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Colligative properties of solutions:
I. Fixed concentrations

Kenneth S. Alexander,1 Marek Biskup,2 and Lincoln Chayes2

Using the formalism of rigorous statistical mechanics, we study the phenom-
ena of phase separation and freezing-point depression upon freezing of solu-
tions. Specifically, we devise an Ising-based model of a solvent-solute system
and show that, in the ensemble with a fixed amount of solute, a macroscopic
phase separation occurs in an interval of values of the chemical potential of the
solvent. The boundaries of the phase separation domain in the phase diagram
are characterized and shown to asymptotically agree with the formulas used in
heuristic analyses of freezing point depression. The limit of infinitesimal con-
centrations is described in a subsequent paper.

1. INTRODUCTION

1.1. Motivation

The statistical mechanics of pure systems—most prominently the topic of
phase transitions and their associated surface phenomena—has been a sub-
ject of fairly intensive research in recent years. Several physical principles for
pure systems (the Gibbs phase rule, Wulff construction, etc.) have been put
on a mathematically rigorous footing and, if necessary, supplemented with ap-
propriate conditions ensuring their validity. The corresponding phenomena in
systems with several mixed components, particularly solutions, have long been
well-understood on the level of theoretical physics. However, they have not re-
ceived much mathematically rigorous attention and in particular have not been
derived rigorously starting from a local interaction. A natural task is to use the
ideas from statistical mechanics of pure systems to develop a higher level of
control for phase transitions in solutions. This is especially desirable in light
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of the important role that basic physics of these systems plays in sciences, both
general (chemistry, biology, oceanography) and applied (metallurgy, etc.). See
e.g. [11,24,27] for more discussion.

Among the perhaps most interesting aspects of phase transitions in mixed
systems is a dramaticphase separationin solutions upon freezing (or boiling).
A well-known example from “real world” is the formation of brine pockets in
frozen sea water. Here, two important physical phenomena are observed:

(1) Migration of nearly all the salt into whatever portion of ice/water mixture
remains liquid.

(2) Clear evidence offacettingat the water-ice boundaries.

Quantitative analysis also reveals the following fact:

(3) Salted water freezes at temperatures lower than the freezing point of pure
water. This is the phenomenon offreezing point depression.

Phenomenon (1) is what “drives” the physics of sea ice and is thus largely
responsible for the variety of physical effects that have been observed, see
e.g. [17, 18]. Notwithstanding, (1–3) are not special to the salt-water system;
they are shared by a large class of the so callednon-volatilesolutions. A dis-
cussion concerning the general aspects of freezing/boiling of solutions—often
referred to ascolligativeproperties—can be found in [24,27].

Of course, on a heuristic level, the above phenomena are far from mys-
terious. Indeed, (1) follows from the observation that, macroscopically, the
liquid phase provides a more hospitable environment for salt than the solid
phase. Then (3) results by noting that the migration of salt increases the en-
tropic cost of freezing so the energy-entropy balance forces the transition point
to a lower temperature. Finally, concerning observation (2) we note that, due to
the crystalline nature of ice, the ice-water surface tension will be anisotropic.
Therefore, to describe the shape of brine pockets, a Wulff construction has to
be involved with the caveat that here the crystalline phase is on the outside. In
summary, what is underlying these phenomena is a phase separation accom-
panied by the emergence of a crystal shape. In the context of pure systems,
such topics have been well understood at the level of theoretical physics for
quite some time [12, 16, 32, 33] and, recently (as measured on the above time
scale), also at the level of rigorous theorems in two [2, 4, 14, 22, 28, 29] and
higher [6,9,10] dimensions.

The purpose of this and a subsequent paper is to study the qualitative
nature of phenomena (1–3) using the formalism of equilibrium statistical me-
chanics. Unfortunately, a microscopically realistic model of salted water/ice
system is far beyond reach of rigorous methods. (In fact, even in pure water,



Colligative properties of solutions 3

the phenomenon of freezing is so complex that crystalization in realistic models
has only recently—and only marginally—been exhibited in computer simula-
tions [26].) Thus we will resort to a simplified version in which salt and both
phases of water are represented by discrete random variables residing at sites
of a regular lattice. For these models we show that phase separation dominates
a non-trivial region of chemical potentials in the phase diagram—a situation
quite unlike the pure system where phase separation can occur only at a single
value (namely, the transition value) of the chemical potential. The boundary
lines of the phase-separation region can be explicitly characterized and shown
to agree with the approximate solutions of the corresponding problem in the
physical-chemistry literature.

The above constitutes the subject of the present paper. In a subsequent
paper [1] we will demonstrate that, for infinitesimal salt concentrations scaling
appropriately with the size of the system, phase separation may still occur dra-
matically in the sense that a non-trivial fraction of the system suddenly melts
(freezes) to form a pocket (crystal). In these circumstances the amount of salt
needed is proportional to theboundaryof the system which shows that the on-
set of freezing-point depression is actually a surface phenomenon. On a qual-
itative level, most of the aforementioned conclusions should apply to general
non-volatile solutions under the conditions when the solvent freezes (or boils).
Notwithstanding, throughout this and the subsequent paper we will adopt the
languageof salted water and refer to the solid phase of the solvent as ice, to
the liquid phase as liquid-water, and to the solute as salt.

1.2. General Hamiltonian

Our model will be defined on thed-dimensional hypercubic latticeZd. We will
take the (formal) nearest-neighbor Hamiltonian of the following form:

βH = −

∑
〈x,y〉

(αIIxIy + αLLxLy) + κ
∑

x

SxIx −

∑
x

µSSx −

∑
x

µLLx. (1.1)

Hereβ is the inverse temperature (henceforth incorporated into the Hamito-
nian), x and y are sites inZd and〈x, y〉 denotes a neighboring pair of sites.
The quantitiesIx, Lx andSx are the ice (water), liquid (water) and salt vari-
ables, which will take values in{0, 1} with the additional constraint

Ix + Lx = 1 (1.2)

valid at each sitex. We will say thatIx = 1 indicates thepresence of iceat x
and, similarly,Lx the presence of liquidat x. Since a single water molecule
cannot physically be in an ice state, it is natural to interpret the phraseIx = 1
as referring to the collective behavior of many particles in the vicinity ofx
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which are enacting an ice-like state, though we do not formally incorporate
such a viewpoint into our model.

The various terms in (1.1) are essentially self-explanatory: An interac-
tion between neighboring ice points, similarly for neighboring liquid points
(we may assume these to be attractive), an energy penaltyκ for a simultane-
ous presence of salt and ice at one point, and, finally, fugacity terms for salt
and liquid. For simplicity (and tractability), there is no direct salt-salt interac-
tion, except for the exclusion rule of at most one salt “particle” at each site.
Additional terms which could have been included are superfluous due to the
constraint (1.2). We will assume throughout thatκ > 0, so that the salt-ice
interaction expresses the negative affinity of salt to the ice state of water. This
term is entirely—and not subtly—responsible for the general phenomenon of
freezing point depression. We remark that by suitably renaming the variables,
the Hamiltonian in (1.1) would just as well describe a system with boiling point
elevation.

As we said, the variablesIx andLx indicate the presence of ice and liq-
uid water at sitex, respectively. The assumptionIx + Lx = 1 guarantees that
somethinghas to be present atx (the concentration of water in water is unity);
what is perhaps unrealistic is the restriction ofIx andLx to only the extreme
values, namelyIx, Lx ∈ {0, 1}. Suffice it to say that the authors are confident
(e.g., on the basis of [3]) that virtually all the results in this note can be ex-
tended to the cases of continuous variables. However, we will not make any
such mathematical claims; much of this paper will rely heavily on preexisting
technology which, strictly speaking, has only been made to work for the dis-
crete case. A similar discussion applies, of course, to the salt variables. But
here our restriction toSx ∈ {0, 1} is mostly to ease the exposition; virtually all
of our results directly extend to the cases whenSx takes arbitrary (positive) real
values according to somea priori distribution.

