andh ~ b/L. Usingé
to denote the fraction of salt on the plus spins, we begin by introducing the
relevant entropy function

T(m, ) = —6log 2(1—_rf])'

—(1—-06)log 1

1+m (24)

We remark that if we write a full expression for the bulk entroBym, &; c),
see formula (3.5), at fixeth, c andé#, then, modulo some irrelevant terms,
the quantityY' (m, ) is given by(6/0c)=Z(m, 8; c) atc = 0. Thus, when we
scalec ~ ¢£/L, the quantity Y (m, 8) represents the relevant (surface order)
entropy of salt withm andé fixed. The following is an analogue of Theo-
rem 1.2.1 from Part | for the case at hand:

Theorem 2.1. Letd > 2andlet J> J:.(d) andx > 0O be fixed. Let
m, = m,(J) denote the spontaneous magnetization of the Ising model. Sup-
pose thai(2.2)in Assumption A holds and lét| ) and (h,) be two sequences
such that ¢ > Ofor all L and that the limits
= Ilim Lcgc and b= Ilim Lhg (2.5)
L—oo L—>oo

exist and are finite. Then for all /@ [—-m,, m,],

. . 1 +,c.,h d d
LIT(]) LILmOOFIOg Pa, "™ (IML —mL% <L)
+ ; + /
= — m) + inf m’), 2.6
Qp.(M) i Qp. (M) (2.6)
where Qf’é(m) = infgepo.1] ngf(m, 0) with
Zp.:(M,0) = —bm — &k — EY (M, 0) + A 3 (), 2.7)

Various calculations in the future will require a somewhat more explicit
expression for the rate functiom — Qgtf(m) on the right-hand side of
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(2.6). To derive such an expression, we first note that the minimizér-of
Qg‘ff(m, ) is uniquely determined by the equation

1 f 0 1 J—r 2 28)
Plugging this into,@g'ff(m, 0) tells us that
Qp (M) = —bm—&g(m) + .7+ 3(m), (2.9)
where
g(m) = log (1—Tm + ef‘HTm) : (2.10)

Clearly, g is strictly concave for any > 0.

2.2. Macroscopic phase separation—"liquid” boundary conditions

While Theorem 1.2.1 of Part | and Theorem 2.1 above may appear formally
similar, the solutions of the associated variational problems are rather different.
Indeed, unlike the “bulk” rate functio®n c(m) of Part |, the functionQﬁf(m)
are not generically strictly convex which in turns leads to a possibility of having
more than one minimizing). We consider first the case of plus (that is, liquid
water) boundary conditions.

Letd > 2 and letd > J.(d) andx > O be fixed. To make our formulas
manageable, for any functiagh: [—m,, m,]— R let us use the abbreviation

_p(m) —p(-m,)

D} = 2.11
5 o (2.11)

for the slope oty between—m, andm,. Further, let us introduce the quantity

- 2m.d

and the piecewise linear functidm: [0, co) — R which is defined by

-1

¢t

(g'(=m,) — Dg) (2.12)

— & _ Dy, £ <&

b2($) =
—dHtm —dg(-m), =&

(2.13)

Our next result is as follows:

Theorem 2.2. Letd > 2andlet J> J.(d) andx > 0 be fixed. Let
the objects q s ¢t and by be as defined above. Then there exists a (strictly)
decreasing and continuous functiopn:40, co) — R with the following prop-
erties:
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(1) (&) = ba(¢) forall & > 0, and b (&) = ba(&) iff & < &.

(2) by is continuous orf0, o), bj(¢) = —g'(m,) as¢ — oo and by is
strictly convex onjé;, o).

(3) For b # bi(¢), ba(¢), the function m— Q+ (m) is minimized by a
single number n= m4 (b, &) € [—-m,, my] WhICh satisfies

=m,, if b > by($),
my (b, ¢) 1€ (—=my, m,), if b2(&) < b < bi(&), (2.14)
- —m, if b < by(&).

(4) The function b» my (b, &) is strictly increasing for be [b2(¢), b1 (&)],
is continuous on the portion of the line=b by(¢) for which¢ > & and
has a jump discontinuity along the line defined by:tb1(¢). The only
minimizers at b= by(¢) and b = by(¢) are the corresponding limits
of b~ my (b, ¢).

The previous statement essentially characterizes the phase diagram for the
cases described in (2.5). Focusing on the plus boundary condition we have the
following facts: For reduced concentratiofigxceeding the critical valug,
there exists a range of reduced magnetic fiblddere a non-trivial droplet ap-
pears in the system. This range is enclosed by two curves which are the graphs
of functionsb; andby above. Foib decreasing td1(¢), the system is in the
pure plus—i.e., liquid—phase but, interestinglybat macroscopic droplet—
an ice crystal—suddenly appears in the system.bAarther decreases the
ice crystal keeps growing to subsume the entire system when by(¢).

For ¢ < & no phase separation occurs; the transitiob at by (&) = ba(¢)
is directly fromm = m, tom = —m,.

