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Colligative properties of solutions:
|. Fixed concentrations

Kenneth S. Alexander! Marek Biskup,? and Lincoln Chayes’

Using the formalism of rigorous statistical mechanics, we study the phenom-
ena of phase separation and freezing-point depression upon freezing of solu-
tions. Specifically, we devise an Ising-based model of a solvent-solute system
and show that, in the ensemble with a fixed amount of solute, a macroscopic
phase separation occurs in an interval of values of the chemical potential of the
solvent. The boundaries of the phase separation domain in the phase diagram
are characterized and shown to asymptotically agree with the formulas used in
heuristic analyses of freezing point depression. The limit of infinitesimal con-
centrations is described in a subsequent paper.

1. INTRODUCTION
1.1. Motivation

The statistical mechanics of pure systems—most prominently the topic of
phase transitions and their associated surface phenomena—has been a sub-
ject of fairly intensive research in recent years. Several physical principles for
pure systems (the Gibbs phase rule, Wulff construction, etc.) have been put
on a mathematically rigorous footing and, if necessary, supplemented with ap-
propriate conditions ensuring their validity. The corresponding phenomena in
systems with several mixed components, particularly solutions, have long been
well-understood on the level of theoretical physics. However, they have not re-
ceived much mathematically rigorous attention and in particular have not been
derived rigorously starting from a local interaction. A natural task is to use the
ideas from statistical mechanics of pure systems to develop a higher level of
control for phase transitions in solutions. This is especially desirable in light
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of the important role that basic physics of these systems plays in sciences, both
general (chemistry, biology, oceanography) and applied (metallurgy, etc.). See
e.g. [11,24,27] for more discussion.

Among the perhaps most interesting aspects of phase transitions in mixed
systems is a dramatghase separatiom solutions upon freezing (or boiling).
A well-known example from “real world” is the formation of brine pockets in
frozen sea water. Here, two important physical phenomena are observed:

(1) Migration of nearly all the salt into whatever portion of ice/water mixture
remains liquid.

(2) Clear evidence dhacettingat the water-ice boundaries.
Quantitative analysis also reveals the following fact:

(3) Salted water freezes at temperatures lower than the freezing point of pure
water. This is the phenomenonfoéezing point depression

Phenomenon (1) is what “drives” the physics of sea ice and is thus largely
responsible for the variety of physical effects that have been observed, see
e.g. [17,18]. Notwithstanding, (1-3) are not special to the salt-water system;
they are shared by a large class of the so call@a-volatilesolutions. A dis-
cussion concerning the general aspects of freezing/boiling of solutions—often
referred to agolligative properties—can be found in [24, 27].

Of course, on a heuristic level, the above phenomena are far from mys-
terious. Indeed, (1) follows from the observation that, macroscopically, the
liquid phase provides a more hospitable environment for salt than the solid
phase. Then (3) results by noting that the migration of salt increases the en-
tropic cost of freezing so the energy-entropy balance forces the transition point
to a lower temperature. Finally, concerning observation (2) we note that, due to
the crystalline nature of ice, the ice-water surface tension will be anisotropic.
Therefore, to describe the shape of brine pockets, a Wulff construction has to
be involved with the caveat that here the crystalline phase is on the outside. In
summary, what is underlying these phenomena is a phase separation accom-
panied by the emergence of a crystal shape. In the context of pure systems,
such topics have been well understood at the level of theoretical physics for
quite some time [12, 16, 32, 33] and, recently (as measured on the above time
scale), also at the level of rigorous theorems in two [2, 4, 14, 22, 28, 29] and
higher [6, 9, 10] dimensions.

The purpose of this and a subsequent paper is to study the qualitative
nature of phenomena (1-3) using the formalism of equilibrium statistical me-
chanics. Unfortunately, a microscopically realistic model of salted water/ice
system is far beyond reach of rigorous methods. (In fact, even in pure water,



Colligative properties of solutions 3

the phenomenon of freezing is so complex that crystalization in realistic models
has only recently—and only marginally—been exhibited in computer simula-
tions [26].) Thus we will resort to a simplified version in which salt and both
phases of water are represented by discrete random variables residing at sites
of a regular lattice. For these models we show that phase separation dominates
a non-trivialregion of chemical potentials in the phase diagram—a situation
quite unlike the pure system where phase separation can occur only at a single
value (namely, the transition value) of the chemical potential. The boundary
lines of the phase-separation region can be explicitly characterized and shown
to agree with the approximate solutions of the corresponding problem in the
physical-chemistry literature.

The above constitutes the subject of the present paper. In a subsequent
paper [1] we will demonstrate that, for infinitesimal salt concentrations scaling
appropriately with the size of the system, phase separation may still occur dra-
matically in the sense that a non-trivial fraction of the system suddenly melts
(freezes) to form a pocket (crystal). In these circumstances the amount of salt
needed is proportional to thmundaryof the system which shows that the on-
set of freezing-point depression is actually a surface phenomenon. On a qual-
itative level, most of the aforementioned conclusions should apply to general
non-volatile solutions under the conditions when the solvent freezes (or boils).
Notwithstanding, throughout this and the subsequent paper we will adopt the
languageof salted water and refer to the solid phase of the solvent as ice, to
the liquid phase as liquid-water, and to the solute as salt.

1.2. General Hamiltonian

Our model will be defined on thi~dimensional hypercubic latticg”. We will
take the (formal) nearest-neighbor Hamiltonian of the following form:

ﬂ% = — Z(allxly + aI_LXLy) + K Z lex - ZﬂSSX — ZILLLLX' (11)
(x,y) X X X

Here g is the inverse temperature (henceforth incorporated into the Hamito-
nian), x andy are sites inZ¢ and (x, y) denotes a neighboring pair of sites.
The quantitiedy, Ly and Sy are the ice (water), liquid (water) and salt vari-
ables, which will take values ifO, 1} with the additional constraint

valid at each sitx. We will say thatly = 1 indicates theresence of icat x
and, similarly,Ly the presence of liquidat X. Since a single water molecule
cannot physically be in an ice state, it is natural to interpret the pligasel
as referring to the collective behavior of many patrticles in the vicinity of
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which are enacting an ice-like state, though we do not formally incorporate
such a viewpoint into our model.

The various terms in (1.1) are essentially self-explanatory: An interac-
tion between neighboring ice points, similarly for neighboring liquid points
(we may assume these to be attractive), an energy pendttlya simultane-
ous presence of salt and ice at one point, and, finally, fugacity terms for salt
and liquid. For simplicity (and tractability), there is no direct salt-salt interac-
tion, except for the exclusion rule of at most one salt “particle” at each site.
Additional terms which could have been included are superfluous due to the
constraint (1.2). We will assume throughout that- 0, so that the salt-ice
interaction expresses the negative affinity of salt to the ice state of water. This
term is entirely—and not subtly—responsible for the general phenomenon of
freezing point depression. We remark that by suitably renaming the variables,
the Hamiltonian in (1.1) would just as well describe a system with boiling point
elevation.