1.3. Reduction to Ising variables

It is not difficult to see that the “ice-liquid sector” of the general Hamiltonian
(1.1) reduces to a ferromagnetic Ising spin system. On a formal level, this is
achieved by passing to the Ising variablesσx = Lx − Ix, which in light of the
constraint (1.2) gives

Lx =
1 + σx

2
and Ix =

1 − σx

2
. (1.3)

By substituting these into (1.1), we arrive at the interaction Hamiltonian:

βH = −J
∑
〈x,y〉

σxσy − h
∑

x

σx + κ
∑

x

Sx
1 − σx

2
−

∑
x

µSSx, (1.4)
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where the new parametersJ andh are given by

J =
αL + αI

4
and h =

d

2
(αL − αI) +

µL

2
. (1.5)

We remark that the third sum in (1.4) is still written in terms of “ice” indicators
so thatH will have a well defined meaning even ifκ = ∞, which corresponds
to prohibiting salt entirely at ice-occupied sites. (Notwithstanding, the bulk of
this paper is restricted to finiteκ.) Using an appropriate restriction to finite
volumes, the above Hamitonian allows us to define the corresponding Gibbs
measures. We postpone any relevant technicalities to Section 2.1.

The Hamiltonian as written foretells the possibility of fluctuations in the
salt concentration. However, this isnot the situation which is of physical in-
terest. Indeed, in an open system it is clear that the salt concentration will,
eventually, adjust itself until the system exhibits a pure phase. On the level of
the description provided by (1.4) it is noted that, as grand canonical variables,
the salt particles can be explicitly integrated, the result being the Ising model
at coupling constantJ and external fieldheff, where

heff = h +
1

2
log

1 + eµS

1 + eµS−κ
. (1.6)

In this context, phase coexistence is confined to the regionheff = 0, i.e., a
simple curve in the(µS, h)-plane. Unfortunately, as is well known [5, 19, 20,
23, 30], not much insight on the subject ofphase separationis to be gained
by studying the Ising magnet in an external field. Indeed, under (for example)
minus boundary conditions, onceh exceeds a particular value, a droplet will
form which all but subsumes the allowed volume. The transitional value ofh
scales inversely with the linear size of the system; the exact constants and
the subsequent behavior of the droplet depend on the details of the boundary
conditions.

The described “failure” of the grand canonical description indicates that
the correct ensemble in this case is the one with a fixed amount of salt per unit
volume. (The technical definition uses conditioning from the grand canonical
measure; see Section 2.1.) This ensemble is physically more relevant because,
at the moment of freezing, the salt typically does not have enough “mobility” to
be gradually released from the system. It is noted that, once the total amount of
salt is fixed, the chemical potentialµS drops out of the problem—the relevant
parameter is now the salt concentration. As will be seen in Section 2, in our
Ising-based model of the solvent-solute system, fixing the salt concentration
generically leads tosharpphase separation in the Ising configuration. More-
over, this happens for aninterval of values of the magnetic fieldh. Indeed,
the interplay between the salt concentration and the actual external field will
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demand a particular value of the magnetization, even under conditions which
will force a droplet (or ice crystal, depending on the boundary condition) into
the system.

Remark 1.1. We finish by noting that, while the parameterh is for-
mally unrelated to temperature, it does to a limited extent play the role of tem-
perature in that it reflects thea priori amount of preference of the system for
watervs ice. Thus the natural phase diagram to study is in the(c, h)-plane.

1.4. Heuristic derivations and outline

The reasoning which led to formula (1.6) allows for an immediate heuristic ex-
planation of our principal results. The key simplification—which again boils
down to the absence of salt-salt interaction—is that for any Ising configura-
tion, the amalgamated contribution of salt, i.e., the Gibbs weight summed over
salt configurations, depends only on the overall magnetization and not on the
details of how the magnetization gets distributed about the system. In systems
of linear scaleL, let ZL(M) denote the canonical partition function for the
Ising magnet with constrained overall magnetizationM . The total partition
function ZL(c, h) at fixed salt concentrationc can then be written as

ZL(c, h) =

∑
M

ZL(M)ehMWL(M, c), (1.7)

whereWL(M, c) denotes the sum of the salt part of the Boltzmann weight—
which only depends on the Ising spins via the total magnetizationM—over all
salt configurations with concentrationc.

As usual, the physical values of the magnetization are those bringing the
dominant contribution to the sum in (1.7). Let us recapitulate the standard
arguments by first considering the casec = 0 (which impliesWL = 1), i.e.,
the usual Ising system at external fieldh. Here we recall thatZL(mLd) can
approximately be written as

ZL(mLd) ≈ e−Ld[FJ(m)+C], (1.8)

whereC is a suitably chosen constant andFJ(m) is a (normalized) canonical
free energy. The principal fact aboutFJ(m) is that it vanishes form in the in-
terval [−m?, m?], wherem? = m?(J) denotes the spontaneous magnetization
of the Ising model at couplingJ, while it is strictly positive and strictly convex
for m with |m| > m?. The presence of the “flat piece” on the graph ofFJ(m) is
directly responsible for the existence of the phase transition in the Ising model:
For h > 0 the dominant contribution to the grand canonical partition function
comes fromM & m?Ld while for h < 0 the dominant values of the overall
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magnetization areM . −m?Ld. Thus, oncem? = m?(J) > 0—which hap-
pens forJ > Jc(d) with Jc(d) ∈ (0, ∞) wheneverd ≥ 2—a phase transition
occurs ath = 0.

The presence of salt variables drastically changes the entire picture. In-
deed, as we will see in Theorem 2.1, the salt partition functionWL(M, c)
will exhibit a nontrivial exponential behavior which is characterized by
a strictly convex free energy. The resulting exponential growth rate of
ZL(M)ehMWL(M, c) for M ≈ mLd is thus no longer a function with a flat
piece—instead, for eachh there is auniquevalue of m that optimizes the
corresponding free energy. Notwithstanding (again, due to the absence of
salt-salt interactions) once thatm has been selected, the spin configurations
are the typical Ising configurations with overall magnetizationsM ≈ mLd.
In particular, wheneverZL(c, h) is dominated by values ofM ≈ mLd for
anm ∈ (−m?, m?), a macroscopic dropletdevelops in the system. Thus, due
to the one-to-one correspondence betweenh and the optimal value ofm, phase
separation occurs for aninterval of values ofh at any positive concentration;
see Fig. 1.

We finish with an outline of the remainder of this paper and some discus-
sion of the companion paper [1]. In Section 2 we define precisely the model
of interest and state our main results concerning the asymptotic behavior of the
corresponding measure on spin and salt configurations with fixed concentra-
tion of salt. Along with the results comes a description of the phase diagram
and a discussion of freezing-point depression, phase separation, etc., see Sec-
tion 2.3. Our main results are proved in Section 3. In [1] we investigate the
asymptotic of infinitesimal salt concentrations. Interestingly, we find that, in
order to induce phase separation, the concentration has to scale at least as the
inverse linear size of the system.