Itis noted that the situation f@rnear zero corresponds to the Ising model
with negative external field proportional tg'll. In two-dimensional setting,
the latter problem has been studied in [16]. As already mentioned, the gener-
alizations to rectangular boxes will require a non-trivial amount of extra work.
For the unadorned Ising model (i.e.= 0) this has been carried out in great
detail in [17] ford = 2 (see also [13]) and in less detail in general dimen-
sions [10, 11].

It is reassuring to observe that the above results mesh favorably with
the corresponding asymptotic of Part I. For finite concentrations and exter-
nal fields, there are two curves,— h,(c) andc — h_(c), which mark the
boundaries of the phase separation region against the liquid and ice regions,
respectively. The curver— h,(c) is given by the equation

— O+
—-q.’

h(c) = Iog (2.15)
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where(qg;, g-) is the (unique) solution of

O+ g- 1+m, 1-m,
— e , +0- =C. 2.16
1-q, 1—q O+ q (2.16)

2 2
The curvec — h_(c) is defined by the same equations with the rolesnpf
and —m, interchanged. Sinck.(0) = 0, these can be linearized around the
point (0, 0). Specifically, pluggind/L for h and&/L for cinto h = hi(c)
and lettingL — oo yields the linearized versions

by = M, (0)¢ (2.17)

of hy andh_. Itis easy to check that/ (0) = —g'(+m,) and so, in the
limit £ — oo, the linear functiorb, has the same slope bBswhile b_ has the
same slope as, above. Theorem 2.2 gives a detailed description of how these
linearized curves ought to be continued into (infinitesimal) neighborhoods of
size /L around(0, 0).

2.3. Macroscopic phase separation—"ice” boundary conditions

Next we consider minus (ice) boundary conditions, where the requisite liquid
water, phase separation and ice regions will be defined using the functions
by > by. As for the plus boundary conditions, there is a vajue 0 where the

phase separation region begins, but now we have a new phenomenon: For some
(but not all) choices ofl andx, there exists a nonempty interv@t, &,) of &

for which two distinct droplet transitions occur. Specificallybascreases, the
volume fraction occupied by the droplet first jumps discontinuousky&f)

from zero to a strictly positive value, then increases but stays bounded away
from one, and then, & = by(¢), jumps discontinuously to one; i.e., the ice
surrounding the droplet suddenly melts.

For eachd > J.(d) and each, consider the auxiliary quantities
_ (d=Duwy
(2m.d)2g”(m,)’

(Note that, due to the concavity property @f both &1 and &, are finite and
positive.) The following is a precise statement of the above:

w1

= 2m.d (P8~ g(m))™" and &=

<1 (2.18)

Theorem2.3. Letd > 2andlet J > J.(d) andx > 0 be
fixed. Then there exist two (strictly) decreasing and continuous functions
by, bo: [0,00) — R and numbersy, & € (0, c0) with & < &, such that
the following properties hold:

(1) b)) = bp(¢) forall & > 0, andby (&) = bp(&) iff & < &.
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(2) by is strictly concave oifé, 0o), b 5(¢) = —g'(—my) asé — oo, by
is strictly convex ori&, &,) and, outside this interval,

L 5 &<

2m, g

i (2.19)
I —gg(m),  &=d

b1(¢) =
(3a) If& > &, thend = & = & andD, is continuous off0, co).

(Bb) If& < &thend < & < & = & and neither b nor b, is continuous
at&. Moreover, there exists gre (—m,, m,) such that, ag | &,

g(mo) — g(=m.)

/ g(my) — g(mo)
b1(¢) — — Mo

— and B - —

m,
(2.20)

(4) For b # by(¢), by(¢), the function m— Qp, - (M) is minimized by a
single number m= m_(b, &) € [—-m,, m,] WhICh satisfies

=m,, if b > by(&),
m_(b,¢) { e (—-m,, m,), if D2(6) <b <bi(¢), (2.21)
=-m,, if b < bo(&).

(5) The function b~ m_(b,¢) is strictly increasing in b for be
[b2(&), b1 (£)], is continuous on the portion of the line=b by (&) for
which¢ > &, and has jump discontinuities both along the line defined
by b= b,(¢) and along the portion of the line & by (¢) for which&; <
& < &,. There are two minimizers at the points whenesbm_(b, &) is
discontinuous with the exception @f, &) = (b1(&), &) = (02(%), &)
whené& < &, where there are three minimizers; namelyn, and m
from part (3b).