As we said, the variablel andLy indicate the presence of ice and lig-
uid water at sitex, respectively. The assumptigp+ Ly = 1 guarantees that
somethinghas to be present at(the concentration of water in water is unity);
what is perhaps unrealistic is the restrictionipfand Ly to only the extreme
values, namelyy, Ly € {0, 1}. Suffice it to say that the authors are confident
(e.g., on the basis of [3]) that virtually all the results in this note can be ex-
tended to the cases of continuous variables. However, we will not make any
such mathematical claims; much of this paper will rely heavily on preexisting
technology which, strictly speaking, has only been made to work for the dis-
crete case. A similar discussion applies, of course, to the salt variables. But
here our restriction tsy € {0, 1} is mostly to ease the exposition; virtually all
of our results directly extend to the cases wisgiakes arbitrary (positive) real
values according to songepriori distribution.

1.3. Reduction to Ising variables

It is not difficult to see that the “ice-liquid sector” of the general Hamiltonian
(1.1) reduces to a ferromagnetic Ising spin system. On a formal level, this is
achieved by passing to the Ising variabdgs= Ly — Ix, which in light of the
constraint (1.2) gives

. 1 + Ox 1- Ox

Ly = > and Iy = >

By substituting these into (1.1), we arrive at the interaction Hamiltonian:

pA = =1 mzwaxay— h;ax-l—x;sxl_zax —;ﬂssx, (1.4)

(1.3)
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where the new parametedsandh are given by

=& : Y and h= g(aL — o)+ % (1.5)
We remark that the third sum in (1.4) is still written in terms of “ice” indicators
so that7 will have a well defined meaning evendf= oo, which corresponds
to prohibiting salt entirely at ice-occupied sites. (Notwithstanding, the bulk of
this paper is restricted to finite.) Using an appropriate restriction to finite
volumes, the above Hamitonian allows us to define the corresponding Gibbs
measures. We postpone any relevant technicalities to Section 2.1.

The Hamiltonian as written foretells the possibility of fluctuations in the
salt concentration. However, thism®t the situation which is of physical in-
terest. Indeed, in an open system it is clear that the salt concentration will,
eventually, adjust itself until the system exhibits a pure phase. On the level of
the description provided by (1.4) it is noted that, as grand canonical variables,
the salt particles can be explicitly integrated, the result being the Ising model
at coupling constand and external fieldhes;, where

146

. 1.6
14 e+ (1.6)

hest = h + } log
2

In this context, phase coexistence is confined to the relyign= 0, i.e., a
simple curve in th&us, h)-plane. Unfortunately, as is well known [5, 19, 20,
23, 30], not much insight on the subject piiase separatiois to be gained
by studying the Ising magnet in an external field. Indeed, under (for example)
minus boundary conditions, onteexceeds a particular value, a droplet will
form which all but subsumes the allowed volume. The transitional valire of
scales inversely with the linear size of the system; the exact constants and
the subsequent behavior of the droplet depend on the details of the boundary
conditions.

The described “failure” of the grand canonical description indicates that
the correct ensemble in this case is the one with a fixed amount of salt per unit
volume. (The technical definition uses conditioning from the grand canonical
measure; see Section 2.1.) This ensemble is physically more relevant because,
at the moment of freezing, the salt typically does not have enough “mobility” to
be gradually released from the system. It is noted that, once the total amount of
salt is fixed, the chemical potential drops out of the problem—the relevant
parameter is now the salt concentration. As will be seen in Section 2, in our
Ising-based model of the solvent-solute system, fixing the salt concentration
generically leads teharpphase separation in the Ising configuration. More-
over, this happens for anterval of values of the magnetic field. Indeed,
the interplay between the salt concentration and the actual external field will
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demand a patrticular value of the magnetization, even under conditions which
will force a droplet (or ice crystal, depending on the boundary condition) into
the system.

Remark 1.1. We finish by noting that, while the parameteiis for-
mally unrelated to temperature, it does to a limited extent play the role of tem-
perature in that it reflects thee priori amount of preference of the system for
watervsice. Thus the natural phase diagram to study is in(¢h&)-plane.

1.4. Heuristic derivations and outline

The reasoning which led to formula (1.6) allows for an immediate heuristic ex-
planation of our principal results. The key simplification—which again boils
down to the absence of salt-salt interaction—is that for any Ising configura-
tion, the amalgamated contribution of salt, i.e., the Gibbs weight summed over
salt configurations, depends only on the overall magnetization and not on the
details of how the magnetization gets distributed about the system. In systems
of linear scaleL, let 3 (M) denote the canonical partition function for the
Ising magnet with constrained overall magnetizatdn The total partition
function Z|_(c, h) at fixed salt concentrationican then be written as

Zu(c.h) =D 3. (Me™MwWL (M, ), (1.7)
M

whereW, (M, c¢) denotes the sum of the salt part of the Boltzmann weight—
which only depends on the Ising spins via the total magnetizafienover all
salt configurations with concentration

As usual, the physical values of the magnetization are those bringing the
dominant contribution to the sum in (1.7). Let us recapitulate the standard
arguments by first considering the case- 0 (which impliesw, = 1), i.e.,
the usual Ising system at external figld Here we recall tha, (mL%) can
approximately be written as

3L(m Ld) ~ e—Ld[:%(m)+C]’ (18)

whereC is a suitably chosen constant agd (m) is a (normalized) canonical
free energy. The principal fact abo&; (m) is that it vanishes fom in the in-
terval [-m,, m,], wherem, = m,(J) denotes the spontaneous magnetization
of the Ising model at coupling, while it is strictly positive and strictly convex

for mwith |[m| > m,. The presence of the “flat piece” on the grapt¥af(m) is
directly responsible for the existence of the phase transition in the Ising model:
Forh > 0 the dominant contribution to the grand canonical partition function
comes fromM 2> m, L9 while for h < 0 the dominant values of the overall
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magnetization aré/l < —m,L9. Thus, oncam, = m,(J) > O—which hap-
pens forJ > J.(d) with J.(d) € (0, c0) wheneved > 2—a phase transition
occurs ah = 0.

The presence of salt variables drastically changes the entire picture. In-
deed, as we will see in Theorem 2.1, the salt partition functgnM, c)
will exhibit a nontrivial exponential behavior which is characterized by
a strictly convexfree energy. The resulting exponential growth rate of
3L(M)E"MW (M, ¢) for M &~ mLY is thus no longer a function with a flat
piece—instead, for each there is auniquevalue of m that optimizes the
corresponding free energy. Notwithstanding (again, due to the absence of
salt-salt interactions) once that has been selected, the spin configurations
are the typical Ising configurations with overall magnetizatidhs~ mL9.
In particular, wheneveEZ, (c, h) is dominated by values ol ~ mLY for
anm € (—m,, m,), amacroscopic dropletlevelops in the system. Thus, due
to the one-to-one correspondence betwieand the optimal value ah, phase
separation occurs for anterval of values ofh at any positive concentration;
see Fig. 1.