2. RIGOROUS RESULTS

2.1. The model

With the (formal) Hamiltonian (1.4) in mind, we can now start on developing
the mathematicallayout of the problem. To define the model, we will need
to restrict attention to finite subsets of the lattice. We will mostly focus on
rectangular boxes3L ⊂ Zd of L × L × · · · × L sites centered at the origin.
Our convention for the boundary,∂3, of the set3 ⊂ Zd will be the collection
of sites outside3 with a neighbor inside3. For eachx ∈ 3, we have the
water and salt variables,σx ∈ {−1, +1} andSx ∈ {0, 1}. On the boundary, we
will consider fixed configurationsσ∂3; most of the time we will be discussing
the casesσ∂3 = +1 or σ∂3 = −1, referred to as plus and minus boundary
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conditions. Since there is no salt-salt interaction, we may as well setSx = 0
for all x ∈ 3c.

We will start by defining the interaction Hamiltonian. Let3 ⊂ Zd be a
finite set. For a spin configurationσ∂3 and the pair(σ3, S3) of spin and salt
configurations, we let

βH3(σ3, S3|σ∂3) = −J
∑
〈x,y〉

x∈3, y∈Zd

σxσy − h
∑
x∈3

σx + κ
∑
x∈3

Sx
1 − σx

2
. (2.1)

Here, as before,〈x, y〉 denotes a nearest-neighbor pair onZd and the param-
etersJ, h andκ are as discussed above. (In light of the discussion from Sec-
tion 1.3 the last term in (1.4) has been omitted.) The probability distribution of
the pair(σ3, S3) takes the usual Gibbs-Boltzmann form:

Pσ∂3
3 (σ3, S3) =

e−βH3(σ3,S3|σ∂3)

Z3(σ∂3)
, (2.2)

where the normalization constant,Z3(σ∂3), is the partition function. The dis-
tributions in3L with the plus and minus boundary conditions will be denoted
by P+

L andP−

L , respectively.
For reasons discussed before we will be interested in the problems with a

fixed salt concentrationc ∈ [0, 1]. In finite volume, we take this to mean that
the total amount of salt,

NL = NL(S) =

∑
x∈3L

Sx, (2.3)

is fixed. To simplify future discussions, we will adopt the convention that “con-
centrationc” means thatNL ≤ c|3L | < NL + 1, i.e.,NL = bcLd

c. We may
then define the finite volume Gibbs probability measure with salt concentra-
tion c and plus (or minus) boundary conditions denoted byP+,c,h

L (or P−,c,h
L ).

In light of (2.2), these are given by the formulas

P±,c,h
L (·) = P±

L

(
·
∣∣NL = bcLd

c
)
. (2.4)

Both measuresP±,c,h
L depend on the parametersJ andκ in the Hamiltonian.

However, we will always regard these as fixed and suppress them from the
notation whenever possible.

2.2. Main theorems

In order to describe our first set of results, we will need to bring to bear a few
standard facts about the Ising model. For each spin configurationσ = (σx) ∈
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{−1, 1}
3L let us define the overall magnetization in3L by the formula

ML = ML(σ) =

∑
x∈3L

σx. (2.5)

Let m(h, J) denote the magnetization of the Ising model with coupling con-
stant J and external fieldh ≥ 0. As is well known, cf the proof of Theo-
rem 3.1,h 7→ m(h, J) continuously (and strictly) increases from the value of
the spontaneous magnetizationm? = m(0, J) to one ash sweeps through
[0, ∞). In particular, for eachm ∈ [m(0, J), 1), there exists a unique
h = h(m, J) ∈ [0, ∞) such thatm(h, J) = m.

Next we will use the above quantities to define the func-
tion FJ : (−1, 1) → [0, ∞), which represents the canonical free energy
of the Ising model in (1.8). As it turns out—see Theorem 3.1 in Section 3—we
simply have

FJ(m) =

∫
dm′ h(m′, J)1{m?≤m′≤|m|}, m ∈ (−1, 1). (2.6)

As already mentioned, ifJ > Jc, whereJc = Jc(d) is the critical coupling
constant of the Ising model, thenm? > 0 and thusFJ(m) = 0 for m ∈

[−m?, m?]. (Since Jc(d) < ∞ only for d ≥ 2, the resulting “flat piece”
on the graph ofm 7→ FJ(m) appears only in dimensionsd ≥ 2.) From
the perspective of the large-deviation theory, cf [13, 21],m 7→ FJ(m) is the
large-deviation rate function for the magnetization in the (unconstrained) Ising
model; see again Theorem 3.1.

Let S (p) = p log p + (1− p) log(1− p) denote the entropy function of
the Bernoulli distribution with parameterp. (We will setS (p) = ∞ whenever
p 6∈ [0, 1].) For eachm ∈ (−1, 1), eachc ∈ [0, 1] and eachθ ∈ [0, 1], let

4(m, θ; c) = −
1 + m

2
S

( 2θc

1 + m

)
−

1 − m

2
S

(2(1 − θ)c

1 − m

)
. (2.7)

As we will show in Section 3, this quantity represents the entropy of configu-
rations with fixed salt concentrationc, fixed overall magnetizationm and fixed
fraction θ of the salt residing “on the plus spins” (and fraction 1− θ “on the
minus spins”).

Having defined all relevant quantities, we are ready to state our results.
We begin with a large-deviation principle for the magnetization in the mea-
suresP±,c,h

L :
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Theorem 2.1. Let J > 0 and κ > 0 be fixed. For each c∈ (0, 1),
each h∈ R and each m∈ (−1, 1), we have

lim
ε↓0

lim
L→∞

1

Ld
log P±,c,h

L

(
|ML − mLd

| ≤ εLd)
= −Gh,c(m) + inf

m′∈(−1,1)
Gh,c(m

′). (2.8)

Here m 7→ Gh,c(m) is given by

Gh,c(m) = inf
θ∈[0,1]

Gh,c(m, θ), (2.9)

where
Gh,c(m, θ) = −hm− κθc − 4(m, θ; c) + FJ(m). (2.10)

The function m 7→ Gh,c(m) is finite and strictly convex on(−1, 1) with
limm→±1 G′

h,c(m) = ±∞. Furthermore, the unique minimizer m= m(h, c)
of m 7→ Gh,c(m) is continuous in both c and h and strictly increasing in h.

On the basis of the above large-deviation result, we can now characterize
the typical configurations of the measuresP±,c,h

L . Consider the Ising model
with coupling constantJ and zero external field and letP±,J

L be the corre-
sponding Gibbs measure in volume3L and±-boundary condition. Our main
result in this section is then as follows:

Theorem 2.2. Let J > 0 and κ > 0 be fixed. Let c∈ (0, 1) and
h ∈ R, and define two sequences of probability measuresρ±

L on [−1, 1] by the
formula

ρ±

L

(
[−1, m]

)
= P±,c,h

L (ML ≤ mLd), m ∈ [−1, 1]. (2.11)

The measuresρ±

L allow us to write the spin marginal of the measure P±,c,h
L as

a convex combination of the Ising measures with fixed magnetization; i.e., for
any setA of configurations(σx)x∈3L , we have

P±,c,h
L

(
A× {0, 1}

3L
)

=

∫
ρ±

L (dm) P±,J
L

(
A

∣∣ML = bmLd
c
)
. (2.12)

Moreover, if m= m(h, c) denotes the unique minimizer of the function m7→

Gh,c(m) from (2.9), then the following properties are true:

(1) Given the spin configuration on a finite set3 ⊂ Zd, the salt variables
on3 are asymptotically independent. Explicitly, for each finite set3 ⊂
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Zd and any two configurationsS3 ∈ {0, 1}
3 and σ̄3 ∈ {−1, 1}

3,

lim
L→∞

P±,c,h
L

(
S3 = S3

∣∣σ3 = σ̄3

)
=

∏
x∈3

{
qσ̄xδ1(Sx) + (1 − qσ̄x)δ0(Sx)

}
, (2.13)

where the numbers q± ∈ [0, 1] are uniquely determined by the equations

q+

1 − q+

=
q−

1 − q−

eκ and q+
1 + m

2
+ q−

1 − m

2
= c. (2.14)

(2) The measureρ±

L converges weakly to a point mass at m= m(h, c),

lim
L→∞

ρ±

L (·) = δm(·). (2.15)

In particular, the Ising-spin marginal of the measure P±,c,h
L is asymptot-

ically supported on the usual Ising spin configurations with the overall
magnetization ML = (m+o(1))Ld, where m minimizes m7→ Gh,c(m).