As a simple consequence of the definitions, it is seen that the question of
whether or not; > & is equivalent to the question whether or not

d
g(m,) —2m.g'(m,) + —(2m*)2 (M) < g(—=m,). (2.22)

We claim that (2.22) will hold, or fail, depending on the values of the various
parameters of the model. Indeed, writing= tanh(x /2) we get

g(m) = log(1 + em) + const. (2.23)
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Regarding the quantitym as a “small parameter,” we easily verify that the
desired inequality holds to the lowest non-vanishing order. Thuas, i small
enough, then (2.22) holds for al| while it is satisfied for alin, whenever
is small enough. On the other hand,xagends to infinity,g(m,) — g(—m,)
tends to lo +m* , while the various relevant derivatives gfare bounded in-
dependently ofn* Thus, asm, — 1, which happens whed — oo, the
condition (2.22) isviolated for x large enough. Evidently, the gap — & is
strictly positive for some choices df andx, and vanishes for others.
Sinceby(0) > 0, for & sufficiently small the ice region includes points
with b > 0 . Let us also show that the phase separation region can rise
aboveb = 0; as indicated in the plot on the right of Fig. 1. Clearly, it suf-
fices to consideb = 0 and establish that for somk x and¢&, the absolute
minimum ofm — Qo (M) does not occur atm,. This will certainly hold if

(Qa,g),(m*) >0 and Qa’g(_m*) > Qag(m*)a (2.24)
or, equivalently, if

d_
d 2m*

> &g'(m) and ¢(g(my) — g(=my)) > wy (2.25)

are both true. Some simple algebra shows that the last inequalities hold for
somes once

~1
—5 (9M) —g(=my) > 2m.g'(m,). (2.26)

But, as we argued a moment ago, the differegce,) — g(—m,) can be made
arbitrary large by taking >> 1 andm, sufficiently close to one, whilg’(m,)

is bounded in these limits. So, indeed, the phase separation region pokes above
theb = 0 axis oncec > 1 andJ > 1.

Comparing to the linear asymptotic of the phase diagram from Part I, we
see that in the finite-volume system with minus (ice) boundary condition, the
lines bounding the phase separation region are shifted upward and again are
pinched together. In this case it is the lihe= by (¢) that is parallel to its
counterparb = h/, (0)¢ for & > &, while b = by(¢) has the same asymptotic
slope (in the I|m|té — 00) as the functiorb = h’_(0)¢&.

2.4. Properties of the spin marginal

On the basis of Theorems 2.1-2.4, we can now provide a routine characteri-
zation of the typical configurations in meast\% CLNL The following is an
analogue of Theorem 2.2 of Part | for the cases at hand
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Theorem2.4. Letd > 2and let J > J:(d) andx > 0 be fixed.
Suppose that Assumption A holds and égf) and (h.) be two sequences such
that g > O for all L and that the limitsf and b in(2.5) exist and are finite.
Let us define two sequences of Borel probability measaﬁeem [—m,, m,] by
putting

pE(=Lm) = P ™ (ML <mL%, me[-11]. (2.27)

Then the spin marginal of the mea\surgf,ii‘f*"hL can again be written as a
convex combination of the Ising measures with fixed magnetization; i.e., for
any setA of configurationSox)xea, ,

P ™ (A x (0, 1)) = /pf(dm) P’ (AML = [mLY)).  (2.28)

Moreover, any (weak) subsequential limpit of measure;af IS concentrated
on the minimizers of m~ ng(:(m). In particular, for b # b1(&), ba(¢) the

limit p* = lim |__>OOpE— exists and is simply the Dirac mass at (b, &)—the
quantity from Theorem 2.2—and similarly fprr = lim__, ., p, and b #

b1(&), b2(8).

On the basis of Theorems 2.1-2.4, we can draw the following conclusions:
Ford-dimensional systems of scdlewith the total amount of salt proportional
to L9-1 (i.e., the system boundary), phase separation oararsaticallyin
the sense that all of a sudden a non-trivial fraction of the system melts/freezes
(depending on the boundary condition). In hindsight, this is perhaps not so
difficult to understand. While a perturbation of siz&~1 cannot influence the
bulk properties of the system with a single phase, here the underlying system
is at phase coexistence. Thus the cost of a droplet is only of afier, so it is
not unreasonable that a comparable amount of salt will cause dramatic effects.
It is worth underscoring that the jump in the size of the macroscopic
dropletato = by orb = b, decreases with increasiggIndeed, in the extreme
limit, when the concentration is finite (nonzero) we know that no macroscopic
droplet is present at the transition. But, presumably, by analogy with the re-
sults of [4] (see also [3,15]), there will ben@esoscopidroplet—of a particular
scaling—appearing at the transition point. This suggests that a host of interme-
diate mesoscopic scales may be exhibited depending orchewdh| tend to
zero with the ratich, /c_. approximately fixed. These intermediate behaviors
are currently being investigated.

3. PROOFS OF MAIN RESULTS

The goal of this section is to prove the results stated in Section 2. We begin
by stating a generalized large deviation principle for both magnetization and
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the fraction of salt on the plus spins from which Theorem 2.1 follows as an
easy corollary. Theorem 2.2 is proved in Section 3.2; Theorems 2.3 and 2.4 are
proved in Section 3.3.

