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Abstract: We study variable-speed random walks on Z driven by a family of nearest-
neighbor time-dependent random conductances {at(x, x + 1) : x ∈ Z, t ≥ 0} whose law
is assumed invariant and ergodic under space-time shifts. We prove a quenched invari-
ance principle for the random walk under the minimal moment conditions on the en-
vironment; namely, assuming only that the conductances possess the first positive and
negative moments. A novel ingredient is the representation of the parabolic coordinates
and the corrector via a dual random walk which is considerably easier to analyze.

Dedicated to Jean-Dominique Deuschel

1. INTRODUCTION

The aim of this work is to describe the long-time behavior of a random walk among
dynamical random conductances. This problem has enjoyed considerable attention in
recent years; we will comment on the relevant literature as soon as the key concepts have
been introduced. Throughout this paper we will focus only on one specific instance;
namely, the nearest-neighbor random walks on Z. Our aim is to prove that this walk
scales to a non-degenerate Brownian motion assuming only minimal moment conditions
on the random environment.

Let us introduce the problem in more precise terms. The aforementioned random
“walk” is actually a continuous-time Markov chain on Z whose dynamics is best de-
scribed by the (time-dependent) generator Lt that acts on f : Z→ R via

(Lt f )(x) := ∑
z=±1

at(x, x + z)
[

f (x + z)− f (x)
]
, x ∈ Z. (1.1)

Here {at(x, x ± 1) : x ∈ Z, t ≥ 0} is a family of positive (and finite) numbers that are
assumed to obey the symmetry condition

at(x, x + 1) = at(x + 1, x), x ∈ Z, t ≥ 0. (1.2)

We will refer to at(e), for e = (x, x + 1), as the conductance of edge e at time t. We will
assume that the conductances are defined for all real-valued t and that they are random,
meaning that each at(e) is a function of some ω ∈ Ω in a probability space (Ω,F , P).
Writing B(R) for the Borel σ-algebra on R, we impose:
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Assumption 1.1 For each edge e, the map t, ω 7→ at(e) on R×Ω is positive, B(R) ⊗ F -
measurable, and locally Lebesgue-integrable in t. Moreover, there is a family of space-time shifts,
τt,x : Ω→ Ω indexed by t ∈ R and x ∈ Z, such that

at(x, x + 1) ◦ τs,y = at+s(x + y, x + y + 1), t, s ∈ R, x, y ∈ Z. (1.3)

The law P is invariant and ergodic with respect to {τt,x : t ∈ R, x ∈ Z}.

A natural way to interpret the random-walk dynamics is via a Poisson-clock envi-
ronment: Given a sample of {at(x, x + 1) : x ∈ Z, t ∈ R}, each edge e = (x, x + 1)
is endowed with an independent time-inhomogeneous Poisson point process of inten-
sity measure at(e)dt. The above assumptions ensure that this process exists and that
no two arrivals, to be called “rings,” occur at the same time. The random-walk path is
then a deterministic function of the Poisson environment: the walk stays at a vertex until
an incident edge receives the next “ring” at which point it moves to the corresponding
neighbor. See Fig. 1 below.

Implementing the Poisson-clock representation rigorously requires showing that the
minimal positive solution to the Kolmogorov Backward Equation is non-explosive; i.e.,
that the number of steps taken by the walk is finite a.s. in any finite time. This fol-
lows by the assumed local-integrability, stationarity and the Ergodic Theorem. Indeed,
for each t > 0 there is a (possibly random) M ∈ (0, ∞) and a positive density of
edges e (in both lattice directions) where the total jump rate

∫ t
0 as(e)ds is bounded by M.

Consequently, there is a positive density of edges that receive no “ring” in the time-
interval [0, t]. Up to time t, the walk is thus effectively confined to a finite set of vertices
where the total number of available clock “rings” is finite a.s. as well.

Throughout the rest of the paper, we will use the following notation:

(1) X = {Xt : t ≥ 0} denotes a sample of the above random walk,
(2) Px

a denotes the law of X in a given configuration a = {at(x, x± 1) : x ∈ Z, t ∈ R}
of the conductances subject to the initial condition Px

a (X0 = x) = 1, and
(3) E denotes expectation with respect to P.

Our main result is then:

Theorem 1.2 (Quenched invariance principle) Suppose that, on top of Assumption 1.1, the
conductance law obeys the moment conditions

E
[
a0(e)

]
< ∞ and E

[
a0(e)−1] < ∞ (1.4)

at some (and thus every) edge e. Then there is a constant σ ∈ (0, ∞) such that for any T > 0
and P-a.e. sample a = {at(x, x + 1) : x ∈ Z, t ∈ R} of the conductances, the law of

X(n)
t :=

1√
n

Xnt, 0 ≤ t ≤ T, (1.5)

induced by P0
a on the Skorohod space D[0, T] of càdlàg paths converges, as n→ ∞, weakly to the

law of the Brownian motion {Bt : t ≥ 0} with EBt = 0 and E(B2
t ) = σ2t.

Theorem 1.2 improves on earlier work by Deuschel and Slowik [10] where the valid-
ity of a quenched invariance principle for the corresponding random walk on Z was
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FIG. 1 A path of the random walk X in the dynamical environment composed
of independent ON/OFF processes (i.e., the conductances taking values 1
and 0, respectively) with Poisson arrivals of constant (and equal) intensity.
The time axis runs horizontally; the shaded areas mark the space-time posi-
tions where the corresponding edge is ON. The walk can effectively make a
step only across the edges that are ON at that moment of time.

established under the following moment conditions:

∃p, q ∈ [1, ∞) :


E
[
a0(e)p] < ∞ and E

[
a0(e)−q] < ∞

1
p− 1

+
1

q(p− 1)
< 1

(1.6)

The algebraic restriction on p and q in (1.6) arises from the method of proof which in-
vokes elliptic regularity techniques to construct, and prove sublinearity of, the so called
corrector, a key object underlying many invariance principles proved so far in this set-
ting. The corresponding problem on Zd for d ≥ 2 has been treated in Andres, Chiarini,
Deuschel and Slowik [2] albeit under a somewhat different functional relation between p
and q (and d) than (1.6) might suggest (see [10, Remark 1.9]).