The fact that conditioningP±,c,h
L on a fixed value of magnetization

produces the Ising measure under same conditioning—which is the content
of (2.12)—is directly related to the absence of salt-salt interaction. The princi-
pal conclusions of the previous theorem are thus parts (1) and (2), which state
that the presence of a particular amount of saltforcesthe Ising sector to choose
a particular value of magnetization density. The underlying variational prin-
ciple provides insight into the physical mechanism of phase separation upon
freezing of solutions. (We refer the reader back to Section 1.4 for the physical
basis of these considerations.)

We will proceed by discussing the consequences of these results for the
phase diagram of the model and, in particular, the phenomenon of freezing
point depression. Theorems 2.1 and 2.2 are proved in Section 3.2.

2.3. Phase diagram

The representation (2.12) along with the asymptotic (2.15) allow us to charac-
terize the distributionP±,c,h

L in terms of the canonical ensemble of the Ising
ferromagnet. Indeed, these formulas imply that the distribution of Ising spins
induced byP±,c,h

L is very much like that in the measureP±,J
L conditioned on

the event that the overall magnetizationML is near the valuem(h, c)Ld. As a
consequence, the asymptotic statements (e.g., the Wulff construction) that have
been (or will be) established for the spin configurations in the Ising model with
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h

c

liquid

ice

phase separation

h=h (c)

h=h (c)

Fig. 1. The phase diagram of the ice-water system withκ � 1. The horizontal axis marks

the concentration of the salt in the system, the vertical line represents the external field acting

on the Ising spins—see formula (1.5). For positive concentrationsc > 0, the system stays in

the liquid-water phase throughout a non-trivial range of negative values ofh—a manifestation

of the freezing-point depression. For(h, c) in the shaded region, a non-trivial fraction of the

system is frozen into ice. Once(h, c) is on the left of the shaded region, the entire system is in

the ice state. For moderate values ofκ, the type of convexity of the transition lines may change

from concave to convex near(h, c) = (0, 0); see the companion paper [1].

fixed magnetization will automatically hold for the spin-marginal of theP±,c,h
L

as well.
A particular question of interest in this paper is phase separation. Recall

that m? = m?(J) denotes the spontaneous magnetization of the Ising model
at couplingJ. Then we can anticipate the following conclusions about typical
configurations in measureP±,c,h

L :

(1) If m(h, c) ≥ m?, then the entire system (with plus boundary condition)
will look like the plus state of the Ising model whose external field is
adjusted so that the overall magnetization on the scaleLd is roughly
m(h, c)Ld.

(2) If m(h, c) ≤ −m?, then the system (with minus boundary condition)
will look like the Ising minus state with similarly adjusted external field.
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(3) If m(h, c) ∈ (−m?, m?), then, necessarily, the system exhibits phase
separation in the sense that typical configurations feature a large droplet
of one phase inside the other. The volume fraction taken by the droplet is
such that the overall magnetization is nearm(h, c)Ld. The outer phase
of the droplet agrees with the boundary condition.

The cases (1-2) with opposite boundary conditions—that is, the minus bound-
ary conditions in (1) and the plus boundary conditions in (2)—are still as stated;
the difference is that now there has to be a large contour near the boundary flip-
ping to the “correct” boundary condition.

Remark 2.3. We have no doubt that the aforementioned conclusions
(1-3) hold for alld ≥ 2 and allJ > Jc (with a proper definition of thedroplet
in part (3), of course). However, the depth of conclusion (3) depends on the
level of understanding Wulff construction, which is at present rather different in
dimensionsd = 2 andd ≥ 3. Specifically, while ind = 2 the results of [14,22]
allow us to claim that for allJ > Jc and all magnetizationsm ∈ (−m?, m?),
the system will exhibit a unique large contour with appropriate properties, in
d ≥ 3 this statement is known to hold [6, 10] only in “L1-sense” and only
for m ∈ (−m?, m?) which are near the endpoints. (Moreover, not all values
of J > Jc are, in principle, permitted; cf [7] for a recent improvement of these
restrictions.) We refer to [8] for an overview of the situation.

Notwithstanding the technical difficulties of Wulff construction, the above
allows us to characterize the phase diagram of the model at hand. As indi-
cated in Fig. 1, theh ≤ 0 andc ≥ 0 quadrant splits into three distinct parts:
Theliquid-waterregion, theice region and thephase separationregion, which
correspond to the situations in (1-3), respectively. The boundary lines of the
phase-separation region are found by setting

m(h, c) = ±m?, (2.16)

which in light of strict monotonicity ofh 7→ m(h, c) allows us to calculateh
as a function ofc. The solutions of (2.16) can be obtained on the basis of the
following observation:

Proposition 2.4. Let m ∈ [−m?, m?] and c ∈ [0, 1] and define the
quantities q± = q±(m, c, κ) by (2.14). Let h be the solution to m(h, c) = m.
Then we have:

h =
1

2
log

1 − q+

1 − q−

. (2.17)

In particular, there exist two continuous and decreasing functions
h± : [0, ∞) → (−∞, 0] with h+(c) > h−(c) for all c > 0, such that
−m? < m(h, c) < m? is equivalent to h−(c) < h < h+(c) for all c > 0.
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Proposition 2.4 is proved at the very end of Section 3.2. Here is an infor-
mal interpretation of this result: The quantitiesq± represent themole fractions
of salt in liquid-water and ice, respectively. In mathematical terms,q+ is the
probability of having a salt particle on a given plus spin, andq− is the corre-
sponding quantity for minus spins, see (2.13). Formula (2.17) quantifies the
shift of the chemical potential of the solvent (which is given by 2h in this case)
due to the presence of the solute. This is a manifestation offreezing point
depression, see also Remark 1.1. In the asymptotic whenc � 1 we have

2h ≈ q− − q+. (2.18)

This relation, derived in standard chemistry and physics books under the aus-
picies of the “usual approximations,” is an essential ingredient in the classical
analyses of colligative properties of solutions [24, 27]. Here the derivation is
a direct consequence of a microscopic (albeit simplistic) model which further
offers the possibility of systematically calculating higher-order corrections.

3. PROOFS

The proofs of our main results are, more or less, straightforward exercises in
large-deviation analysis of Gibbs distributions. We first state and prove a cou-
ple of technical lemmas; the actual proofs come in Section 3.2.

3.1. Preliminaries

The starting point of the proof of Theorem 2.1 (and, consequently, Theo-
rem 2.2) is the following large-deviation principle for the Ising model at zero
external field:

Theorem 3.1. Consider the Ising model with coupling constant J∈

[0, ∞) and zero external field. LetP±,J
L be the corresponding (grand canon-

ical) Gibbs measure in volume3L and±-boundary conditions. Then for all
m ∈ [−1, 1],

lim
ε↓0

lim
L→∞

1

Ld
logP±,J

L

(
|ML − mLd

| ≤ εLd)
= −FJ(m), (3.1)

where ML is as in(2.5)andFJ is as defined in(2.6).