3.1. A generalized large-deviation principle

We will proceed similarly as in the proof of Theorem 1.3.7 from Part I. Let
A c 79 be afinite set and let us reintroduce the quantity

QA:ZSX1+GX, (3.1)

2
XeA

which gives the total amount of salt on the plus spinginRecall thaﬁ[ﬂf’J
denotes the expectation with respect to the (usual) Ising measure with coupling
constant] and plus/minus boundary conditions. First we generalize a couple
of statements from Part I:

Lemma3.1. LetA c ZY be a finite set. Then for any fixed spin
configurations = (ax) € {—1, 1}*, all salt configurations(Sy) € {0, 1}*
with the same I\ and Qs have the same probability in the conditional mea-
sure Pl‘f’c’h(- |o = ). Moreover, for anys = (Sy) € {0, 1} with NA = [c|A|]
and for any me [—1, 1],

Pf’c’h(é occurs Mp = [m|A]])
1 43 5,8)+hMa (0
=7 Ex (e NEITIMAD L\ yimiary)>  (3:2)
where the normalization constant is given by

_ +,J 0,5)+h My (o
Zn= D Linys)migan By (€ @SHTMA@), (3.3)
S'e{0, 1A

Proof. This is identical to Lemma 1.3.3 from Part I.|j

Next we will sharpen the estimate from Part | concerning the total entropy
carried by the salt. Similarly to the objedf’c(a) from Part I, for each spin
configurations = (ox) € {—1, 1}* and number$, c e [0, 1], we introduce
the set

A%%(0) = {(S0) € (0, 1} N = [clAl), QL = [Ac|All}. (3.4)

Clearly, thesize of A%C(a) is the same for alb with a given value of the
magnetization; we will thus le%°(m) denote the common value pA%(0)|
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for thoses with M (o) = [m|A|]. Let.”(p) = plogp+ (1 — p)log(1— p)
and let us recall the definition of the entropy function

Z(m,f;c) = —

1+my< 20c )_ 1_my(2(1_9)c)- (3.5)

2 1+m 2 1-m
cf formula (1.2.7) from Part I. Then we have:

Lemma 3.2. For eachy > 0 there exist constants;C< oo and Ly <
oo such that for all finiteA c Z9 with |[A| > Lg, allg,c € [0,1] and all m
with |[m| < 1 — 5 satisfying

20c 2(1-06)c -

<1- and 1- 3.6
1+m-" 1 1-m - " (3.6)
we have be
log Ay (m log |A
PIANM™ _ = (m.g: 0| < ¢, /YA 3.7)
IA] |A]

Proof. The same calculations that were used in the proof of Lemma1.3.4
from Part | give us

LAl + MA>) (%(IAI - MA>) (3.8)

Qa NA — Qa

with the substitution®y = [m|A|] andQx = |fc|A]]. By (3.6) andm| <
1 — #, both combinatorial numbers are well defined oh&¢ is sufficiently
large (this definet. ). Thus, we can invoke the Stirling approximation and,
eventually, we see that the right-hand side of (3.8) equal§ &xB(m, &; c)}
times factors which grow or decay at most like a powergt Taking logs and
dividing by |A|, this yields (3.7). |

Our final preliminary lemma is concerned with the magnetizations out-
side [-m,, m,] which are (formally) not covered by Assumption A. Recall the

sequence of Wulff shapa&4 defined at the end of Section 1.2. Note tiat
contains, to within boundary correctiorls? sites.

ARE(m) = (

Lemma 3.3. Suppose that 3 J. and let ¢ and h_ be such that L¢
and Lh_ have finite limits as L— oo. For eache > 0, we have

1
lim 51109 P ™ (IMw | = (M, +e)LY) = —c0.  (3.9)

L—oo

Proof. This is a simple consequence of the fact that, in the unadorned
Ising magnet, the probability in (3.9) is exponentially smallvimlume—cf
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Theorem [.3.1—and that withh; and Lc, bounded, there will be at most
a surface-order correction. A formal proof proceeds as follows: We write

R/L (m> 0)

V. (3.10)

P (Qu = 10e L), ML = [mLY)) =

where
KL (m, 0) = A‘\’;\,/(EL (m) ehL ImLY | +x(OcL LY) PWLJ (ML — |m LdJ) (3.11)

and whereY, is the sum ofK (m, 0’y over all relevant values afti andé’.

Under the assumption that both andc_ behave likeO(L~1), the prefac-
tors of the Ising probability can be bounded betwesf-" " andeC-"", for

someC < oo, uniformly ing andm. This yields

-1 1
P ™ (IMw | > (M, +)LY) < e°t Y—LP\T\;LJ(IMWLI > (M, +e)LY).
(3.12)
The same argument shows us tiatcan be bounded below &7 CL" ™" times

the probability thaMyy, is near zero in the Ising meas&?é,f. Inlight of J >
Je, Assumption A then gives

. 1
lim inf mlogYL > —00. (3.13)

L—>oo

On the other hand, by Theorem 1.3.1 (and the remark that follows it) we have
that

!
im 57 10gPy” (IMw | > (M, +)LY) = —c0.  (3.14)

L—oo
Plugging this into (3.12), the desired claim follows|}
We will use the above lemmas to state and prove a generalization of The-
orem 2.1.