Although our proof is based on corrector techniques as well, we are able to uti-
lize the one-dimensional nature of the walk to work solely under the weaker condi-
tions (1.4) than (1.6). Our approach is rooted in that for two-dimensional static en-
vironments, where a quenched invariance principle is known to hold under (1.4) in
d = 1, 2 (Biskup [6]) while requiring 1/p + 1/q < 2/d in d ≥ 3 (Andres, Deuschel
and Slowik [3]). The need for higher moments in higher dimension has a good reason:
for every p, q ≥ 1 satisfying 1/p + 1/q > 2/(d− 1), a static environment exists satisfy-
ing the moment conditions in (1.4) where the sublinearity of the corrector fails (Biskup
and Kumagai [7]). Whether a quenched invariance principle itself holds just under (1.4)
in all d ≥ 1 remains a subject of extensive debate among experts.

2. REMARKS AND OUTLINE

We proceed with a couple of remarks. First, the reader may wonder whether the con-
ditions (1.4) are in fact necessary for the result to hold. This is certainly not true for
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static environments where, thanks to an explicit form of the corrector (see, e.g., Biskup
and Prescott [8, Introduction]) and the fact that we deal with the variable speed random
walk (see Barlow and Deuschel [4, Theorem 1.1] for changes in the constant-speed case),
the first condition in (1.4) can be replaced by a0(e) < ∞ a.s. In the absence of the second
condition in (1.4) we actually get a trivial result:

Theorem 2.1 (Role of the lower moment condition) Let P be be the law of static conduc-
tances {a(x, x + 1) : x ∈ Z} that are stationary and ergodic with respect to shifts and obey

P
(
a(0, 1) < ∞

)
= 1 and E

(
a(0, x)−1) = ∞. (2.1)

Then for each δ > 0,

E P0
a
(
|Xt| ≥ δ

√
t
)
−→
t→∞

0 (2.2)

In particular, under the diffusive scaling the random walk tends to a vanishing limiting process,
at least in the sense of finite-dimensional distributions averaged over the environment.

As should be intuitively clear, the main role of the upper moment condition is to pre-
vent blow ups. Here it suffices to consider spatially-homogeneous (dynamical) random
environments:

Theorem 2.2 (Role of the upper moment condition) Given a stationary ergodic process
{ηt : t ∈ R} on (0, ∞) with law P, define the dynamical conductances via

at(x, x + 1) := ηt, x ∈ Z. (2.3)

If Eη0 = ∞, then for any t > 0 and for P-a.e. sample of the conductances, the random variables
{n−1/2Xnt : n ≥ 0} are not tight under P0

a .

These examples show that our moment conditions (1.4) are not only sufficient, but
also necessary for a quenched invariance principle with a non-trivial limit process to
hold in all the environments satisfying Assumption 1.1.

Our second remark concerns the situation when we actually allow the conductances
to vanish over sets of times of positive Lebesgue measure. This has been addressed by
Biskup and Rodriguez [9], albeit only in d ≥ 2, by requiring sufficiently high (namely,
4d + ε) moments of the quantity

Te := inf
{

t ≥ 0 :
∫ t

0
ds as(e) ≥ 1

}
. (2.4)

We believe that the arguments presented here can be extended to cover the d = 1 case as
well although it is not clear what the minimal moment conditions on Te should be. Note
that this setting includes some relevant examples; e.g., the random walk on dynamical
bond percolation (see Fig. 1).

Our third remark concerns the dual random walk, which underlies the proofs in the
rest of this paper. Leaving the introduction of this walk to Section 4, we just note that
this walk has the same diffusive constant as the main walk of concern in this paper (see
Remark 8.4 for details). It would be of interest to see if a closer — ideally, path-wise
coupling — relation between these processes could be established. Related to this is the
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fact that the current proof relies also quite heavily on the assumption that the jumps are
only between the nearest neighbors.

Our final remark concerns the fact that the random walk is of variable speed. Here we
note that, unlike the case of static environments, in dynamical environments different
ways to assign speed — i.e., normalize the generator — cannot be related by a time
change of the underlying process. At this point, all the existing studies of invariance
principles in these cases (namely, the aforementioned references [2, 9]) are restricted to
the variable speed case. It is thus of interest to see whether the present approach can be
extended to include other versions, most notably discrete-time, as well.

The remainder of this note is organized as follows. In Section 3 we present the stan-
dard homogenization argument that gives the convergence in Theorem 1.2 subject to
two technical claims: existence and sublinearity of the corrector. The main novel contri-
bution of the paper is explained in Sections 4–5 where we introduce an auxiliary random
walk that drives various computation in the rest of the argument. The proof of the tech-
nical claims is relegated to Sections 6–8. Theorems 2.1–2.2 are proved in Section 9.

3. HOMOGENIZATION ARGUMENT

We are now ready to start discussing the proof of our main results. The argument for
convergence builds on well-known techniques from homogenization theory (see Kuma-
gai [13] and Biskup [6] for recent overviews) which we will explain next. It is the proof
of the key technical ingredients — namely, the existence and sublinearity of the corrector
— that requires a model-specific, and quite non-standard, approach.

We will henceforth abbreviate

bt(x) := at(x, x + 1) (3.1)

and note that (1.3) becomes

bs(y) ◦ τt,x = bs+t(y + x), s, t ∈ R, x, y ∈ Z. (3.2)

The first point to note is that the structure of the underlying Markov chain gives us the
standard “point of view of the particle:”

Lemma 3.1 (Point of view of the particle) Suppose Assumption 1.1 holds. Given a sample
a := {bt(x) : t ∈ R, x ∈ Z} from P, let {Xt : t ≥ 0} be a sample from P0

a . Then t 7→ τt,Xt(a)
is a Markov process on Ω with invariant distribution P. Moreover, the process is ergodic in the
sense that, for any f ∈ L1(P),

1
T

∫ T

0
dt f ◦ τt,Xt −→T→∞

E f (3.3)

for P-a.e. a ∈ Ω and P0
a -a.e. {Xt : t ≥ 0}.