We finish with an outline of the remainder of this paper and some discus-
sion of the companion paper [1]. In Section 2 we define precisely the model
of interest and state our main results concerning the asymptotic behavior of the
corresponding measure on spin and salt configurations with fixed concentra-
tion of salt. Along with the results comes a description of the phase diagram
and a discussion of freezing-point depression, phase separation, etc., see Sec-
tion 2.3. Our main results are proved in Section 3. In [1] we investigate the
asymptotic of infinitesimal salt concentrations. Interestingly, we find that, in
order to induce phase separation, the concentration has to scale at least as the
inverse linear size of the system.

2. RIGOROUS RESULTS
2.1. The model

With the (formal) Hamiltonian (1.4) in mind, we can now start on developing
the mathematicalayout of the problem. To define the model, we will need
to restrict attention to finite subsets of the lattice. We will mostly focus on
rectangular boxed| c Z90of L x L x --- x L sites centered at the origin.
Our convention for the boundargA, of the setA ¢ Z9 will be the collection

of sites outsideA with a neighbor inside\. For eachx € A, we have the
water and salt variablesy € {—1, +1} andSy € {0, 1}. On the boundary, we
will consider fixed configurations;, ; most of the time we will be discussing
the casesspn = +1 orosp = —1, referred to as plus and minus boundary
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conditions. Since there is no salt-salt interaction, we may as weflyset 0
forall x e A°.

We will start by defining the interaction Hamiltonian. Latc Z9 be a
finite set. For a spin configuratiaryy and the paio,, Sa) of spin and salt
configurations, we let

l1-o0
ﬁe%pA(O'A, Saloan) = —J Z Ox0y — h ZUX + K Z Sx X~ (2.1)
(X,y)

2
XeA XeA
XeA, yeZd

Here, as before(x, y) denotes a nearest-neighbor pair@hand the param-
etersJ, h andx are as discussed above. (In light of the discussion from Sec-
tion 1.3 the last term in (1.4) has been omitted.) The probability distribution of
the pair(oa, Sp) takes the usual Gibbs-Boltzmann form:

o @ BHn (oA, Snloan)
Py (oA, SA) = Ziom) (2.2)

where the normalization consta@, (54 ), is the partition function. The dis-
tributions in A with the plus and minus boundary conditions will be denoted
by P" and P, respectively.

For reasons discussed before we will be interested in the problems with a
fixed salt concentration € [0, 1]. In finite volume, we take this to mean that
the total amount of salt,

NL=NL(S) = > Sk, (2.3)

XeAL

is fixed. To simplify future discussions, we will adopt the convention that “con-
centrationc” means thatN. < c|A| < NL +1,i.e.,,N_. = LchJ. We may
then define the finite volume Gibbs probability measure with salt concentra-
tion c and plus (or minus) boundary conditions denotedDI,j“yC’h (or PL_’C’h).

In light of (2.2), these are given by the formulas

PO () = PE(-|NL = LeL?)). (2.4)

Both measureﬁ’f“c’h depend on the parametelsandx in the Hamiltonian.
However, we will always regard these as fixed and suppress them from the
notation whenever possible.

2.2. Main theorems

In order to describe our first set of results, we will need to bring to bear a few
standard facts about the Ising model. For each spin configuratier(oy) €
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{—1, 1}t let us define the overall magnetizationAn by the formula

ML =ML(o) = D ox. (2.5)

XeAL

Let m(h, J) denote the magnetization of the Ising model with coupling con-
stantJ and external fielch > 0. As is well known, cf the proof of Theo-
rem 3.1,h — m(h, J) continuously (and strictly) increases from the value of
the spontaneous magnetizatiop = m(0, J) to one ash sweeps through
[0, >0). In particular, for eachm € [m(0, J), 1), there exists a unique

h =bH(m, J) € [0, o0) such thain(h, J) = m.

Next we will use the above quantities to define the func-
tion #;: (-1,1) — [0, o0), which represents the canonical free energy
of the Ising model in (1.8). As it turns out—see Theorem 3.1 in Section 3—we
simply have

ﬁ‘](m) = /dm/ b(m/, J)l{m*gm/§|m|}, me (—1, l) (26)

As already mentioned, i§ > J;, whereJ. = J.(d) is the critical coupling
constant of the Ising model, then, > 0 and thusZ;(m) = 0 form e
[—m,, m,]. (Since J.(d) < oo only ford > 2, the resulting “flat piece”
on the graph oim — .%#;(m) appears only in dimensior > 2.) From
the perspective of the large-deviation theory, cf [13, 24]~> .Z#3(m) is the
large-deviation rate function for the magnetization in the (unconstrained) Ising
model; see again Theorem 3.1.

Let.(p) = plogp+ (1 — p)log(1— p) denote the entropy function of
the Bernoulli distribution with parametgx. (We will set.¥(p) = oo whenever
p € [0, 1].) For eactm € (—1, 1), eachc € [0, 1] and eactd € [0, 1], let

E(m,f8;c) = — (2.7)

L () ()

As we will show in Section 3, this quantity represents the entropy of configu-
rations with fixed salt concentratiam fixed overall magnetizatiom and fixed
fraction@ of the salt residing “on the plus spins” (and fractior-¥ “on the
minus spins”).

Having defined all relevant quantities, we are ready to state our results.
We begin with a large-deviation principle for the magnetization in the mea-
suresP=%":
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Theorem 2.1. LetJ > Oandx > O be fixed. For each & (0, 1),
each he R and each me (-1, 1), we have

o 1
lim fim = 10g PECN(IML —mLY| < eL)

= —Gpe(m + inf Gpe(m). (2.8)
me(-1,1)

Here m— Gp ¢(m) is given by

Gno(m) = inf, %h.c(m.6). (2.9)

where
“%h.c(M, ) = —hm—xfc — E(M, 9; ¢) + .Z3(m). (2.10)

The function m— Gpc(m) is finite and strictly convex oii—1, 1) with
limm—+1 G, .(M) = Foo. Furthermore, the unique minimizer @ m(h, c)
of m— Gp c(m) is continuous in both ¢ and h and strictly increasing in h.