Theorem 3.4. Letd > 2and let J > J:.(d) andx > 0 be fixed.
Letq € [0,1] and h. € R be two sequences such that the linditand b in
(2.5)exist and are finite. For eachm[-m,, m,] andf € (—1,1), letB =
B .(m, cL, 6) be the set of alls, ) € {—1, 1}M x {0, 13" for which the
bounds

IMw, —mLY <eL? and |Qw, —6Oc LY < eLd? (3.15)
hold. Then

g P (BLe)
lim lim 1
el0 Lo L=

=—2p:(MO)+ inf Dps(m,0"), (3.16)
Im’|<m,
0'€[0,1]

where2y, (M, 0) is as in(2.7).
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Proof. We again begin with the representation (3.10-3.11) for the
choicesh, L9 ~ bL9"1 andc LY ~ ¢L91. Form e [-m,, m,] the last
probability in (3.11) can be expressed from Assumption A and so the only
thing to be done is the extraction of the exponential rataf;g‘f(m) to within
errors of orden(L91). This will be achieved Lemma 3.2, but before doing
that, let us express the leading order behavior of the quaafity, 4; c_ ). Not-
ing the expansior” (p) = plog p — p+ O(p?) for p | 0 we easily convince
ourselves that

=Z2(m,d;cL) = —6c. (Iog 20¢ - 1)

1+m
—(1-6)cL (Iog% — 1) + 0(c?)

=c_ —c logel +c Y (m, 0) + O(c?),

(3.17)

whereY(m, ) is as in (2.4). (The quantitp(c?) is bounded by a constant
timescf uniformly inm satisfying|m| < 1—# and (3.6).) Invoking Lemma 3.2
and the facts thatv | — L9 = O(L9"1) andLc? — 0 asL — oo we now
easily derive that

A = expf e+ L9r(m o) oL Y], (318)

wherer. = —L|W_|c_ log(c /e) is a quantity independent af andé.
Putting the above estimates together, we conclude that

KL(m, ) = exp{ rL— L9192 :(m, 0) + o(Ld—l)} (3.19)

where o(L9"1) is small—relative toL9~1—uniformly in m € [-m,, m,]
andd e [0, 1]. It remains to use this expansion to produce the leading or-
der asymptotics oP\,ﬂ\E,LCL’hL (BL.¢). Here we write the latter quantity as a ratio,

IZL,E (m, 6)
YL ’

where KVL,G(m, 0) is the sum oﬂiL (m', 8") over all relevant values dfn’, ")
that can contribute to the evei{ ., while, we remind the readey is the
sum of K (m, 0" over all relevantm’, §")’s regardless of their worth.

It is intuitively clear that the_-factors in the numerator and denominator
cancel out and one is left only with terms of ordeét1, but to prove this we
will have to invoke a (standard) compactness argument. We first note that for
eachs > 0 and eacl{m, ) € [—-m,, m,] x[0, 1], there exists am > 0 and
anLo < co—both possibly depending an, # ando—such that, folL > Lo,

P ™ (BLe) = (3.20)

1 _
‘m log(KL «(m, 9)e™) + Dy s(m, §)| < . (3.21)
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(Here we also used thatZ,:(m,#) is continuous in both variables
on [-m,, m,] x[0, 1].) By compactness ofHfm,, m,] x[0, 1], there exists a fi-
nite set of(my, 6x)’s such that the abowe neighboorhoods—for which (3.21)
holds with the samé—cover the set+m,, m,] %[0, 1]. In fact we cover the
slightly larger set

R =[-m, — €, m, + €]x][0, 1], (3.22)

wheree’ > 0. By choosing the’s sufficiently small, we can also ensure
that for one of thek’s, the quantity 2y s (mg, 6«) is within ¢ of its absolute
minimum. Since everything is finite, all estimate are uniforniz Lo on'R.

To estimateY, we will split it into two parts,Y_ 1 andY, 2, according
to whether the corresponding’, §") belongs toR or not. By (3.21) and the
choice of the above cover & we have tha% log Y| 1 is within, say, 3 of
the minimum of(m, ) — 2, £(m, #) oncel is sufficiently large. (Here the
additionals is used to control the number of terms in the coveRof On the
other hand, Lemma 3.3 implies thét > is exponentially small relative tg, ;.
Hence we get

1
Ilmsup — log(YLe™ IrL)-|— inf Dy (', 60")| < 30. (3.23)
L— o0 m'|<m,
0’6[0 1]

Plugging these into (3.20) the claim follows by lettifig, 0. |}

Proof of Theorem 2.1. This is a simple consequence of the compact-
ness argument invoked in the last portion of the previous profif.

3.2. Proof of Theorem 2.2

Here we will prove Theorem 2.2 which describes the phase diagram for the
“liquid” boundary condition, see the plot on the left of Fig. 1.

Proof of part (1). Our goal is to study the properties of the func-
tionm — Qb (m). Throughout the proof we will keep fixed (and larger
thanJ:) and erte.///() instead of 7 _3(-). Form € [-m,, m,], let us define
the quantity

Es(m) = =&g(m) + .# (m). (3.24)

Clearly, this is justQ} .(m) without theb-dependent part, i.eQf .(m) =
—bm+ E:(m). Important for this proof will be the “zero-tilt” version of this
function,

E:(m) = Ez(m) — Ez(-m,) — (M+m,)Dg,, (3.25)
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where D*Ef is the “slope ofE: between—m, andm,,” see (2.11). ClearlyE;

and /E\g have the same convexity/concavity properties ﬁytalways satisfies
Es(—m,) = Ez(m,) =0.