Proof. This is standard; see, e.g., Biskup and Rodriguez [9, Lemma 4.8]. �

Next we introduce the corrector method which relies on the concept of the parabolic
coordinates. These can be thought of as a time-dependent random embedding of Z into R
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FIG. 2 A sample of the parabolic coordinates for the dynamical environment
in Fig. 1. The dark lines mark the “trajectories” t 7→ ψ(t, x) of individual
vertices. The time axis runs upwards this time.

that turns the random walk into a martingale; see Fig. 2. Note that, in static envi-
ronments, the corresponding object solves a Laplace equation for the generator of the
Markov chain and can thus be called a harmonic coordinate. In dynamical environments,
the Laplace equation is replaced by a parabolic problem; namely, the (reversed-time)
heat equation.

Recall our notation Lt for the time dependent generator in (1.1). The existence and
relevant properties of the parabolic coordinates are then the content of:

Theorem 3.2 (Parabolic coordinates) Under Assumption 1.1 and (1.4), for P-a.e. sample of
the conductances there is a map ψ : R×Z→ R such that the following holds:
(1) t, x 7→ ψ(t, x) is a weak solution to

∂

∂t
ψ(t, x) + Ltψ(t, x) = 0, t ∈ R, x ∈ Z, (3.4)

with the “initial” data ψ(0, 0) = 0. Moreover, t 7→ ψ(t, x) is continuous for each x ∈ Z.
(2) For each t, s ∈ R and each x, y ∈ Z, the cocycle condition holds

ψ(t + s, x + y)− ψ(t, x) = ψ(s, y) ◦ τt,x. (3.5)

(3) ψ(t, x) is a jointly measurable function of t and the environment with

Eψ(t, x) = x, t ∈ R, x ∈ Z, (3.6)

and
E
(
b0(0)ψ(0, 1)2) < ∞. (3.7)

(4) Finally, the spatial gradients of ψ(t, ·) are a.s. positive,

ψ(t, x + 1)− ψ(t, x) > 0, t ∈ R, x ∈ Z. (3.8)
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Note that condition (3.8) ensures that under the embedding of Z using the parabolic
coordinates, the vertices do not swap their order (or, in other words, their space-time
trajectories never cross; see Fig. 2). Deferring the proof to later, we note:

Corollary 3.3 Let Ft := σ(Xs : 0 ≤ s ≤ t) and, given a sample {Xt : t ≥ 0}, let

Mt := ψ(t, Xt), t ≥ 0. (3.9)

Then {Mt,Ft : t ≥ 0} is an L2-martingale with càdlàg paths and the variance process

〈M〉t :=
∫ t

0
ds Θ ◦ τs,Xs , (3.10)

where
Θ := b0(0)ψ(0, 1)2 + b0(−1)ψ(0,−1)2. (3.11)

Proof. The continuity of t 7→ ψ(t, x) along with the càdlàg property of t 7→ Xt ensure the
càdlàg property of t 7→ Mt. Recalling that X has piecewise constant paths a.s., let Ñ(t)
denote the number of jumps of X in the time interval [0, t]. Integrating (3.4) yields

Mt = M0 +
∫
(0,t]

Ñ(ds)
[
ψ(s, Xs)− ψ(s, Xs−)

]
−
∫ t

0
ds (Lsψ)(s, Xs). (3.12)

Since, as ε ↓ 0,

E
(∫ t+ε

t
Ñ(ds)

[
ψ(s, Xs)− ψ(s, Xs−)

] ∣∣∣∣Ft

)
=
∫ t+ε

t
ds (Lsψ)(s, Xs) + o(ε), (3.13)

this shows that {Mt,Ft : t ≥ 0} is a local martingale. The compensator on the right-
hand side of (3.12) is (Lebesgue) differentiable, and so the quadratic variation process
[M] (using Helland’s [11] notation) of M is carried entirely by its discontinuous part,

[M]t =
∫
(0,t]

Ñ(ds)
[
ψ(s, Xs)− ψ(s, Xs−)

]2. (3.14)

The variance process 〈M〉 is the compensator that makes [M] a martingale. (We use the
cocycle conditions (3.5) to write 〈M〉t using the space-time shifts.) The condition (3.7)
(and the fact that Θ ≥ 0) ensures that t 7→ Θ ◦ τt,Xt is locally integrable and, using an
elementary localization argument, Mt is thus square integrable for all t ≥ 0. �

As noted before, x 7→ ψ(t, x) can be thought of as a time-dependent, random embed-
ding of the lattice Z into R that makes the random walk a martingale. The deformation
caused by the change of the embedding,

χ(t, x) := ψ(t, x)− x (3.15)

is the aforementioned corrector. A key issue to address now is how much the deforma-
tion affects the random walk at the diffusive space-time scales. For this we need:

Theorem 3.4 (Sublinearity in diffusive boxes) Under Assumption 1.1 and (1.4)

max
x∈Z
|x|≤
√

n

sup
t∈R

0≤t≤n

|χ(t, x)|√
n

−→
n→∞

0, P-a.s. (3.16)
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The proof of this theorem will be given in Sections 7-8. With the help of the above
theorems, we can now give:
Proof of Theorem 1.2 from Theorems 3.2-3.4. The following argument is standard; we in-
clude it merely for completeness of the exposition. Consider the martingale M from
(3.9) and let 〈M〉t be its variance process. Lemma 3.1 ensures that, for P-a.e. sample of
the environment and P0

a -a.e. path of the Markov chain,

1
t
〈M〉t −→

t→∞
σ2 := EΘ = 2E

(
b0(0)ψ(0, 1)2). (3.17)

Next recall that Ñ(t) denotes the number of jumps of X in time interval [0, t] and con-
sider the truncated quadratic variation process (using again the notation of Helland [11,
formula (4.6)])

σε[M](t) :=
∫
(0,t]

Ñ(ds)
[
ψ(s, Xs)− ψ(s, Xs−)

]2 1{|ψ(s,Xs)−ψ(s,Xs−)|>ε
√

t}. (3.18)

By the cocycle conditions (3.5), the compensator of σε[M] is given by

σ̃ε[M](t) =
∫ t

0
ds Θε

√
t ◦ τs,Xs , (3.19)

where we set, for general r > 0,

Θr := b0(0)ψ(0, 1)2 1{|ψ(0,1)|>r} + b0(−1)ψ(0,−1)2 1{|ψ(0,−1)|>r}. (3.20)