On the basis of the above large-deviation result, we can now characterize
the typical configurations of the measuriég’c’h. Consider the Ising model
with coupling constantl and zero external field and I@lf’J be the corre-
sponding Gibbs measure in volumg and+-boundary condition. Our main
result in this section is then as follows:

Theorem 2.2. LetJ > Oandx > 0 be fixed. Let ce (0,1) and
h € R, and define two sequences of probability measpﬁésn [—1, 1] by the
formula

pE(=Lm]) = PES" (ML <mLY), me[-1,1] (2.11)

The measureﬁf allow us to write the spin marginal of the measuré’?j>h as
a convex combination of the Ising measures with fixed magnetization; i.e., for
any setA of configurationox)xea, , We have

PECN (A x {0, M) = / pEEMEEY(AML = (mLY)). (212)

Moreover, if m= m(h, ¢) denotes the unique minimizer of the function-n
Gh,c(m) from (2.9), then the following properties are true:

(1) Given the spin configuration on a finite setc Z9, the salt variables
on A are asymptotically independent. Explicitly, for each finite/set
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74 and any two configurationS, € {0, 1}* anda, € {—1, 1},
lim PE:’C’h(SA = gA}O'A = B'A)

L—oo
= [[{96:0150 + (1 = G )d0(Sx)},  (2.13)
XeA

where the numbersge [0, 1] are uniquely determined by the equations

G+ O 1+m 1-m
1—q+_1—q_eK and O+ > +0- > =c. (2.14)

(2) The measurpf converges weakly to a point mass atm(h, c),
lim pE() = om(). (2.15)
L—oo

In particular, the Ising-spin marginal of the measur@t’ﬁ”h IS asymptot-
ically supported on the usual Ising spin configurations with the overall
magnetization M = (m+ 0(1))L9, where m minimizes m> Gh,c(m).

The fact that conditioninngEE":’h on a fixed value of magnetization

produces the Ising measure under same conditioning—which is the content
of (2.12)—is directly related to the absence of salt-salt interaction. The princi-
pal conclusions of the previous theorem are thus parts (1) and (2), which state
that the presence of a particular amount of &attesthe Ising sector to choose

a particular value of magnetization density. The underlying variational prin-
ciple provides insight into the physical mechanism of phase separation upon
freezing of solutions. (We refer the reader back to Section 1.4 for the physical
basis of these considerations.)

We will proceed by discussing the consequences of these results for the
phase diagram of the model and, in particular, the phenomenon of freezing
point depression. Theorems 2.1 and 2.2 are proved in Section 3.2.

2.3. Phase diagram

The representation (2.12) along with the asymptotic (2.15) allow us to charac-
terize the distributiorPfE’C’h in terms of the canonical ensemble of the Ising
ferromagnet. Indeed, these formulas imply that the distribution of Ising spins
induced byPEE’C’h is very much like that in the measu]P%’J conditioned on

the event that the overall magnetizatibh is near the valuen(h, c)Ld. As a
consequence, the asymptotic statements (e.g., the Wulff construction) that have
been (or will be) established for the spin configurations in the Ising model with
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liquid

h=h,(c)

ice

phase separation

h=h_(c)

Fig. 1. The phase diagram of the ice-water system witly> 1. The horizontal axis marks

the concentration of the salt in the system, the vertical line represents the external field acting
on the Ising spins—see formula (1.5). For positive concentrations0, the system stays in

the liquid-water phase throughout a non-trivial range of negative values-af manifestation

of the freezing-point depression. Fdr, ¢) in the shaded region, a non-trivial fraction of the
system is frozen into ice. Ong#h, c) is on the left of the shaded region, the entire system is in
the ice state. For moderate valuexpthe type of convexity of the transition lines may change
from concave to convex neéh, c) = (0, 0); see the companion paper [1].

fixed magnetization will automatically hold for the spin-marginal oft?,féc’h
as well.

A particular question of interest in this paper is phase separation. Recall
thatm, = m,(J) denotes the spontaneous magnetization of the Ising model
at couplingJ. Then we can anticipate the following conclusions about typical
configurations in measurlaj:’c’h:

(1) If m(h, c) > m,, then the entire system (with plus boundary condition)
will look like the plus state of the Ising model whose external field is
adjusted so that the overall magnetization on the stélés roughly
m(h, c)LY.

(2) If m(h,c) < —m,, then the system (with minus boundary condition)
will look like the Ising minus state with similarly adjusted external field.
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(3) If m(h,c) € (—m,, m,), then, necessarily, the system exhibits phase
separation in the sense that typical configurations feature a large droplet
of one phase inside the other. The volume fraction taken by the droplet is
such that the overall magnetization is neah, c)L9. The outer phase
of the droplet agrees with the boundary condition.

The cases (1-2) with opposite boundary conditions—that is, the minus bound-
ary conditions in (1) and the plus boundary conditions in (2)—are still as stated;
the difference is that now there has to be a large contour near the boundary flip-
ping to the “correct” boundary condition.

Remark 2.3.  We have no doubt that the aforementioned conclusions
(1-3) hold for alld > 2 and allJ > J. (with a proper definition of theroplet
in part (3), of course). However, the depth of conclusion (3) depends on the
level of understanding Wulff construction, which is at present rather different in
dimensionsl = 2 andd > 3. Specifically, while ird = 2 the results of [14,22]
allow us to claim that for al0 > J; and all magnetizationsy € (—m,, m,),
the system will exhibit a unique large contour with appropriate properties, in
d > 3 this statement is known to hold [6, 10] only im.*-sense” and only
for m € (—m,, m,) which are near the endpoints. (Moreover, not all values
of J > Jc are, in principle, permitted; cf [7] for a recent improvement of these
restrictions.) We refer to [8] for an overview of the situation.

Notwithstanding the technical difficulties of Wulff construction, the above
allows us to characterize the phase diagram of the model at hand. As indi-
cated in Fig. 1, thén < 0 andc > 0 quadrant splits into three distinct parts:
Theliquid-waterregion, theice region and thepghase separatioregion, which
correspond to the situations in (1-3), respectively. The boundary lines of the
phase-separation region are found by setting

m(h, ¢) = +m,, (2.16)

which in light of strict monotonicity oh — m(h, c) allows us to calculaté
as a function ot. The solutions of (2.16) can be obtained on the basis of the
following observation:

Proposition 2.4. Let m e [-m,, m,] and c € [0, 1] and define the
guantities ¢ = gq+(m, ¢, x) by (2.14) Let h be the solution to th, c) = m.
Then we have:

1-04
1-09_
In particular, there exist two continuous and decreasing functions
hy:[0,00) —» (—o00,0] with hy(c) > h_(c) for all c > 0, such that
—m, < m(h, c) < m,isequivalentto h(c) < h < hy(c)forallc > 0.

h = % log (2.17)
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Proposition 2.4 is proved at the very end of Section 3.2. Here is an infor-
mal interpretation of this result: The quantitigs represent thenole fractions
of salt in liquid-water and ice, respectively. In mathematical temsis the
probability of having a salt particle on a given plus spin, gnds the corre-
sponding quantity for minus spins, see (2.13). Formula (2.17) quantifies the
shift of the chemical potential of the solvent (which is given Iir2this case)
due to the presence of the solute. This is a manifestatidineeting point
depressionsee also Remark 1.1. In the asymptotic wheg 1 we have

2h ~ q_ — Q4. (2.18)

This relation, derived in standard chemistry and physics books under the aus-
picies of the “usual approximations,” is an essential ingredient in the classical
analyses of colligative properties of solutions [24, 27]. Here the derivation is
a direct consequence of a microscopic (albeit simplistic) model which further
offers the possibility of systematically calculating higher-order corrections.