Proof. The claim is considered standard, see e.g. [31, Section II.1], and
follows by a straightforward application of the thermodynamic relations be-
tween the free energy, magnetization and external field. For completeness (and
reader’s convenience) we will provide a proof.
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Consider the functionφL(h) =
1

Ld logE±,J
L (ehML ), whereE±,J

L is the

expectation with respect toP±,J
L , and letφ(h) = limL→∞ φL(h). The limit

exists by subadditivity arguments and is independent of the boundary condi-
tion. The functionh 7→ φ(h) is convex onR, real analytic (by the Lee-Yang
theorem [25]) onR \ {0}, and hence it is strictly convex onR. By theh ↔ −h
symmetry there is a cusp ath = 0 wheneverm? = φ′(0+) > 0. It follows that
for eachm ∈ [m?, 1) there is a uniqueh = h(m, J) ≥ 0 such thatφ′(h) = m,
with h(m, J) increasing continuously from 0 to∞ as m increases fromm?

to 1. The plus-minus symmetry shows that a similar statement holds for the
magnetizations in(−1, −m?].

Let φ? denote the Legendre transform ofφ, i.e.,φ?(m) = suph∈R[mh−

φ(h)]. By the above properties ofh 7→ φ(h) we infer thatφ?(m) = mh−φ(h)
whenm ∈ (−1, −m?) ∪ (m?, 1) andh = h(m, J), while φ?(m) = −φ(0) = 0
for m ∈ [−m?, m?]. Applying the G̈artner-Ellis theorem (see [21, Theo-
rem V.6] or [13, Theorem 2.3.6]), we then have (3.1) withFJ(m) = φ?(m)
for all m ∈ [−1, −m?) ∪ (m?, 1]—which is the set of so called exposed points
of φ?. Sinceφ?(±m?) = 0 and the derivative ofm 7→ φ?(m) is h(m, J),
thisFJ is given by the integral in (2.6). To prove (3.1) whenm ∈ [−m?, m?],
we must note that the left-hand side of (3.1) is nonpositive and concave inm.
(This follows by partitioning3L into two parts with their own private magne-
tizations and disregarding the interaction through the boundary.) SinceFJ(m)
tends to zero asm tends to±m? we thus have that (3.1) form ∈ [−m?, m?] as
well.

Remark 3.2. The “first” part of the G̈artner-Ellis theorem [21, Theo-
rem V.6] actually guarantees the followinglarge-deviation principle:

lim sup
L→∞

1

Ld
logP±,J

L

( ML

Ld
∈ C

)
≤ − inf

m∈C
φ?(m) (3.2)

for any closed setC ⊂ R while

lim inf
L→∞

1

Ld
logP±,J

L

( ML

Ld
∈ O

)
≥ − inf

m∈Or[−m?,m?]
φ?(m) (3.3)

for any open setO ⊂ R. (Hereφ?(m) = FJ(m) for m ∈ [−1, 1] andφ?(m) =

∞ otherwise.) The above proof follows by specializing toε-neighborhoods of
a givenm and lettingε ↓ 0. Them ∈ [−m?, m?] cases—i.e, the non-exposed
points—have to be dealt with separately.

The above is the core of our proof of Theorem 2.1. The next step will be
to bring the quantitiesc andh into play. This, as we shall see, is easily done if
we condition on the total magnetization. (The cost of this conditioning will be
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estimated by (3.1).) Indeed, as a result of the absence of salt-salt interaction,
the conditional measure can be rather precisely characterized. Let us recall the
definition of the quantityNL from (2.3) which represents the total amount of
salt in the system. For any spin configurationσ = (σx) ∈ {−1, 1}

3L and any
salt configurationS = (Sx) ∈ {0, 1}

3L , let us introduce the quantity

QL = QL(σ, S) =

∑
x∈3L

Sx
1 + σx

2
(3.4)

representing the total amount of salt “on the plus spins.” Then we have:

Lemma 3.3. For any fixed spin configuration̄σ = (σ̄x) ∈ {−1, 1}
3L ,

all salt configurations(Sx) ∈ {0, 1}
3L with the same NL and QL have the

same probability in the conditional measure P±,c,h
L (·|σ = σ̄). Moreover, for

anyS = (Sx) ∈ {0, 1}
3L with NL = bcLd

c and for any m∈ [−1, 1],

P±,c,h
L

(
S occurs, ML = bmLd

c
)

=
1

ZL
E±,J

L

(
eκQL (σ,S)+hML (σ)1{ML (σ)=bmLdc}

)
, (3.5)

where the normalization constant is given by

ZL =

∑
S′

∈{0,1}3L

1{NL (S′)=bcLdc} E±,J
L

(
eκQL (σ,S′)+hML (σ)

)
. (3.6)

HereE±,J
L is the expectation with respect toP±,J

L .

Proof. The fact that all salt configurations with givenNL andQL have
the same probability inP±,c,h

L (·|σ = σ̄) is a consequence of the observation
that the salt-dependent part of the Hamiltonian (2.1) depends only onQL . The
relations (3.5–3.6) follow by a straightforward rewrite of the overall Boltzmann
weight.

The characterization of the conditional measureP±,c,h
L (·|ML = bmLd

c)
from Lemma 3.3 allows us to explicitly evaluate the configurational entropy
carried by the salt. Specifically, given a spin configurationσ = (σx) ∈

{−1, 1}
3L and numbersθ, c ∈ (0, 1), let

Aθ,c
L (σ) =

{
(Sx) ∈ {0, 1}

3L : NL = bcLd
c, QL = bθcLd

c
}
. (3.7)

The salt entropy is then the rate of exponential growth of the size ofAθ,c
L (σ)

which can be related to the quantity4(m, θ; c) from (2.7) as follows:
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Lemma 3.4. For eachε′ > 0 and eachη > 0 there exists a num-
ber L0 < ∞ such that the following is true for anyθ, c ∈ (0, 1), any m ∈

(−1, 1) that obey|m| ≤ 1 − η,

2θc

1 + m
≤ 1 − η and

2(1 − θ)c

1 − m
≤ 1 − η, (3.8)

and any L ≥ L0: If σ = (σx) ∈ {−1, 1}
3L is a spin configuration with

ML(σ) = bmLd
c, then∣∣∣∣ log |Aθ,c

L (σ)|

Ld
− 4(m, θ; c)

∣∣∣∣ ≤ ε′. (3.9)

Proof. We want to distributeNL = bcLd
c salt particles overLd posi-

tions, such that exactlyQL = bθcLd
c of them land on1

2(Ld
+ ML) plus sites

andNL − QL on 1
2(Ld

− ML) minus sites. This can be done in

|Aθ,c
L (σ)| =

(1
2(Ld

+ ML)

QL

)(1
2(Ld

− ML)

NL − QL

)
(3.10)

number of ways. Now all quantities scale proportionally toLd which, applying
Stirling’s formula, shows that the first term is within, say,e±Ldε′/2 multiples of

exp

{
−Ld 1 + m

2
S

( 2θc

1 + m

)}
(3.11)

onceL ≥ L0, with L0 depending only onε′. A similar argument holds also for
the second term withθ replaced by 1− θ andm by −m. Combining these ex-
pressions we get that|Aθ,c

L (σ)| is within e±Ldε′

multiples of exp{Ld4(m, θ; c)}
onceL is sufficiently large.