Geometrically, the minimization 0®E§(m) may now be viewed as fol-
lows: Consider the set of poinfgm, y): y = Ez(m)}—namely, the graph
of Es(m)—and take the lowest vertical translate of the ljne bmwhich con-
tacts this set. Clearly, the minimum Q)‘k‘{é(m) is achieved at the value(s) of

where this contact occurs. The same of course holds for the gr&plﬁg(m)
provided we shiftb by D*Ei. Now the derivativeﬁé(m) is bounded below
atm = —m, and above amn = m, (indeed, asn 1 m, the derivative diverges
to —o0). It follows that there exist two values;oo < b1(&) < ba(¢) < oo,
such thatm = m, is the unique minimizer fob > b1(¢), m = —m, is the
unique minimizer forb < by(¢), and neithetm = m, norm = —m, is a
minimizer whenb,(¢) < b < by(&).

On the basis of the above geometrical considerations, the region there
andby are the same is easily characterized:

bi(¢) = ba(¢) ifandonlyif E:(m)>0 vme[-m,,m]. (3.26)

To express this condition in terms &f let us definer (m) = .#"”(m)/g” (m)
and note thaEg(m) > 0 if and only if T(m) > &. Now, for some constant
C=C@) >0,

T(m) = C(m, — m)~ (M + cot(x/2))’, (3.27)

which implies thatT is strictly increasing on+m,, m,) with T(m) — oo
asm 1 m,. It follows that eithelﬁf is concave throughout{m,, m,], or there
exists al ~1(¢) € (—m,, m,) such thaEf is strictly convex onfm,, T~1(&))
and strictly concave ofiT ~1(¢), m,]. Therefore, by (3.26)b1(¢) < bo(&) if
and only if E}(—m*) < 0, which is readily verified to be equivalentdo> &.
This proves part (1) of the theorem i

Proof of parts (3) and (4). The following properties, valid fof > &,
are readily verified on the basis of the above convexity/concavity picture:

(a) For allbz(¢) < b < b1(¢), there is a unique minimizeny (b, &) of m —>
Q;)té(m) in [—m,, m,]. Moreover,m, (b, &) lies in (—m,, T~1(&)) and is
strictly increasing irb.

(b) Forb = by(¢), the functionm — Qk‘{é(m) has exactly two minimizersn,
and a valuany (¢) € (—m,, T~1(¢&)).

(c) We havebp() = EZ(—m,).
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(d) The non-trivial minimizer in (ii)m1(¢), is the unique solution of
E(m) + (m, — mEL(m) = E¢(m,). (3.28)

Moreover, we have
b1(¢) = EL(mu(&)). (3.29)

(e) Asbtends to the boundaries of the intergiad (&), b2(&)), the unique min-
imizer in (a) has the following limits

lim my(b,&) =-m, and lim my(b,&) = my (&), 3.30
oty ™ ) Am m.(0.6) =m(@).  (3:30)

wheremy(¢) is as in (b). Both limits are uniform on compact subsets
of (¢, 00).

Now, part (3) of the theorem follows from (a) while the explicit formula (2.13)
for bp(¢) for & > & is readily derived from (c). Forg < &, the critical
curveé > bp(¢) is given by the relatiorQp .(m,) = Qp -(—m,), which
gives also the < & part of (2.13). Continuity ob — my (b, ¢) along the
portion ofb = by(¢) for & > & is implied by (e), while the jump discontinuity
atb = by(¢) is a consequence of (a) and (e). This proves part (4) of the
theorem. |

Proof of part (2). It remains to prove the continuity df, (£), identify
the asymptotic ob} as¢ — oo and establish the strict concavitydf- by ().
First we will show that the non-trivial minimizem, (&), is strictly increasing
with £. Indeed, we write (3.28) aB:(m) = 0, whereFs:(m) = Es(m,) —
Ee(m) — (M, — m)EZ(m). Now,

a /
%Ff(m) = g(m) — g(m,) + (M, —m)g'(m), (3.31)
which is positive for allm € [—-m,, m,) by strict concavity ofy. Similarly,
6 /"
%Fg(m) = —E:(M(m, —m), (3.32)

which atm = my(¢) is negative because; lies in the convexity interval o,
i.e.,mu(&) € (—m,, T~1(&)). From (d) and implicit differentiation we obtain
thatm} (&) > O for¢ > &. By (3.29) we then have

g(m,) — g(my)
my — My

16 =— (3.33)
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which, invoking the strict concavity of and the strict monotonicity ofn,
implies thatb) (&) > 0, i.e.,by is strictly convex on(&, co).
To show the remaining items of (2), it suffices to establish the limits

lri[?t my(¢) = —m, and ATO my(¢) = m.. (3.34)