3. PROOFS

The proofs of our main results are, more or less, straightforward exercises in
large-deviation analysis of Gibbs distributions. We first state and prove a cou-
ple of technical lemmas; the actual proofs come in Section 3.2.

3.1. Preliminaries

The starting point of the proof of Theorem 2.1 (and, consequently, Theo-
rem 2.2) is the following large-deviation principle for the Ising model at zero
external field:

Theorem 3.1. Consider the Ising model with coupling constante]
[0, c0) and zero external field. Léff’J be the corresponding (grand canon-
ical) Gibbs measure in volum& | and +-boundary conditions. Then for all
m e [—1, 1],

.o 1 +,] d d
lim lim —logP"(|IML —mL LY) = —-% 3.1
im lim 1 l0gFL (IML =mL% < €L F3(m), (3.1)

where M_is as in(2.5)and.#; is as defined irf2.6).

Proof. The claim is considered standard, see e.g. [31, Section II.1], and
follows by a straightforward application of the thermodynamic relations be-
tween the free energy, magnetization and external field. For completeness (and
reader’s convenience) we will provide a proof.



Colligative properties of solutions 15

Consider the functiorp, (h) = L—ldlogEf’J(ehML), WhereIEjLE’J is the

expectation with respect ﬂBf’J, and letg (h) = lim__ o ¢ (h). The limit
exists by subadditivity arguments and is independent of the boundary condi-
tion. The functionh — ¢(h) is convex onR, real analytic (by the Lee-Yang
theorem [25]) orR \ {0}, and hence it is strictly convex dd. By theh < —h
symmetry there is a cusp lat= 0 whenevem, = ¢’(0%) > 0. It follows that
for eachm € [m,, 1) there is a uniqué = h(m, J) > 0 such thaty’(h) = m,
with h(m, J) increasing continuously from 0 teo asm increases fromm,
to 1. The plus-minus symmetry shows that a similar statement holds for the
magnetizations if—1, —m,].

Let ¢* denote the Legendre transform¢pfi.e.,¢*(Mm) = sup,cp[mh —
¢ (h)]. By the above properties ¢if — ¢ (h) we infer thaip*(m) = mbh — ¢ (h)
whenm € (-1, —m,) U (m,, 1) andh = h(m, J), while p*(m) = —¢(0) =0
for m € [-m,, m]. Applying the Gartner-Ellis theorem (see [21, Theo-
rem V.6] or [13, Theorem 2.3.6]), we then have (3.1) wify(m) = ¢*(m)
forallm e [—-1, —m,) U (m,, 1]—which is the set of so called exposed points
of ¢*. Since¢*(£m,) = 0 and the derivative oin — ¢*(m) is h(m, J),
this .%#; is given by the integral in (2.6). To prove (3.1) whene [—m,, m,],
we must note that the left-hand side of (3.1) is nonpositive and concawe in
(This follows by partitioningA_ into two parts with their own private magne-
tizations and disregarding the interaction through the boundary.) $fiy¢e)
tends to zero as tends to+-m, we thus have that (3.1) fon € [-m,, m,] as
well. |

Remark 3.2.  The “first” part of the Girtner-Ellis theorem [21, Theo-
rem V.6] actually guarantees the followiteyge-deviation principle

. 1 +.J ML .
limsup—; logP;""(—F € C) < — inf ¢*(m) (3.2)
L— 00 Ld L (Ld ) meC¢
for any closed sef c R while
. 1 +,J |\/IL . *
Ilerngof d logP{ (F € (9) > meO\I[rlfm*,m*]qs (m) (3.3)

for any open se) c R. (Here¢*(m) = . 3(m) form € [—1, 1] andg*(m) =

oo otherwise.) The above proof follows by specializing taeighborhoods of
a givenm and lettinge | 0. Them € [—m,, m,] cases—i.e, the non-exposed
points—have to be dealt with separately.

The above is the core of our proof of Theorem 2.1. The next step will be
to bring the quantities andh into play. This, as we shall see, is easily done if
we condition on the total magnetization. (The cost of this conditioning will be
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estimated by (3.1).) Indeed, as a result of the absence of salt-salt interaction,
the conditional measure can be rather precisely characterized. Let us recall the
definition of the quantityN_ from (2.3) which represents the total amount of
salt in the system. For any spin configuratioe= (ox) € {—1, 1}*t and any

salt configuratiors = (Sy) € {0, 1}t, let us introduce the quantity

1+O'X
2

QL=0QL(s,9) = D

XeAL

(3.4)

representing the total amount of salt “on the plus spins.” Then we have:

Lemma 3.3.  For any fixed spin configuratiod = (o) € {—1, 1}At,
all salt configurations(Sy) e {0, 1}*t with the same N and Q have the
same probability in the conditional measuré’l‘-;’h(wa = o). Moreover, for
anyS = (Sy) € {0, 1}At with N_ = |cLY9] and for any me [—1, 1],

PE"( 5 occurs M = [mLY))
1 —
— —]Ef"] (eKQL(U,S)+h ML(U)]_{

ZL ML(U)ILdeJ}): (3.5

where the normalization constant is given by

+,] §)+hM
Zu= D Lins)—ieLdy B (g7 SFINLEO), (3.6)
S'e{0,1}AL

HereIEf_E’J is the expectation with respect}Pq‘)'_[’J.

Proof. The fact that all salt configurations with givédy andQ_ have
the same probability irP,j—L’C’h(-|a = 0) is a consequence of the observation
that the salt-dependent part of the Hamiltonian (2.1) depends o o he
relations (3.5-3.6) follow by a straightforward rewrite of the overall Boltzmann
weight. |

The characterization of the conditional meastéc’h(-|ML = mL9))
from Lemma 3.3 allows us to explicitly evaluate the configurational entropy
carried by the salt. Specifically, given a spin configuration= (ox) €
{—1, 1}t and numberg, c € (0, 1), let

A%C(0) = {(Sx) € (0, )™ : N = [cL9), QL = fcLY]}). (3.7)

The salt entropy is then the rate of exponential growth of the sizéHLd:f(a)
which can be related to the quant®(m, ; c) from (2.7) as follows:
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Lemma 3.4. For eache¢’ > 0 and eachy > 0 there exists a num-
ber Lp < oo such that the following is true for an§,c € (0, 1), any me
(=1, 1) that obeyim| < 1 — 7,

20c 2(1-06)c -

<1l-#x and
1+m 1-m

1—p, (3.8)

and any L > Lo: If 0 = (ox) € {—1, 1}t is a spin configuration with
M (o) = |mLY], then

log | AT (o)

Cd <é€. (3.9)

— E(m,d;c)