For the proof of Theorem 2.2, we will also need an estimate on how many
salt configurations inAθ,c

L (σ) take given values in a finite subset3 ⊂ 3L . To
that extent, for eachσ ∈ {−1, 1}

3L and eachS3 ∈ {0, 1}
3 we will define the

quantity

Rθ,c
3,L(σ, S3) =

|{S ∈ Aθ,c
L (σ) : S3 = S3}|

|Aθ,c
L (σ)|

. (3.12)

As a moment’s thought reveals,Rθ,c
3,L(σ, S3) can be interpreted as the prob-

ability that {S3 = S3} occurs in (essentially) any homogeneous product
measure onS = (Sx) ∈ {0, 1}

3L conditioned to haveNL(S) = bcLd
c

and QL(σ, S) = bθcLd
c. It is therefore not surprising that, for spin config-

urationsσ with given magnetization,Rθ,c
3,L(σ, ·) will tend to a product measure

on S3 ∈ {0, 1}
3. A precise characterization of this limit is as follows:
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Lemma 3.5. For eachε > 0, each K ≥ 1 and eachη > 0 there
exists L0 < ∞ such that the following holds for all L≥ L0, all 3 ⊂ 3L

with |3| ≤ K, all m with |m| ≤ 1 − η and all θ, c ∈ [η, 1 − η] for which

p+ =
2θc

1 + m
and p− =

2(1 − θ)c

1 − m
(3.13)

satisfy p± ∈ [η, 1 − η]: If σ = (σx) ∈ {−1, 1}
3L is a spin configuration such

that ML(σ) = bmLd
c andS3 ∈ {0, 1}

3 is a salt configuration in3, then∣∣∣Rθ,c
3,L(σ, S3) −

∏
x∈3

{
pσxδ1(Sx) + (1 − pσx)δ0(Sx)

}∣∣∣ ≤ ε. (3.14)

Proof. We will expand on the argument from Lemma 3.4. Indeed,
from (3.10) we have an expression for the denominator in (3.12). As to the
numerator, introducing the quantities

M3 =

∑
x∈3

σx, N3 =

∑
x∈3

Sx, Q3 =

∑
x∈3

Sx
1 + σx

2
, (3.15)

and the shorthand

D = Dr,r ′,s,s′(`, `′, q, q′) =

(
r − `

s − q

)(
r ′

− `′

s′ − q′

)
(

r

s

)(
r ′

s′

) , (3.16)

the same reasoning as we used to prove (3.10) allows us to write the ob-
ject Rθ,c

3,L(σ, S3) as Dr,r ′,s,s′(`, `′, q, q′), where the various parameters are as
follows: The quantities

r =
Ld

+ ML

2
and r ′

=
Ld

− ML

2
(3.17)

represent the total number of pluses and minuses in the system, respectively,

s = QL and s′
= NL − QL (3.18)

are the numbers of salt particles on pluses and minuses, and, finally,

` =
|3| + M3

2
, `′

=
|3| − M3

2
, q = Q3 and q′

= N3 − Q3

(3.19)
are the corresponding quantities for the volume3, respectively.
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Since (3.13) and the restrictions on|m| ≤ 1 − η andθ, c ∈ [η, 1 − η]
imply thatr , r ′, s, s′, r − s andr ′

− s′ all scale proportionally toLd, uniformly
in σ andS3, while ` and`′ are bounded by|3|—which by our assumption is
less thanK—we are in a regime where it makes sense to seek an asymptotic
form of quantityD. Using the bounds

abe−b2/a
≤

(a + b)!

a!
≤ abeb2/a, (3.20)

which are valid for all integersa andb with |b| ≤ a, we easily find that

D =

(s

r

)`(
1 −

s

r

)`−q(s′

r ′

)`′(
1 −

s′

r ′

)`′
−q′

+ o(1), L → ∞. (3.21)

Sinces/r → p+ ands′/r ′
→ p− as L → ∞, while `, q, `′ andq′ stay

bounded, the desired claim follows by takingL sufficiently large.

The reader may have noticed that, in most of our previous arguments,θ
andm were restricted to be away from the boundary values. To control the
situation near the boundary values, we have to prove the following claim:

Lemma 3.6. For eachε ∈ (0, 1) and each L≥ 1, letEL ,ε be the event

EL ,ε =
{
|ML | ≤ (1 − ε)Ld}

∩
{
ε 1

2(Ld
+ ML) ≤ QL ≤ (1 − ε)1

2(Ld
+ ML)

}
. (3.22)

Then for each c∈ (0, 1) and each h∈ R there exists anε > 0 such that

lim sup
L→∞

1

Ld
log P±,c,h

L

(
Ec

L ,ε) < 0. (3.23)

Proof. We will split the complement ofEL ,ε into four events and prove
the corresponding estimate for each of them. We begin with the event{ML ≤

−(1 − ε)Ld
}. The main tool will be stochastic domination by a product

measure. Consider the usual partial order on spin configurations defined by
puttingσ ≺ σ′ wheneverσx ≤ σ′

x for all x. Let

λ = inf
L≥1

min
x∈3L

min
σ′

∈{−1,1}
3L r{x}

S∈{−1,1}
3L

P±,c,h
L (σx = 1|σ′, S) (3.24)

be the conditional probability thatσx = +1 occurs given a spin configurationσ′

in 3L \ {x} and a salt configurationS in 3L , optimized over allσ′, S and
alsox ∈ 3L and the system size. SinceP±,c,h

L (σx = 1|σ′, S) reduces to (the
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exponential of) the local interaction betweenσx and its ultimate neighborhood,
we haveλ > 0.

Using standard arguments it now follows that the spin marginal ofP±,c,h
L

stochastically dominates the product measurePλ defined byPλ(σx = 1) = λ
for all x. In particular, we have

P±,c,h
L

(
ML ≤ −(1 − ε)Ld)

≤ Pλ

(
ML ≤ −(1 − ε)Ld)

. (3.25)

Let ε < 2λ. Thenλ − (1 − λ)—namely, the expectation ofσx with respect
to Pλ—exceeds the negative of(1 − ε) and so Craḿer’s theorem (see [21,
Theorem I.4] or [13, Theorem 2.1.24]) implies that the probability on the right-
hand side decays to zero exponentially inLd, i.e.,

lim sup
L→∞

1

Ld
logPλ

(
ML ≤ −(1 − ε)Ld)

< 0. (3.26)

The opposite side of the interval of magnetizations, namely, the event{ML ≥

(1 − ε)Ld
}, is handled analogously (withλ now focusing onσx = −1 instead

of σx = 1).
The remaining two events, marking whenQL is either less thanε or larger

than(1 − ε) times the total number of plus spins, are handled using a similar
argument combined with standard convexity estimates. Let us consider the
event{QL ≤ εLd

}—which contains the event{QL ≤ ε 1
2(ML + Ld)}—and let

us emphasize the dependence of the underlying probability distribution onκ
by writing P±,c,h

L asPκ . Let Eκ denote the expectation with respect toPκ and
note thatEκ( f ) = E0( f eκQL )/E0(eκQL ). We begin by using the Chernoff
bound to get

Pκ(QL ≤ εLd) ≤ eaεLd
Eκ(e

−aQL ) =
eaεLd

Eκ−a(eaQL )
, a ≥ 0. (3.27)

A routine application of Jensen’s inequality gives us

Pκ(QL ≤ εLd) ≤ exp
{
a
(
εLd

− Eκ−a(QL)
)}

. (3.28)

It thus suffices to prove that there exists aκ ′ < κ such that infL≥1
1

Ld Eκ ′(QL)
is positive. (Indeed, we takeε to be strictly less than this number and seta =

κ −κ ′ to observe that the right-hand side decays exponentially inLd.) To show
this we writeEκ ′(QL) as the sum ofPκ ′(σx = 1, Sx = 1) over all x ∈ 3L .
Looking back at (3.24), we then havePκ ′(σx = 1, Sx = 1) ≥ λPκ ′(Sx = 1),
whereλ is now evaluated forκ ′, and so

Eκ ′(QL) ≥ λ
∑

x∈3L

Pκ ′(Sx = 1) = λEκ ′(NL) ≈ λcLd. (3.29)
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Thus, onceλc > ε, the probabilityPκ(QL ≤ εLd) decays exponentially inLd.
As to the complementary event,{QL ≥ (1−ε)1

2(ML + Ld)}, we note that
this is contained in{HL ≤ εLd

}, whereHL counts the number of plus spins
with no salt on it. Since we still haveEκ( f ) = E0( f e−κ HL )/E0(e−κ HL ), the
proof boils down to the same argument as before.