The Dominated Convergence ensures that EΘr → 0 as r → ∞. By Lemma 3.1 and the
downward monotonicity of r 7→ Θr, for P-a.e. sample a of the conductances and P0

a -a.e.
sample of X we thus get

1
t

σ̃ε[M](t) −→
t→∞

0, ε > 0. (3.21)

Formulas (3.17) and (3.21) establish the conditions of the Martingale Functional CLT
from Helland [11, Theorem 5.1(a)] and so, for each T > 0, the law of

M(n)
t :=

1√
n

Mnt, t ≥ 0, (3.22)

on D[0, T] tends weakly, as n → ∞, to that of a Brownian motion {Bt : t ≥ 0} with
EBt = 0 and E(B2

t ) = σ2t. Clearly, σ2 ∈ (0, ∞) by (3.7) and (3.8).
In order to prove the corresponding statement for the paths of the Markov chain itself,

it suffices to show

sup
t≤T

∣∣X(n)
t −M(n)

t

∣∣ P0
a−→

n→∞
0, P-a.s. (3.23)

By Theorem 3.4, for each ε > 0 there is a (random) K with P(K < ∞) = 1 such that∣∣χ(t, x)
∣∣ ≤ K + ε

(√
t + |x|

)
, t ≥ 0, x ∈ Z. (3.24)

For ε < 1, the triangle inequality converts this to the pointwise estimate

|X(n)
t −M(n)

t | ≤
K

(1− ε)
√

n
+

ε

1− ε

(√
t + |M(n)

t |
)
. (3.25)
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Assuming ε ≤ 1/2 this gives

sup
t≤T

∣∣X(n)
t −M(n)

t

∣∣ ≤ 2K√
n
+ 2ε
√

T + 2ε sup
t≤T
|M(n)

t |. (3.26)

The weak convergence of M(n) to Brownian motion ensures that {supt≤T |M
(n)
t | : n ≥ 1}

is tight. Taking n→ ∞ followed by ε ↓ 0 then yields (3.23), as desired. �

4. DUAL RANDOM WALK

The proof of our main result has so far been reduced to Theorems 3.2-3.4 whose proofs
constitute the remainder of this paper. In prior work (namely, [10]) these were proved
with the help of elliptic-regularity techniques that require the moment conditions (1.6).
As we only wish to assume (1.4), we will proceed by methods that are tailored to the
underlying one-dimensional, and nearest-neighbor, nature of the problem.

To explain the main idea, let us start with the existence of the parabolic coordinates.
Suppose ψ solves (3.4). Then, as is readily checked,

g(t, x) := ψ(t, x + 1)− ψ(t, x) (4.1)

obeys

− ∂

∂t
g(t, x) = L+

t g(t, x), t ∈ R, x ∈ Z, (4.2)

where
L+

t f (x) := bt(x + 1) f (x + 1) + bt(x− 1) f (x− 1)− 2bt(x) f (x) . (4.3)
Our principal observation, and the reason for using the adjoint-operator notation, is
that L+

t is the adjoint in `2(Z) of

Lt f (x) := bt(x)
[

f (x + 1) + f (x− 1)− 2 f (x)
]
, (4.4)

which is the generator of the (variable-speed) simple symmetric random walk Y with jump
rate 2bt(x) at x at time t. The minus sign on the left-hand side of (4.2) directs us to
run this random walk backwards relative to our current labeling of time; (4.2) is then
recognized to be the Kolmogorov Forward Equation associated with Y.

Next we recall the requirement that the gradients of ψ be stationary with respect to
the space-time shifts. Hence we expect that

g(t, x) = ϕ ◦ τt,x, t ∈ R, x ∈ Z, (4.5)

for some measurable function ϕ of the conductances only. Assuming ϕ ∈ L1(P), equa-
tion (4.2) is then equivalent to the statement that the measure

Q(da) := ϕ(a)P(da) (4.6)

is stationary for the evolution t 7→ τ−t,Yt(a) of a = {bt(x) : t ∈ R, x ∈ Z} on Ω induced
by the random walk Y. This suggests that we first extract a stationary distribution Q

of the environments using the usual averaging procedure and, assuming we can show
Q� P, define ϕ as the Radon-Nikodym derivative dQ

dP
.

We note that ϕ, once constructed, has to be non-negative and a simple argument based
on stationarity even gives ϕ > 0 P-a.s. This implies equivalence of Q with P (which we
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need to convert a.s. statements under Q to those under P) as well as the “trajectory non-
crossing” condition (3.8). The fact that Eϕ = 1, which will also be shown as part of the
construction, then gives sublinearity of the corrector in the spatial direction.

In order to implement the above strategy, a number of technical hurdles have to be
overcome. The first of these is the very existence of the random walk Y which requires
care due to the dependence of the jump-rates on the (possibly highly irregular) field
of the conductances. Then comes the construction of the invariant measure Q, and the
Radon-Nikodym term ϕ, which will be performed in Section 5. The proof of Theorem 3.2
comes in Section 6.

Let us start with the construction of the dual random walk Y. Proceeding along the
lines standard in the theory of continuous-time Markov chains (see, e.g., Liggett [14]),
we will first define the transition function of Y as the minimal positive solution to the
Kolmogorov Backward Equations and then, while proving non-explosivity, construct
the actual chain as well. Throughout we will regard the conductance configuration as
fixed and subject only to the explicitly stated (deterministic) requirements.

We start by defining a family of non-negative kernels Kn(t, x; s, y) indexed by integers
n ≥ 0 and depending on reals −∞ < t ≤ s < ∞ and vertices x, y ∈ Z, inductively via
the iteration scheme

Kn+1(s, x; t, y) := e−
∫ s

t du 2bu(x)δx,y

+
∫ s

t
dr e−

∫ s
r du 2bu(x) br(x) ∑

z=±1
Kn(r, x + z; t, y), (4.7)

where we set K0(s, x; t, y) := 0. Notice that, compared to the usual notation for transition
kernels, the evolution runs backwards in time.