Proof. We want to distributeN, = [cL9] salt particles ovet.9 posi-
tions, such that exactl). = [#cL?] of them land ons(L9 + ML) plus sites
andN_ — QL on %(Ld — My ) minus sites. This can be done in

L9+ ML>) (%(Ld —~ ML>)
QL NL — QL

number of ways. Now all quantities scale proportionally.fowhich, applying
Stirling’s formula, shows that the first term is within, seyi-"<'/2 multiples of

1+m 20c
_pd
exp{ L= y(Hm)} (3.11)

AV ()] = ( (3.10)

oncelL > Lo, with Lo depending only or’. A similar argument holds also for
the second term with replaced by 8 andm by —m. Combining these ex-
pressions we get thatl?°(¢)| is within etL% multiples of exgLd E(m, 6; ¢)}
oncelL is sufficiently large. i

For the proof of Theorem 2.2, we will also need an estimate on how many
salt configurations imf’c(a) take given values in a finite subs&tc Ap. To
that extent, for each € {—1, 1}t and eacts, e {0, 1}** we will define the
quantity
(S € AV%(0): Sp = Sl

AL (0)]

As a moment’s thought reveaIRf\’fL (0, SA) can be interpreted as the prob-
ability that {S, = S} occurs in (essentially) any homogeneous product
measure orS = (Sy) € {0,1}*L conditioned to haveN, (S) = |cLY]

andQy (s, S) = |OcLY]. It is therefore not surprising that, for spin config-
urationse with given magnetizatiorin\’,CL (o, -) will tend to a product measure
on S, € {0, 1}*. A precise characterization of this limit is as follows:

RY1(0,54) = (3.12)
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Lemma 3.5. For eache > 0, each K > 1 and eachy > 0 there
exists lg < oo such that the following holds for all L> Lo, all A ¢ AL
with |A] < K, allm withjm| < 1 -y and allé, c € [, 1 — 5] for which

_ 20c _2(1-0)c
p+_1+m and p = 1= (3.13)

satisfy p. € [, 1 — 5]: If 0 = (0x) € {—1, 1}*t is a spin configuration such
that M_(¢) = |[mL9] and S, € {0, 1}* is a salt configuration im, then

RLL@ 5 = [ TP + @ = a0} s (314)
XEA

Proof. We will expand on the argument from Lemma 3.4. Indeed,
from (3.10) we have an expression for the denominator in (3.12). As to the
numerator, introducing the quantities

MA:ZUX: NAZZSX, QAZZSX1+0X, (3.15)

2
XEA XeA XeA

(r — {’) (r’ - {”)
_ /
T (3.16)
r\ [r
(6
the same reasoning as we used to prove (3.10) allows us to write the ob-

ject Rf\’CL (0,Sp) asDyy ss(€, €, Q,q'), where the various parameters are as
follows: The quantities

and the shorthand

D= Dr,r’,s,s’(fa 5/3 q, q/) =

Ld+ M Ld— M
r= % and r’ = TL (3.17)

represent the total number of pluses and minuses in the system, respectively,
s=Q. and s=N_—-Q_ (3.18)
are the numbers of salt particles on pluses and minuses, and, finally,

_IAHEMA L, JAI=My

¢ ) — 5
2 2

q=Qa and q'=Nx—Qx
(3.19)
are the corresponding quantities for the volumeespectively.
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Since (3.13) and the restrictions ¢m| < 1 — n andéd,c € [, 1 — n]
imply thatr,r’,s, s, r —sandr’ — s’ all scale proportionally td.9, uniformly
in o and Sy, while ¢ and¢’ are bounded byA |—which by our assumption is
less thanK—we are in a regime where it makes sense to seek an asymptotic
form of quantityD. Using the bounds

|
aPeP’/a < (a—;—_lb). < aPe/a, (3.20)
which are valid for all integera andb with |b] < a, we easily find that
S\ S\{—a,/s\¢ sh\{-a
D= (F) (1— F) (r—) (1— F) +ol), L-ooo (3.20)
Sinces/r —» py ands'/r’ — p_ asL — oo, while ¢, q, ¢/ andqg’ stay
bounded, the desired claim follows by takibgsufficiently large. 1

The reader may have noticed that, in most of our previous arguntents,
and m were restricted to be away from the boundary values. To control the
situation near the boundary values, we have to prove the following claim:

Lemma 3.6. Foreache € (0, 1) and each L> 1, let& . be the event

ELe={IMLI < @-eLY
{3+ M) <Qus@-o3(L"+ M)} (322)

Then for each & (0, 1) and each he R there exists am > 0 such that

, 1
lim SUp—5 log Pf’c’h(é’f,e) < 0. (3.23)

L—oo

Proof. We will split the complement of| . into four events and prove
the corresponding estimate for each of them. We begin with the évant<
—(1 — ¢)LY). The main tool will be stochastic domination by a product
measure. Consider the usual partial order on spin configurations defined by
puttinge < ¢’ whenevewy < o, for all x. Let

) = inf min min  PE"(ox = 114, ) (3.24)
L>1XeAL fe{—1,13ALX)
Se{—1,1} L

be the conditional probability thak = +1 occurs given a spin configuratieh
in AL \ {x} and a salt configuratios in A, optimized over all’, S and
alsox € AL and the system size. Sin@%’c’h(ax = 1|¢, S) reduces to (the
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exponential of) the local interaction betwegnand its ultimate neighborhood,
we havel > 0.

Using standard arguments it now follows that the spin marginﬁ’lfbf’h
stochastically dominates the product meastyrelefined byP,(ox = 1) = 4
for all x. In particular, we have

PECN (ML < —(L—o)L%) < Py(ML < —(1—e)LY). (3.25)

Lete < 24. Theni — (1 — 2)—namely, the expectation @f; with respect

to P,—exceeds the negative 1 — ¢) and so Crarar's theorem (see [21,
Theorem 1.4] or [13, Theorem 2.1.24]) implies that the probability on the right-
hand side decays to zero exponentially i i.e.,

lim supiOI logP; (ML < —(1—e)LY) <O. (3.26)
L—oo L

The opposite side of the interval of magnetizations, namely, the ¢kant>

(1 — €)LY}, is handled analogously (withnow focusing orsy = —1 instead

of ox = 1).