3.2. Proofs of Theorems 2.1 and 2.2

On the basis of the above observations, the proofs of our main theorems are
easily concluded. However, instead of Theorem 2.1 we will prove a slightly
stronger result of which the large-deviation part of Theorem 2.1 is an easy
corollary.

Theorem 3.7. Let J > 0 andκ ≥ 0 be fixed. For each c, θ ∈ (0, 1),
each h ∈ R and each m∈ (−1, 1), let BL ,ε = BL ,ε(m, c, θ) be the set of
all (σ, S) ∈ {−1, 1}

3L × {0, 1}
3L for which |ML − mLd

| ≤ εLd and |QL −

θcLd
| ≤ εLd hold. Then

lim
ε↓0

lim
L→∞

log P±,c,h
L (BL ,ε)

Ld
= −Gh,c(m, θ) + inf

m′
∈(−1,1)

θ ′
∈[0,1]

Gh,c(m
′, θ ′), (3.30)

whereGh,c(m, θ) is as in(2.10).

Proof. Since the size of the setAθ,c
L (σ) depends only on the overall mag-

netization, letAθ,c
L (m) denote this size for the configurationsσ with ML(σ) =

bmLd
c. First we note that, by Lemma 3.3,

P±,c,h
L

(
QL = bθcLd

c, ML = bmLd
c
)

=
KL(m, θ)

ZL
(3.31)

where

KL(m, θ) = Aθ,c
L (m) ehbmLd

c+κbθcLd
c P±,J

L

(
ML = bmLd

c
)
. (3.32)

HereZL is the normalization constant from (3.6) which in the present formula-
tion can also be interpreted as the sum ofKL(m, θ) over the relevant (discrete)
values ofm andθ .

Let KL ,ε(m, θ) denote the sum ofKL(m′, θ) over all m′ and θ ′ for
which m′Ld andθ ′cLd are integers and|m′

− m| ≤ ε and |θ ′c − θc| ≤ ε.
(This is exactly the set of magnetizations and spin-salt overlaps contributing
to the setBL ,ε.) Applying (3.1) to extract the exponential behavior of the last
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probability in (3.32), and using (3.9) to do the same for the quantityAθ,c
L (m),

we get ∣∣∣ log KL ,ε(m, θ)

Ld
+ Gh,c(m, θ)

∣∣∣ ≤ ε + ε′, (3.33)

whereε′ is as in (3.9). As a consequence of the above estimate we have

lim
ε↓0

lim
L→∞

log KL ,ε(m, θ)

Ld
= −Gh,c(m, θ) (3.34)

for anym ∈ (−1, 1) and anyθ ∈ (0, 1).
Next we will attend to the denominator in (3.31). Pickδ > 0 and consider

the set
Mδ =

{
(m, θ) : |m| ≤ 1 − δ, δ ≤ θ ≤ 1 − δ

}
. (3.35)

We will write ZL as a sum of two terms,ZL = Z(1)
L + Z(2)

L , with Z(1)
L obtained

by summingK (m, θ) over the admissible(m, θ) ∈ Mδ andZ(2)
L collecting the

remaining terms. By Lemma 3.6 we know thatZ(2)
L /ZL decays exponentially

in Ld and so the decisive contribution toZL comes fromZ(1)
L . Assuming

thatε � δ, let us coverMδ by finite number of sets of the form [m′

` − ε, m′

` +

ε]×[θ ′

`−ε, θ ′

`+ε], wherem′

` andθ ′

` are such thatm′

`Ld andθ ′

`cLd are integers.

ThenZ(1)
L can be bounded as in

max
`

KL ,ε(m
′

`, θ
′

`) ≤ Z(1)
L ≤

∑
`

KL ,ε(m
′

`, θ
′

`). (3.36)

Moreover, the right-hand side is bounded by the left-hand side times a poly-
nomial in L. Taking logarithms, dividing byLd, taking the limit L → ∞,
refining the cover and applying the continuity of(m, θ) 7→ Gh,c(m, θ) allows
us to conclude that

lim
L→∞

log ZL

Ld
= − inf

m∈(−1,1)
inf

θ∈[0,1]
Gh,c(m, θ). (3.37)

Combining these observations, (2.8) is proved.

Proof of Theorem 2.1. The conclusion (2.8) follows from (3.30) by
similar arguments that prove (3.37). The only remaining thing to prove is
the strict convexity ofm 7→ Gh,c(m) and continuity and monotonicity of its
minimizer. First we note thatθ 7→ Gh,c(m, θ) is strictly convex on the set
of θ where it is finite, which is a simple consequence of the strict convexity
of p 7→ S (p). Hence, for eachm, there is a uniqueθ = θ(m) which mini-
mizesθ 7→ Gh,c(m, θ).
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Our next goal is to show that, forκc > 0, the solutionθ = θ(m) will
satisfy the inequality

θ >
1 + m

2
. (3.38)

(A heuristic reason for this is thatθ =
1+m

2 corresponds to the situation when
the salt is distributed independently of the underlying spins. This is the dom-
inating strategy forκ = 0; onceκ > 0 it is clear that the fraction of salt
on plus spinsmust increase.) A formal proof runs as follows: We first note
thatm 7→ θ(m) solves forθ from the equation

∂

∂θ
4(m, θ; c) = −κc, (3.39)

where4(m, θ; c) is as in (2.7). Butθ 7→ 4(m, θ; c) is strictly concave and its
derivative vanishes atθ =

1
2(1 + m). Therefore, forκc > 0 the solutionθ =

θ(m) of (3.39) must obey (3.38).
Let V be the set of(m, θ) ∈ (−1, 1) × (0, 1) for which (3.38) holds and

note thatV is convex. A standard second-derivative calculation now shows
that Gh,c(m, θ) is strictly convex onV. (Here we actually differentiate the
functionGh,c(m, θ) − FJ(m)—which is twice differentiable on the set where
it is finite—and then use the known convexity ofFJ(m). The strict convexity
is violated on the lineθ =

1
2(1+m) where(m, θ) 7→ Gh,c(m, θ) has a flat piece

for m ∈ [−m?, m?].) Now, sinceθ(m) minimizesGh,c(m, θ) for a givenm, the
strict convexity ofGh,c(m, θ) onV implies that for anyλ ∈ (0, 1),

Gh,c
(
λm1 + (1 − λ)m2

)
≤ Gh,c

(
λm1 + (1 − λ)m2, λθ(m1) + (1 − λ)θ(m2)

)
< λGh,c

(
m1, θ(m1)

)
+ (1 − λ)Gh,c

(
m2, θ(m2)

)
= λGh,c(m1) + (1 − λ)Gh,c(m2).

(3.40)

Hence,m 7→ Gh,c(m) is also strictly convex. The fact thatG′(m) diverges
as m → ±1 is a consequence of the corresponding property of the func-
tion m 7→ FJ(m) and the fact that the rest ofGh,c is convex inm.