Indeed, using the former limit in (3.33) we get thats) — —g'(m,) asé —
oo while the latter limit and (c) above yield thaf (&) — b (&) as¢ | & which
in light of the fact thatb; (&) = ba(¢) for & < & implies the continuity ob’
To prove the left limit in (3.34), we just note that, by (3.28), the sloptEpf
atm = my(¢) converges to zero as | ¢&. Invoking the convexity/concavity
picture, there are two points on the grapmof— Eé(m) where the slope is
zero:m, and the absolute maximum é‘g The latter choice will never yield
a minimizer onJr and so we must hava1(¢) — m, as claimed. The right
limit in (3.34) follows from the positivity of the quantity in (3.31). Indeed,
for eachm e [—-m,, m,) we haveF:(m) > 0 once¢ is sufficiently large.
Hence my (&) must converge to the endpoimt asé — oco. |

3.3. Remaining proofs

Here we will prove Theorem 2.3, which describes the phase diagrams for the
“ice” boundary condition, and Theorem 2.4 which characterizes the spin-sector
of the distributionsPy; °--".

For the duration of the proof of Theorem 2.3, we will use the functions
E: and Eg from (3.24-3.25) with# = . ; replaced by# = //{ J- The
main difference caused by this change is that the functior Eg(m) may
now have more complicated convexity properties. Some level of control is
nevertheless possible:

Lemma 3.5. There are at most two points insiflem,, m,] where the
second derivative of function m E:(m) changes its sign.

Proof. Consider again the functioh(m) = .2"(m)/g"(m) which char-
acterizesEg(m) > 0 by T(m) > £. In the present cases, this function is
given by the expression

%”( )
g”(m)

whereC = C(J) > 0 is a constant. Clearly starts off at plus infinity at
m = —m, and decreases for a while; the difference compared to the situation in
Theorem 2.2 is thal now need not be monotone. Notwithstanding, taking the

T(m) =

=C(m,+m)~ & (m + cot(zc/2)) (3.35)
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obvious extension of to allm > —m,, there exists a valuerr € (—m,, c0)
such thafT is decreasing fom < my while it is increasing for alm > mr.
Now two possibilities have to be distinguished depending on whethdalls
in or out of the interval +m,, m,):

(1) mt > m,, in which case the equatidn(m) = ¢ has at most one solution
for every¢ andm — E:(m) is strictly concave on{m,, T~1(¢)) and
strictly convex on(T ~1(¢), m,]. (The latter interval may be empty.)

(2) mr < m,, in which case the equation(m) = ¢ has two solutions
for & € (T(m7), T(M,)]. Thenm — /E}(m) is strictly convex between
these two solutions and concave otherwise. The valuésfof which
there is at most one solution ©(m) = ¢ inside -m,, m,] reduce to
the cases in (1). (This includés= T (my).)

We conclude that the type of convexity of — Eg(m) changes at most twice
inside the interval+m,, m,], as we were to prove. I

The proof will be based on studying a few cases depending on the order of
the control parametets and&, from (2.18). The significance of these numbers
for the problem at hand will become clear in the following lemma:

Lemma 3.6. The derivativefé(m*) and Eg (m,) are strictly increas-
ing functions of. In particular, for& and&; as defined ir{2.18) we have

(1) ELm,) <0if& <& andEL(m,) > 0if & > &

(2 E/(m) <0if & < HandE/(m,) > 0if & > &.

Proof. This follows by a straightforward calculation.|j

Now we are ready to prove the properties of the phase diagram for minus
boundary conditions:

Proof of Theorem 2.3. Throughout the proof, we will regard the graph
of the functiorm — ﬁg(m) as evolving dynamically—the role of the “time” in
this evolution will be taken by. We begin by noting that, in light of the strict
concavity of functiorg from (2.10), the valué}(m) is strictly decreasing ig
for all m € (—m,, m,). This allows us to define

& =inf{¢ > 0: Ez(m) < 0 for somem € (—m,, m,)}. (3.36)

Now for & = 0 we b\ave/E}(m) > 0 for allm € (—m,, m,) while for ¢ >
¢1, the minimum ofEs over (—m,, m,) will be strictly negative. Hence, we
have O< & < &1.
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We will also adhere to the geometric interpretation of finding the mimiz-
ers ofm — Qyp -(m), cf proof of part (1) of Theorem 2.2. In particular, for

eachs > 0 we have two valuel; andb, with b, < by such that the extremes
—m, andm, are the unique minimizers fdr < b, andb > by, respectively,
while none of these two are minimizers when < b < by. Here we recall
thatb; is the minimal slope such that a straight line with this slope touches
the graph Ofﬁg atm, and at some other point, but it never gets above it, and
similarly by is the maximal slope of a line that touches the grapﬁgoat—m*

and at some other point, but never gets above it.