The remaining two events, marking whén is either less thaa or larger
than(1 — ¢€) times the total number of plus spins, are handled using a similar
argument combined with standard convexity estimates. Let us consider the
event{Q_ < eL%—which contains the evetQ, < ¢3(M + L%)}—and let
us emphasize the dependence of the underlying probability distributian on
by writing Pf’c’h asP,. LetE, denote the expectation with respect{pand
note thatE,(f) = Eo( fe“RL)/Eq(e“QL). We begin by using the Chernoff
bound to get

gae Ld

P, LY < LR, (e 3y = —— . 27
(QL<eL") <€ (e ) E, (@0’ a>0. (3.27)

A routine application of Jensen’s inequality gives us
Pe(QL < €L < eX|0{a(6LOI - Ex—a(QL))}- (3.28)

It thus suffices to prove that there exists’a< x such that inf -1 L—ldEK/(QL)
is positive. (Indeed, we taketo be strictly less than this number and aet
x — ' to observe that the right-hand side decays exponentiallyih To show
this we writeE,/(Qr) as the sum o (ox = 1,Sx = 1) overallx € A|.
Looking back at (3.24), we then halg/ (ox = 1, Sx = 1) > AP (Sx = 1),
where/ is now evaluated fok’, and so

Ec(Qu) =2 D Pu(Sc=1) = E«(N) ~ 2cL?.  (3.29)

XeAL
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Thus, oncelc > ¢, the probabilityP, (Q, < €L9) decays exponentially ih¢.

As to the complementary evertQ > (1—¢)3(M_ +L%)}, we note that
this is contained ifH, < L9}, whereH, counts the number of plus spins
with no salt on it. Since we still hav, () = Eo( fe ") /Eq(e™HL), the
proof boils down to the same argument as beforj}.

3.2. Proofs of Theorems 2.1 and 2.2

On the basis of the above observations, the proofs of our main theorems are
easily concluded. However, instead of Theorem 2.1 we will prove a slightly
stronger result of which the large-deviation part of Theorem 2.1 is an easy
corollary.

Theorem 3.7. LetJ > Oandx > 0 be fixed. For each,@ € (0, 1),
each he R and each me (-1,1), let B . = B (m,c,#) be the set of
all (o, S) € {—1, )AL x {0, 1}At for which|[M_ — mL9| < eL9 and |Q. —
0cLY] < €LY hold. Then

log PSN(B
lim lim —9L d( L’f)=—%c(m,9)+ inf % .c(m',0"), (3.30)
€l0L—>o0 L ’ me(-11)
6'el0,1]

whereé c(m, 6) is as in(2.10)

Proof. Since the size of the selﬂL’C(a) depends only on the overall mag-

netization, Iemel_’c(m) denote this size for the configuratioasvith M (o) =
ImLY]. First we note that, by Lemma 3.3,

KL(m, 8
PEC"M(QL = [0cLY), M| = [mLY)) = —L(ZL ) (3.31)
where
Ki(m, 0) = AlS(m) mLixlfel pd v = imLd)).  (3.32)

HereZ, is the normalization constant from (3.6) which in the present formula-
tion can also be interpreted as the sunkK@f(m, ) over the relevant (discrete)
values ofm andé.

Let Ki (m,#) denote the sum oK (m',#) over allm" and ¢’ for
which m'L9 and@’cLY are integers an¢in’ — m| < € and|f’c — Oc| < e.
(This is exactly the set of magnetizations and spin-salt overlaps contributing
to the set3. ..) Applying (3.1) to extract the exponential behavior of the last
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probability in (3.32), and using (3.9) to do the same for the quam\‘itﬁ(m),
we get

log K m, 8
gLL’—Ed() +%hc(M, )| < e+€, (3.33)
wheree’ is as in (3.9). As a consequence of the above estimate we have
. ’ == 34
GI% |_I_r>noo Ld “h.c(M, 0) (3.34)

foranym e (—1, 1) and any € (0, 1).
Next we will attend to the denominator in (3.31). Pitk 0 and consider
the set
Ms={m6):Im<1-6,d<0<1-6} (3.35)

We will write Z|_ as a sum of two term<,|. = Z(Ll) + Z(LZ), with Z(Ll) obtained
by summingK (m, #) over the admissiblém, ) € M andZ(Lz) collecting the
remaining terms. By Lemma 3.6 we know tr%(f)/ZL decays exponentially

in L9 and so the decisive contribution @_ comes fromz\?. Assuming
thate < ¢, let us covertMs by finite number of sets of the form, — e, m;, +
€] x[0, —e, 6, +¢], wherem), andd; are such that, L9 andd,cL? are integers.
Then Z(Ll) can be bounded as in

maxKL (M, 67) < Z[7 < D KL e(m}. 6)). (3.36)
4

Moreover, the right-hand side is bounded by the left-hand side times a poly-
nomial in L. Taking logarithms, dividing by.9, taking the limitL — oo,
refining the cover and applying the continuity @h, 8) — %h c(m, 9) allows
us to conclude that

log Z,

i —— inf inf 0). 3.37
o TLd me'(r—]l,l)eelt%,ll%’(:(m’) (3:37)

Combining these observations, (2.8) is proved.

Proof of Theorem 2.1. The conclusion (2.8) follows from (3.30) by
similar arguments that prove (3.37). The only remaining thing to prove is
the strict convexity oin — Gp ¢(m) and continuity and monotonicity of its
minimizer. First we note tha — % c(m, 8) is strictly convex on the set
of & where it is finite, which is a simple consequence of the strict convexity
of p —» “(p). Hence, for eaclm, there is a uniqué = 6(m) which mini-
mizesd — % c(M, ).
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Our next goal is to show that, farc > 0, the solutiord = (m) will
satisfy the inequality
1+m
0 > +T (3.38)

(A heuristic reason for this is that= ”Tm corresponds to the situation when
the salt is distributed independently of the underlying spins. This is the dom-
inating strategy forx = 0; oncex > O it is clear that the fraction of salt

on plus spingnustincrease.) A formal proof runs as follows: We first note
thatm — 6(m) solves ford from the equation

0
@E(m,e; C) = —«kC, (3.39)

whereZ(m, 8; c) is as in (2.7). But — E(m, ; c) is strictly concave and its
derivative vanishes # = %(1 + m). Therefore, foxc > 0 the solutiord =
6(m) of (3.39) must obey (3.38).

Let V be the set ofm, #) € (-1, 1) x (0, 1) for which (3.38) holds and
note thatV is convex. A standard second-derivative calculation now shows
that % c(m, 0) is strictly convex onV. (Here we actually differentiate the
function%, c(m, ) — .#3(m)—which is twice differentiable on the set where
it is finite—and then use the known convexity.&f; (m). The strict convexity
is violated on the lin@ = %(1+m) where(m, 8) — % c(m, 0) has a flat piece
for m e [-m,, m,].) Now, sinced(m) minimizes¥, c(m, @) for a givenm, the
strict convexity of4, (m, 8) onV implies that for anyt € (0, 1),

Gh,c(Amy + (1 — H)my)
< %hc(Am1 4+ (1 — Hmy, 20(My) + (1 — 1) (my))
< /lgh,c(ml, H(ml)) +(1- i)%h,c(mz, H(mz)) (3.40)
= AGh,c(M) + (1 — 1)Gh,c(My).

Hence,m — Gp (M) is also strictly convex. The fact th&’(m) diverges
asm — +1 is a consequence of the corresponding property of the func-
tionm — .#3(m) and the fact that the rest &, ¢ is convex inm.