Lemma 4.1 Suppose that t 7→ bt(x) is locally Lebesgue integrable for all x ∈ Z. Then for all
t < s and all x, y ∈ Z, the (Lebesgue) integrals on the right-hand side of (4.7) converge and
n 7→ Kn(s, x; t, y) is non-decreasing and taking values in [0, 1]. In particular,

K(s, x; t, y) := lim
n→∞

Kn(s, x; t, y) (4.8)

exists in [0, 1]. Moreover, for any t and y fixed, s, x 7→ K(s, x; t, y) is a non-negative solution to
the Kolmogorov Backward Equation

∂

∂s
K(s, x; t, y) = LsK(s, ·; t, y)(x), s < t, y ∈ Z, (4.9)

where Ls acts on the first spatial variable on the right-hand side and the s-derivative is in the
Lebesgue sense. The kernel K is sub-stochastics in the sense that, for all s ≥ t and all x ∈ Z,

∑
y∈Z

K(s, x; t, y) ≤ 1. (4.10)

Finally, K transforms covariantly under the space-time shifts; namely,

K(s, x; t, y) ◦ τu,z = K(s + u, x + z; t + u, y + z) (4.11)

holds for all s ≥ t, all u ∈ R and all x, y, z ∈ Z.
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Proof. As is readily checked by induction, we have Kn ≥ 0 with n 7→ Kn is non-
decreasing and, thanks to the integrability of t 7→ bt(x), also ∑y∈Z Kn(s, x; t, y) ≤ 1.
The limit in (4.8) thus exists and obeys (4.10). Passing the limit inside the integral in (4.7)
using the Monotone Convergence Theorem and some elementary differentiation proves
that K solves the integral version of (4.9). As is checked by induction from (4.7) and (3.2),
equation (4.11) holds for Kn; the limit (4.8) then extends it to K as well. �

A standard question arising in the above context is whether equality holds in (4.10).
As usual, this will be resolved by interpreting Kn as the transition probability for a
Markov chain restricted to make at most n steps; equality in (4.10) is then equivalent
to non-explosivity of this chain in finite time. We need the following ingredients:

(1) Z := the discrete-time simple symmetric random walk on Z, and
(2) N := an independent rate-1 Poisson point process.

Let Px denote the joint law of these objects such that Px(Z0 = x) = 1. Aiming to define
the desired Markov chain as a suitable time-change of the constant-speed continuous-
time simple random walk t 7→ ZN(t), we first need to prove:

Lemma 4.2 (Non-explosion) Suppose that t 7→ b−t(x) is Borel-measurable and locally Lebes-
gue integrable on (0, ∞) for all x ∈ Z and, in addition, that (as a function of t)

b−t(x) > 0 for Lebesgue a.e. t > 0 and
∫ ∞

0
dt b−t(x) = ∞, x ∈ Z. (4.12)

Then for all x ∈ Z and Px-a.e. realization of the processes Z and N as above, there is a unique
continuous A : [0, ∞)→ [0, ∞) satisfying

A(t) =
∫ t

0
ds 2b−s(ZN(A(s))), t ≥ 0. (4.13)

Moreover, we have Px(A(t) < ∞) = 1 for each t ≥ 0 and each x ∈ Z. In particular,

Yt := ZN(A(t)) (4.14)

is well defined for all t ≥ 0 Px-a.s. and obeys

K(0, x;−t, y) = Px(Yt = y
)
, x, y ∈ Z, t ≥ 0. (4.15)

Proof. The starting point is to solve (4.13) for A. We will do this by constructing its
inverse, to be denoted by W. Let τ0 := 0 < τ1 < τ2 < . . . mark the arrival times of the
Poisson process N. On [τn, τn+1) we have N(·) = n and so we may define W inductively
by setting W(0) = W(τ0) := 0 and∫ W(t)

W(τn)
ds 2b−s(Zn) = t− τn, t ∈ [τn, τn+1] (4.16)

for all n ≥ 0. Here the second condition in (4.12) forces that W(t) < ∞ for all t ≥ 0 while
the integrability and positivity of t 7→ b−t(x) assumed in (4.12) ensure that t 7→ W(t) is
uniquely defined, strictly increasing, continuous on [0, ∞).

Next let W(∞) := supt≥0 W(t) and define the inverse of W by

A(t) := sup
{

r ≥ 0 : W(r) ≤ t
}

, 0 ≤ t < W(∞). (4.17)
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Set tn := W(τn) and note that N(A(s)) = n for A(s) ∈ [τn, τn+1) which is equivalent to
s ∈ [tn, tn+1). Using this in (4.16) (and invoking the continuity of A) shows∫ t

tn

ds 2b−s(ZN(A(s))) = A(t)− τn, t ∈ [tn, tn+1]. (4.18)

As t0 = 0, this yields (4.13) for all t < W(∞) by elementary resummation.
From (4.7) we now inductively check that, for all t ≥ 0,

Kn(0, x;−t, y) = Px(Yt = y, N(A(t)) < n
)
, n ≥ 0. (4.19)

To get (4.15) we have to show that Y is non-explosive meaning Px(N(A(t)) < ∞) = 1
for each t ≥ 0. By (4.17) this boils down to proving W(∞) = ∞ Px-a.s. Noting that Z is
recurrent, there is Px-a.s. an infinite sequence n0 = 0 < n1 < n2 < . . . enumerating the
times with Znk = x. Then ZN(A(s)) = x for s ∈ [tnk , tnk+1) and so, by (4.18),∫ W(∞)

0
ds 2b−s(x) ≥ ∑

k≥0

∫ tnk+1

tnk

ds 2b−s(ZN(A(s))) = ∑
k≥0

(τnk+1 − τnk). (4.20)

The sum on the right diverges Px-a.s. because {τnk+1 − τnk : k ≥ 0} are i.i.d. exponen-
tial(1) independent of Z. The local integrability of s 7→ b−s(x) then forces W(∞) = ∞
Px-a.s., as desired. �

As a consequence we now readily get:

Corollary 4.3 Under the assumptions of Lemma 4.2, for each each x ∈ Z and each s ∈ R,
t, y 7→ K(s, x;−t, y) is a strong solution to the Kolmogorov Forward Equation

− ∂

∂t
K(s, x; t, y) = L+

t K(s, x; t, ·)(y), (4.21)

for all t ≤ s and all y ∈ Z.