As a consequence of the above definitions, we may already conclude
that (1) is true. (Indeed, far < & we haveﬁgv(m) > 0 and so the two slopés
andb, must be the same. Fér> & there will be arm for which /E}(m) <0
and sob; # b.) The rest of the proof proceeds by considering two cases de-
pending on the order @f and&,. We begin with the easier of the twfy, > &:

CASE &1 > &: Here we claim that the situation is as in Theorem 2.2 and, in
particular,&; = £&1. Indeed, consider & > & and note thaEg(m*) > 0 by

Lemma 3.6. Sincég(m) is negative neam = —m, and positive neam =

m,, it changes its sign an odd number of times. In light of Lemma 3.5, only one
such change will occur and se-fn,, m,] splits into an interval of strict con-
cavity and strict convexity ofn — Ef(m). Now, if & is not equaly, we may
choose® between? and¢; so thatﬁé(m*) < 0. This implies thaE:(m) > 0

for all m < m, in the convexity region; in particular, at the dividing point
between concave and convex behavior. But then a simple convexity argument
Eg(m) > 0 throughout the concavity region (exceptan,). Thus/E}(m) >0

for all m € (—m,, m,) and so we havé < &. It follows that& = &.

Invoking the convexity/concavity picture from the proof of Theorem 2.2
quickly finishes the argument. Indeed, we immediately have (4) and, let-
ting & = &, also the corresponding portion of (5). It remains to establish
the properties ob; andb,—this will finish both (2) and (3a). To this end we
note thatb; is determined by the slope &: atm,, i.e., for¢ > &,

b1(£) = EL(m,). (3.37)

This yields the second line in (2.19); the first line follows by taking the slope
of Es between—m, andm,. As for by, here we note that an analogue of the
argument leading to (3.33) yields

=/ g(ml) - g(_m*) %

= — , > &, 3.38

2($) My m, ¢>¢ (3.38)
wherem; = m1(¢) is the non-trivial minimizer ab = 62(5). In this case
the argument analogous to (3.31-3.32) ging$’) < 0. The desired limiting
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values (and continuity) olf)’2 follow by noting thatmy(&) — m, asé | &
andmy(¢) - —m, as¢ — oo.

CASE & < &: Our first item of business is to show that< &. Consider
the situation whed = & andm = m,. By Lemma 3.6 and continuity, the
derivative Eél(m*) vanishes, but, since we are assuming< &, the second

derivative ﬁgl(m*) has not “yet” vanished, so it is still negative. The upshot

is thatm, is a local maximum fom — Efl(m). In particular, looking atn
slightly less thamm,, we must encounter negative valuefgf and, eventually,
a minimum ofﬁg1 in (—m,, m,). This implies that; < &.

Having shown thaf; < & < &, we note that fo€ e (&, &), the func-
tionm — Ef(m) changes from concave to convex to concavenascreases
from —m, to my, while for¢ > &, exactly one change of convexity type oc-
curs. IndeedE} is always concave nearm, and, whert < &, itis also con-
cave atm,. Now, since? > &, its minimum occurs somewhere fgm,, m,).
This implies an interval of convexity. But, by Lemma 3.5, the convexity type
can change only at most twice and so this is all that we can have. For the
cases > & we just need to realize thﬁg iS now convex neam = m, and
so only one change of convexity type can occur. A continuity argument shows
that the borderline situatiod, = &, is just like& > &.

The above shows that the cases> & are exactly as fo&, > & (or,
for that matter, Theorem 2.2) while < & is uninteresting by definition, so
we can focus o e [&,&). Suppose first thaf > & and letl: denote
the interval of strict convexity oE}. The geometrical minimization argument
then shows that, &t = by, there will be exactly two minimizersn, and a
valuemy(¢) € I, while atb = b,, there will also be two minimizers-m,
and a valuemy(¢) € Iz For bi < b < by, there will be a unlque mini-
mizer m_(b, &) which varies betweems(¢) andmy(&). SlnceE Is strictly
convex inlg, the mapb — m_(b, ¢) is strictly increasing with I|m|tsm1(§)
asb 1 by(¢) andmy(&) asb | bz(é’) Bothm; andm; are inside(—m,, m,)

SO m_ undergoes a jump at bothy, and by. Clearly, m1(¢) # my(¢) for
all¢ € (& <)

At & = &, there will be an “intermediate” minimizer, but now there is only
one. Indeed, the limits ahy(¢) andmy (&) as¢ | & must be the same because
otherwise, by the fact thani(<), mz(¢)] is a subinterval of the convexity
interval I, the functlonEé would vanish in a wholénterval of m’s, which is
impossible. Denoting the common limit oo we thus have three minimizers
até = &; namely,+m, andmo. This proves part (4) and, Iettm@ &, also
part (5) of the theorem. As for the remaining parts, the strict concaviby of
and the limits (2.20) are again consequences of formulas of the type (3.33) and
(3.37-3.38) and of the monotonicity propertieshnof andm,. The details are
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as for the previous cases, so we will omit thendl

Proof of Theorem 2.4. Asin Part |, the representation (2.28) is a simple
consequence of the absence of salt-salt interaction as formulated in Lemma 3.1.
The fact that any subsequential (weak) limit of pf has all of its mass con-
centrated on the minimizers @;; . is a consequence of Theorem 2.1 and
the fact thatm can only takeO(E) number of distinct values. Moreover,
if the minimizer is unique, which for the plus boundary conditions happens
whenb # by (&), b2(&), any subsequential limit is the Dirac mass at the unique
minimum (which ism_ (b, &) for the plus boundary conditions amal_ (b, &)
for the minus boundary conditions).|
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