As a consequence of strict convexity and the abovementioned “steepness”
atthe boundary of the intervél-1, 1), the functiorm — Gp_¢(m) has a unique
minimizer for eacth € R andc > 0, as long as the quantities from (3.13) sat-
isfy p+ < 1. The minimizer is automatically continuoushrand is manifestly
non-decreasing. Furthermore, the continuityagfc in ¢ allows us to conclude
thatd(m) is also continuous ie. What is left of the claims is thstrict mono-
tonicity of m as a function oh. Writing G c(m) as—hm+ g(m) and noting
thatg is continuously differentiable o+-1, 1), the minimizingm satisfies

g'(m) = h. (3.41)
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But g(m) is also strictly convex and sgf(m) is strictly increasing. It follows
thatm has to be strictly increasing witin i

Theorem 3.1 has the following simple consequence that is worth high-
lighting:

Corollary 3.8. Forgiven he Rand ce (0, 1), let(m, #) be the mini-
mizer of%, c(m, 6). Then for alle > 0,

im PECN(1QL —ocLY > eL9or ML —mLY| > eLY) =0.  (3.42)
—00

Proof. On the basis of (3.30) and the fact ti¥t.(m, #) has a unique
minimizer, a covering argument—same as used to prove (3.37)—implies that
the probability on the left-hand side decays to zero exponentiallyin [

Before we proceed to the proof of our second main theorem, let us make
an observation concerning the valuegpafat the minimizingm andé:

Lemma3.9. Lethe R andce (0,1) be fixed and letm, 8) be the
minimizer of% ¢(m, #). Define the quantities.q = g+(m, c, x) by (2.14)
and pr = p+(Mm, 4, c) by (3.13) Then

gr=p; and g =p_. (3.43)

Moreover, g. are then related to h vi§2.17)whenever ne [—m,, m,].

Proof. First let us ascertain thai. are well defined from equations

(2.14). We begin by noting that the set of possible value&of g-) is the
unit square [01]. As is easily shown, the first equation in (2.14) corresponds
to an increasing curve in [@]? connecting the corner®, 0) and(1, 1). On
the other hand, the second equation in (2.14) is a straight line with negative
slope which by the fact that < 1 intersects both the top and the right side of
the square. It follows that these curves intersect at a single point—the unique
solution of (2.14).

Next we will derive equations thgi. have to satisfy. Lefm, 8) be the
unique minimizer of%, ¢(m, ). The partial derivative with respect foyields

c(7" (py) — 7(p-)) =xc (3.44)
and from the very definition op. we have

1+m 1-m
> p+—|—Tp_ =cC. (3.45)

Noting that¥”’(p) = log rpp we now see thap. satisfies the same equations
asg+ and so, by the above uniqueness argument, (3.43) must hold.
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To prove relation (2.17), let us also consider the derivativéaf(m, 6)
with respect tam. For solutions in £m,, m,] we can disregard the”; part
of the function (because its vanishes along with its derivative throughout this
interval), so we have

d
h=——2(m,0;c). 3.46
s (m, 8;c) (3.46)

A straightforward calculation then yields (2.17)§
Now we are ready to prove our second main result:

Proof of Theorem 2.2. The crucial technical step for the present proof
has already been established in Lemma 3.3. In order to plug into the latter
result, let us note that the sum efQ.(>5 over all salt configurations =
(Sx) € {0, 1}At with N = |cLY] is a number depending only on the total
magnetizatiorM| = M| (¢). Lemma 3.3 then implies

PECM (A x {0, A N ML = [mLY)))
= oL (M PP (AN (ML = ImLY]))  (3.47)

wherew (m) is a positive number depending om the parameters, h, J
and the boundary conditioft but not on the eventl. Noting thatpf is sim-

ply the distribution of the random variablég, /L9 in measurePf’C’h, this
proves (2.12).

In order to prove the assertion (2.13), wedet {0, 1}At, pick A C AL
and fixS e {0, 1}*. Since Lemma 3.3 guarantees that, giver= s}, all salt
configurations with fixedQ, and concentratioc have the same probability
in P=%"(.|o = 5), we have

PECN(SA =S, Se AP°@)|o=15) = R?\’,CL(C—” Sa); (3.48)

where Rf\’ﬁ_ is defined in (3.12). Picly > 0 and assume, as in Lemma 3.5,
thatc € [#,1— 7], 0 € [, 1— ] andM_ (5) = |mLY] for somem with |m| <
1 — 5. Then the aforementioned lemma tells us tﬁﬁﬁ_ (o, -) is within € of
the probability thatSy occurs in the product measure where the probability
of Sx = 1is p; if ox = +1 andp_ if ox = —1.

Let (m, &) be the unique minimizer c¥ (M, ). Taking expectation of
(3.48) overs with 5 fixed, using Corollary 3.8 to discard the eveyity /L9 —
m| > € or |QL/Ld — 0c| > € and invoking the continuity op+. in m andé,
we find out thaﬂ:’f’c’h(SA = Saloa = o) indeed converges to

[T{Ps0150) + (L~ Pr)do(50}, (3.49)

XEA
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with p. evaluated at the minimizingm, #). But for this choice Lemma 3.9
guarantees thgi, = q., which finally proves (2.13-2.14). 1

The lastitem to be proved is Proposition 2.4 establishing the basic features
of the phase diagram of the model under consideration:

Proof of Proposition 2.4. From Lemma 3.9 we already know that the

set of pointan(h, ¢) = m for m € [—-m,, m,] is given by the equation (2.17).
By the fact thatm(h, c) is strictly increasing irh and thatm(h,c) —» =1
ash — too we thus know that (2.17) defines a line in ttie c)-plane. Spe-
cializing tom = 4+m, gives us two curves parametrized by functians>
h_(c) such that aih, c) satisfyingh_(c) < h < h,(c) the system magne-
tization m(h, c¢) is strictly between—m, andm,, i.e., (h, ¢) is in the phase
separation region.

It remains to show that the above functians> h.(c) are strictly mono-
tone and negative far > 0. We will invoke the expression (2.17) which applies
because on the above curves we hanl, c) € [-m,, m,]. Let us introduce
new variables q

R, = +

1-qy 1-9-

(3.50)

and, writingh in (2.17) in terms ofR., let us differentiate with respect ©
(We will denote the corresponding derivatives by superscript prime.) Since
(2.14) gives us thaR_ = e *R,, we easily derive

R_ R, ) 1—e*

2h = - =R, .
1+R. 1+R, 1+ RHI+R.)

(3.51)

Thus,h” and R, have opposite signs; i.e., we want to prove tRat > O.

But that is immediate: By the second equation in (2.14) we conclude that
at least one ofR, must be strictly positive, and bR- = e R, we find

that bothR. > 0. It follows thatc — hi(c) are strictly decreasing, and
sincehy(0) = 0, they are also negative once- 0. ||
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