As a consequence of strict convexity and the abovementioned “steepness”
at the boundary of the interval(−1, 1), the functionm 7→ Gh,c(m) has a unique
minimizer for eachh ∈ R andc > 0, as long as the quantities from (3.13) sat-
isfy p± < 1. The minimizer is automatically continuous inh and is manifestly
non-decreasing. Furthermore, the continuity ofGh,c in c allows us to conclude
thatθ(m) is also continuous inc. What is left of the claims is thestrict mono-
tonicity of m as a function ofh. Writing Gh,c(m) as−hm+ g(m) and noting
thatg is continuously differentiable on(−1, 1), the minimizingm satisfies

g′(m) = h. (3.41)
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But g(m) is also strictly convex and sog′(m) is strictly increasing. It follows
thatm has to be strictly increasing withh.

Theorem 3.1 has the following simple consequence that is worth high-
lighting:

Corollary 3.8. For given h∈ R and c∈ (0, 1), let (m, θ) be the mini-
mizer ofGh,c(m, θ). Then for allε > 0,

lim
L→∞

P±,c,h
L

(
|QL − θcLd

| ≥ εLd or |ML − mLd
| ≥ εLd)

= 0. (3.42)

Proof. On the basis of (3.30) and the fact thatGh,c(m, θ) has a unique
minimizer, a covering argument—same as used to prove (3.37)—implies that
the probability on the left-hand side decays to zero exponentially inLd.

Before we proceed to the proof of our second main theorem, let us make
an observation concerning the values ofp± at the minimizingm andθ :

Lemma 3.9. Let h ∈ R and c ∈ (0, 1) be fixed and let(m, θ) be the
minimizer ofGh,c(m, θ). Define the quantities q± = q±(m, c, κ) by (2.14)
and p± = p±(m, θ, c) by (3.13). Then

q+ = p+ and q− = p−. (3.43)

Moreover, q± are then related to h via(2.17)whenever m∈ [−m?, m?].

Proof. First let us ascertain thatq± are well defined from equations
(2.14). We begin by noting that the set of possible values of(q+, q−) is the
unit square [0, 1]2. As is easily shown, the first equation in (2.14) corresponds
to an increasing curve in [0, 1]2 connecting the corners(0, 0) and(1, 1). On
the other hand, the second equation in (2.14) is a straight line with negative
slope which by the fact thatc < 1 intersects both the top and the right side of
the square. It follows that these curves intersect at a single point—the unique
solution of (2.14).

Next we will derive equations thatp± have to satisfy. Let(m, θ) be the
unique minimizer ofGh,c(m, θ). The partial derivative with respect toθ yields

c
(
S ′(p+) − S ′(p−)

)
= κc (3.44)

and from the very definition ofp± we have

1 + m

2
p+ +

1 − m

2
p− = c. (3.45)

Noting thatS ′(p) = log p
1−p, we now see thatp± satisfies the same equations

asq± and so, by the above uniqueness argument, (3.43) must hold.



Colligative properties of solutions 25

To prove relation (2.17), let us also consider the derivative ofGh,c(m, θ)
with respect tom. For solutions in [−m?, m?] we can disregard theFJ part
of the function (because its vanishes along with its derivative throughout this
interval), so we have

h = −
∂

∂m
4(m, θ; c). (3.46)

A straightforward calculation then yields (2.17).

Now we are ready to prove our second main result:

Proof of Theorem 2.2. The crucial technical step for the present proof
has already been established in Lemma 3.3. In order to plug into the latter
result, let us note that the sum ofeκQL (σ,S) over all salt configurationsS =

(Sx) ∈ {0, 1}
3L with NL = bcLd

c is a number depending only on the total
magnetizationML = ML(σ). Lemma 3.3 then implies

P±,c,h
L

(
A× {0, 1}

3L ∩ {ML = bmLd
c}

)
= ωL(m) P±,J

L

(
A ∩ {ML = bmLd

c}
)

(3.47)

whereωL(m) is a positive number depending onm, the parametersc, h, J
and the boundary condition± but not on the eventA. Noting thatρ±

L is sim-
ply the distribution of the random variablesML/Ld in measureP±,c,h

L , this
proves (2.12).

In order to prove the assertion (2.13), we letσ̄ ∈ {0, 1}
3L , pick 3 ⊂ 3L

and fixS ∈ {0, 1}
3. Since Lemma 3.3 guarantees that, given{σ = σ̄}, all salt

configurations with fixedQL and concentrationc have the same probability
in P±,c,h

L (·|σ = σ̄), we have

P±,c,h
L

(
S3 = S3, S ∈ Aθ,c

L (σ̄)
∣∣σ = σ̄

)
= Rθ,c

3,L(σ̄, S3), (3.48)

whereRθ,c
3,L is defined in (3.12). Pickη > 0 and assume, as in Lemma 3.5,

thatc ∈ [η, 1−η], θ ∈ [η, 1−η] andML(σ̄) = bmLd
c for somem with |m| ≤

1 − η. Then the aforementioned lemma tells us thatRθ,c
3,L(σ̄, ·) is within ε of

the probability thatS3 occurs in the product measure where the probability
of Sx = 1 is p+ if σ̄x = +1 andp− if σ̄x = −1.

Let (m, θ) be the unique minimizer ofGh,c(m, θ). Taking expectation of
(3.48) over̄σ with σ̄3 fixed, using Corollary 3.8 to discard the events|ML/Ld

−

m| ≥ ε or |QL/Ld
− θc| ≥ ε and invoking the continuity ofp± in m andθ ,

we find out thatP±,c,h
L (S3 = S3|σ3 = σ̄3) indeed converges to∏

x∈3

{
pσ̄xδ1(Sx) + (1 − pσ̄x)δ0(Sx)

}
, (3.49)
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with p± evaluated at the minimizing(m, θ). But for this choice Lemma 3.9
guarantees thatp± = q±, which finally proves (2.13–2.14).

The last item to be proved is Proposition 2.4 establishing the basic features
of the phase diagram of the model under consideration:

Proof of Proposition 2.4. From Lemma 3.9 we already know that the
set of pointsm(h, c) = m for m ∈ [−m?, m?] is given by the equation (2.17).
By the fact thatm(h, c) is strictly increasing inh and thatm(h, c) → ±1
ash → ±∞ we thus know that (2.17) defines a line in the(h, c)-plane. Spe-
cializing to m = ±m? gives us two curves parametrized by functionsc 7→

h±(c) such that at(h, c) satisfyingh−(c) < h < h+(c) the system magne-
tization m(h, c) is strictly between−m? and m?, i.e., (h, c) is in the phase
separation region.

It remains to show that the above functionsc 7→ h±(c) are strictly mono-
tone and negative forc > 0. We will invoke the expression (2.17) which applies
because on the above curves we havem(h, c) ∈ [−m?, m?]. Let us introduce
new variables

R+ =
q+

1 − q+

and R− =
q−

1 − q−

(3.50)

and, writingh in (2.17) in terms ofR±, let us differentiate with respect toc.
(We will denote the corresponding derivatives by superscript prime.) Since
(2.14) gives us thatR− = e−κ R+, we easily derive

2h′
=

R′
−

1 + R−

−
R′

+

1 + R+

= −R′

+

1 − e−κ

(1 + R+)(1 + R−)
. (3.51)

Thus,h′ and R′
+ have opposite signs; i.e., we want to prove thatR′

+ > 0.
But that is immediate: By the second equation in (2.14) we conclude that
at least one ofR′

± must be strictly positive, and byR− = e−κ R+ we find
that bothR′

± > 0. It follows thatc 7→ h±(c) are strictly decreasing, and
sinceh±(0) = 0, they are also negative oncec > 0.
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