Proof. By a simple translation of the environment (which preserves the conditions of
Lemma 4.2) it suffices to prove this for s := 0. In this case we have the representation
(4.19). Decomposing according to the last step of the walk Y we then get

Kn+1(0, x;−t, y) = Px(Yt = y, N(A(t)) = 0
)
+ Px(Yt = y, 0 < N(A(t)) < n + 1

)
= e−

∫ 0
−t du 2bu(y)δx,y +

∫ 0

−t
dr e−

∫ r
−t du 2bu(y) ∑

z=±1
br(y + z)Kn(0, x; r, y + z). (4.22)

Taking n → ∞ and using (4.8) along with the Monotone Convergence Theorem we get
that K satisfies the integral from of (4.21). �

Note that the proof also yields

− ∂

∂t
Kn+1(s, x; t, y) = L+

t Kn(s, x; t, ·)(y), n ≥ 0, (4.23)

which will come handy later.
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5. INVARIANT MEASURE FOR DUAL RANDOM WALK

Moving along the strategy outlined at the beginning of Section 4, we will now construct
an invariant distribution Q for the Markov chain t 7→ τ−t,Yt(a) on random environments
and thus prove Theorem 3.2. Throughout we consider Assumption 1.1 and the moment
conditions (1.4) as granted. We leave it to the reader to check that this ensures the con-
dition (4.12) for a.e. sample of the conductances.

A standard way to extract an invariant distribution is to average the indicator of an
event A over a finite-stretch of the Markov chain path initiated from the a priori mea-
sure, and then take a weak subsequential limit. For such an averaged measure, Tonelli’s
Theorem, the shift-invariance of P and (4.11) yield

QT(A) : =
1
T

∫ T

0
dt E

(
E0

a
(
1A ◦ τ−t,Yt

))
=

1
T

∫ T

0
dt E

(
∑

y∈Z

1A ◦ τ−t,yK(0, 0;−t, y)
)

= E

(
1A

1
T

∫ T

0
dt ∑

y∈Z

K(t, y; 0, 0)
)

.

(5.1)

Writing ϕ̃T for the expression following 1A in (5.1) gives QT(da) := ϕ̃T(a)P(da). Assum-
ing we can prove tightness, every subsequential weak limit of measures QT as T → ∞
will then be invariant for the induced chain t 7→ τ−t,Yt(a).

We will use the above derivation only as motivation; for our purposes, it will be more
convenient to work with T averaged over an exponential distribution. We thus define
our approximate Radon-Nikodym term by

ϕε := ε
∫ ∞

0
dt e−εt ∑

y∈Z

K(t, y; 0, 0). (5.2)

A similar calculation as in (5.1) shows, with the help of (4.11), that

E(ϕε) = 1, ε > 0, (5.3)

and, in particular, ϕε < ∞ a.s. The main technical problem is to control the “mass” of ϕε

in the limit as ε ↓ 0. This will be done via:

Proposition 5.1 (Weighted L2-estimate) For each ε > 0, we have

b0(0)ϕ2
ε ∈ L1(P) (5.4)

and, in fact,
E
(
b0(0)ϕ2

ε

)
≤ E

(
b0(0)

)
. (5.5)

Before we embark on a formal proof, let us note that a similar kind of weighted-L2

estimate appears in most corrector-based approaches to the random conductance model.
Disregarding various convergence issues, it is a consequence of the following argument:
Introduce the quantity

χε :=
∫ ∞

0
dt e−εt

(
bt(0)ϕε ◦ τt,0 − bt(−1)ϕε ◦ τt,−1

)
. (5.6)
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Then ϕε − 1 is the spatial gradient of χε,

χε ◦ τ0,1 − χε = ϕε − 1. (5.7)

Moreover, writing L for the operator Lt lifted to the space of environments,

L f := b0(0)
[

f ◦ τ0,1 − f
]
+ b0(−1)

[
f ◦ τ0,−1 − f

]
, (5.8)

and denoting by
V := b0(0)− b0(−1) (5.9)

the local drift at the space-time origin, χε satisfies the “massive” corrector equation

∂

∂t
χε ◦ τt,x = (ε− L)χε ◦ τt,x −V ◦ τt,x . (5.10)

These two facts give χε the meaning of an approximate, stationary corrector. Multiply-
ing (5.10) at t = 0 and x = 0 by χε, taking expectation, using that

Lχε + V = bt(0)ϕε ◦ τt,0 − bt(−1)ϕε ◦ τt,−1 (5.11)

along with the fact that E ∂
∂t χ2

ε ◦ τt,0 = 0 thanks to stationarity of P produces the standard
identity

εE(χ2
ε) + E

(
b0(0)ϕ2

ε

)
= E

(
b0(0)ϕε

)
, (5.12)

which, being a direct consequence of the PDE (5.10), can be thought of as a statement
of elliptic regularity. From (5.12) we get (5.5) by dropping the first term on the left and
applying the Cauchy-Schwarz inequality on the right-hand side.

Of course, the main issue with this formal calculation is that, at this point, we have no
a priori information on the integrability of (and even convergence of the integral defin-
ing) χε. We will therefore need to introduce an additional truncation and work with
averaging over space and time instead of the random environment.

Recall our notation Kn for the kernels defined in (4.7). We start by introducing a trun-
cated version of ϕε via

ϕε,n := ε
∫ ∞

0
dt e−εt ∑

y∈Z

Kn(t, y; 0, 0), n ≥ 0. (5.13)

Since n 7→ Kn is (pointwise) non-decreasing and tending to K, we have

ϕε,n ≤ ϕε and so Eϕε,n ≤ 1, n ≥ 0, (5.14)

with ϕε,n ↑ ϕε as n → ∞ thanks to the Monotone Convergence Theorem. The key
reason for introducing the truncated objects is that they are pointwise bounded: Since
the random walk Y makes only nearest-neighbor jumps and the kernel Kn involves only
trajectories with at most n jumps, the sum in (5.13) is effectively reduced to |y| ≤ n.
From Kn ≤ 1 we then have

ϕε,n ≤ 2n + 1, n ≥ 0. (5.15)

Next we introduce the truncated version of (5.6),

χε,n :=
∫ ∞

0
dt e−εt

(
bt(0)ϕε,n ◦ τt,0 − bt(−1)ϕε,n ◦ τt,−1

)
. (5.16)
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Here the integral converges absolutely since t 7→ ϕε,n ◦ τt,0 is continuous, t 7→ bt(x) is
locally integrable and (5.15) thus gives

|χε,n| ≤ (2n + 1)
∫ ∞

0
dt e−εt[bt(0) + bt(−1)

]
. (5.17)

By the first condition in (1.4) the integral has finite expectation under P; Tonelli’s Theo-
rem then implies that the integral is finite P-a.s. We now claim a finite-n version of (5.7):

Lemma 5.2 For all ε > 0 and all n ≥ 0,

χε,n ◦ τ0,1 − χε,n = ϕε,n+1 − 1 . (5.18)

Proof. The shift-covariance of the Kn kernel implies, for any t > 0, that

ϕε,n ◦ τt,0 = εeεt
∫ ∞

t
du e−εu ∑

y∈Z

Kn(u, y; t, 0). (5.19)

The Kolmogorov Forward Equation (4.23) then yields

∂

∂t
ϕε,n+1 ◦ τt,0 = ε(ϕε,n+1 ◦ τt,0 − 1)−L+ϕε,n ◦ τt,0 , (5.20)

where the derivative on the left is in the Lebesgue sense and L+ is the operator L+
t lifted

to the space of environments;

L+ f := b0(1) f ◦ τ0,1 + b0(−1) f ◦ τ0,−1 − 2b0(0) f . (5.21)

The definition (5.16) now shows

χε,n ◦ τ0,1 − χε,n =
∫ ∞

0
dt e−εtL+ϕε,n ◦ τt,0

=
∫ ∞

0
dt
[

e−εtε(ϕε,n+1 − 1) ◦ τt,0 − e−εt ∂

∂t
ϕε,n+1 ◦ τt,0

]
= −

∫ ∞

0
dt

∂

∂t
[
e−εt(ϕε,n+1 − 1) ◦ τt,0

]
= ϕε,n+1 − 1,

(5.22)

where we also used that t 7→ (ϕε,n+1 − 1) ◦ τt,0 is bounded. �

In light of (5.18), for the integrand in (5.16) we now get

bt(0)ϕε,n+1 ◦ τt,x − bt(−1)ϕε,n+1 ◦ τt,x−1 = (Lχε,n + V) ◦ τt,x , (5.23)

where L and V are as in (5.8) and (5.9). Using this we readily check:

Lemma 5.3 (Corrector equation) For each x ∈ Z and each n ≥ 0, t 7→ χε,n ◦ τt,x is contin-
uous and Lebesgue differentiable with

∂

∂t
χε,n+1 ◦ τt,x = εχε,n+1 ◦ τt,x − (Lχε,n + V) ◦ τt,x . (5.24)

Proof. It suffices to prove the claim for x = 0. Pick t ∈ R. Invoking (5.23) in (5.16), an
elementary change of variables yields

χε,n+1 ◦ τt,0 = eεt
∫ ∞

t
ds e−εs(Lχε,n + V) ◦ τs,0. (5.25)

The claim follows by differentiation with respect to t at t = 0. �
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The stationarity of P and the first condition in (1.4) imply

t 7→
∫ 1

0
ds bs(x) ◦ τt,0 grows sublinearly in t, P-a.s. (5.26)

The bound (5.17) then shows that t 7→ χε,n ◦ τt,0 has sublinear growth as well. Equipped
with these observations, we are ready to give:
Proof of Proposition 5.1. The proof runs parallel to the argument leading up to (5.12)
except that we average of space-time rather than the environment. We continue writing
Lχε,n +V as it is concise, but the reader should replace this by the left-hand side of (5.23)
whenever convenient.

The starting point is to multiply (5.24) by χε,n+1 ◦ τt,0 and integrate over t ∈ [0, r], for
some r > 0. Relabeling n + 1 for n, this yields

χ2
ε,n ◦ τr,0 − χ2

ε,n = 2ε
∫ r

0
dt χ2

ε,n ◦ τt,0 − 2
∫ r

0
dt
[
χε,n(Lχε,n−1 + V)

]
◦ τt,0. (5.27)

The integrals are finite P-a.s. by to the fact that t 7→ χε,n ◦ τt,0 is continuous and t 7→
bt(x) is locally integrable P-a.s. Next we multiply both sides by e−r/R and integrate
over r ≥ 0. The resulting integrals converge absolutely thanks to the P-a.s. sublinear
growth of t 7→ χε,n ◦ τt,0. Neglecting the contribution of the second term on the left of
(5.27) and combining that of the first term with the corresponding term on the right-hand
side then shows

(2εR− 1)
∫ ∞

0
dt e−t/R χ2

ε,n ◦ τt,0

− 2R
∫ ∞

0
dt e−t/R [χε,n(Lχε,n−1 + V)

]
◦ τt,0 ≤ 0. (5.28)

For 2R > 1/ε (to be assumed next) we can drop the first term. Summing the resulting
inequality over its translates by x ∈ {0, . . . , R}, the identity (5.23) along with Lemma 5.2
and integration by parts show

R−1

∑
x=0

∫ ∞

0
dt e−t/R [(ϕε,n+1 − 1)b0(0)ϕε,n

]
◦ τt,x ≤ fR ◦ τ0,R − fR ◦ τ0,−1 , (5.29)

where fR is a “boundary term” given explicitly by

fR :=
∫ ∞

0
dt e−t/R [χε,nb0(0)ϕε,n

]
◦ τt,0. (5.30)

Since we are aiming to control the right-hand side of (5.29) in P-probability, it suffices to
focus on the R → ∞ behavior of fR alone. By (5.15) and (5.17), this quantity is bounded
in absolute value by (2n + 1)2 times hR(0) + hR(1) where

hR(x) :=
∫ ∞

0
dt e−t/R bt(0)

( ∫ ∞

0
du e−εu bu(x)

)
◦ τt,0 . (5.31)

In light of (5.26), the part of the integrand in the large parentheses grows sublinearly in t
a.s. Plugging that in, bounding te−t/R by a constant times Re−t/(2R) and noting that, by,
say, the L1-part of the Pointwise Ergodic Theorem, the integral of t 7→ e−t/(2R)bt(0) over
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all t ≥ 0 as at most order-R in probability, we get that hR and thus also (5.29) are o(R2)
in probability. From ϕε,n ≤ ϕε,n+1 we then get

R−1

∑
x=0

∫ ∞

0
dt e−t/R [b0(0)ϕ2

ε,n
]
◦ τt,x

≤ o(R2) +
R−1

∑
x=0

∫ ∞

0
dt e−t/R [b0(0)ϕε,n

]
◦ τt,x. (5.32)

The Cauchy-Schwarz inequality bounds the square of the second term on the right by
the left-hand side times

R−1

∑
x=0

∫ ∞

0
dt e−t/R bt(x). (5.33)

By the Pointwise Spatial Ergodic Theorem (and our assumptions on P), this quantity is
asymptotic to R2E(b0(0)) as R→ ∞ and so

R−1

∑
x=0

∫ ∞

0
dt e−t/R [b0(0)ϕ2

ε,n
]
◦ τt,x ≤ R2E(b0(0)) + o(R2) (5.34)

with o(R2)/R2 → 0 in probability as R → ∞. One more use of the Pointwise Spatial
Ergodic Theorem on the left-hand side (which, thanks to the Monotone Convergence
Theorem, applies to non-negative random variables even without any moment assump-
tions) then yields

E
[
b0(0)ϕ2

ε,n
]
≤ E

[
b0(0)

]
. (5.35)

The claim now follows from ϕε,n ↑ ϕε and the Monotone Convergence Theorem. �

Remark 5.4 Once we have (5.35), the Cauchy-Schwarz inequality along with the first
condition in (1.4) show that also χε ∈ L2(P). The argument leading up to (5.12) can then
be applied thus proving the identity (5.12) directly.

With the weighted-L2 estimate in hand, we can move to the construction of the Radon-
Nikodym term ϕ. Instead of working with invariant measures, we proceed by (equiva-
lent) functional-analytic arguments. Consider the linear functional

φε( f ) := E
(

ϕε f
)
, f ∈ L∞(P), (5.36)

and note that it is positive and normalized in the sense that

φε( f ) ≤ φε(g) if f ≤ g and φε(1) = 1. (5.37)

Writing L0(P) for the set of equivalence classes of measurable functions of the environ-
ment, the main outcome of the present section is now:

Theorem 5.5 For each ε > 0, the linear functional—φε extends to a continuous linear func-
tional on

H :=
{

f ∈ L0(P) : E(b0(0)−1 f 2) < ∞
}

(5.38)

with norm bounded by [E(b0(0))]1/2 regardless of ε > 0. In particular, weak sequential limits
of φε as ε ↓ 0 exist and take the form f 7→ E(ϕ f ) for some ϕ ∈ L0(P) satisfying

ϕ ≥ 0, E(ϕ) = 1 and E(b0(0)ϕ2) ≤ E(b0(0)). (5.39)
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In addition, for each t > 0 we have

ϕ = ∑
x∈Z

ϕ ◦ τt,x K(t, x; 0, 0), P-a.s. (5.40)

In particular, ϕ admits a version such that

P(ϕ > 0) = 1 (5.41)

and that, on a set of full P-measure, t 7→ ϕ ◦ τt,x is continuous and weakly differentiable with

∂

∂t
ϕ ◦ τt,x + L+ϕ ◦ τt,x = 0, t ∈ R, x ∈ Z, (5.42)

where L+ is the operator in (5.21). The measure Q defined from ϕ via (4.6) is stationary and
ergodic for the induced Markov chain t 7→ τ−t,Yt(a).

Proof. Let H? denote the space of continuous linear functionals on H. Pick f ∈ L∞(P)
The Cauchy-Schwarz inequality along with (5.5) yield

φε( f ) = E
(

ϕε f ) ≤
[
E
(
b0(0)−1 f 2)]1/2[

E
(
b0(0)ϕ2

ε

)]1/2

≤
[
E
(
b0(0)−1 f 2)]1/2[

E
(
b0(0)

)]1/2 .
(5.43)

It follows that φε extends continuously to H with the norm bounded by [E(b0(0))]1/2.
As bounded sequences in H? are weakly compact, sequential limits of φε as ε ↓ 0 exist
and, by the Riesz lemma, take the form f 7→ E(b0(0)−1h f ) for some h ∈ H. Writing
ϕ := b0(0)−1h we get the second inequality in (5.39); the equality in (5.39) and non-
negativity of ϕ follow from (5.37) and the fact that 1 ∈ H.

Next we observe that, for any t > 0, splitting the integral in (5.2) to an integral
over [0, t) and the other over [t, ∞), the Chapman-Kolmogorov equations for K along
with (4.11) yield

ϕε = ε
∫ t

0
ds e−εs ∑

x∈Z

K(x, s; 0, 0) + e−εt ∑
x∈Z

ϕε ◦ τt,xK(x, t; 0, 0). (5.44)

The calculation (5.1) shows that the L1(P)-norm of the first term is 1− e−εt which tends
to zero as ε ↓ 0. Integrating (5.44) against f ∈ L∞(P), moving the shift away from ϕ,
taking ε ↓ 0 along the sequence where φε converges and moving the shift back to ϕ
proves (5.40) with the null set possibly depending on t.

Now define

ϕ :=
∫ ∞

0
dt e−t

(
∑

x∈Z

ϕ ◦ τt,x K(t, x; 0, 0)
)

. (5.45)

By (5.40) and Tonelli’s Theorem, ϕ = ϕ P-a.s. and so ϕ is a version of ϕ. As is checked
with the help of (5.13) and a change of variables, t 7→ ϕ ◦ τt,x continuous in t ∈ R on a
set of full P-measure. Plugging (5.40) for ϕ on the right-hand side of (5.45) and invoking
the Chapman-Kolmogorov equations for K shows that (5.40) extends to ϕ and so we can
henceforth regard ϕ to be this version. The differential equation (5.42) now follows from
the Kolmogorov Forward Equation (4.21) while (5.41) holds because (5.40) implies

{ϕ = 0} ⊆
{

ϕ ◦ τt,x = 0 : x ∈ Z, t ∈ R
}

(5.46)
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due to strict positivity of K(t, ·; 0, ·) for t > 0 and (5.40) again. The event on the right
is invariant under space-time shift and so, by ergodicity of P, it has probability zero or
one. The case of full measure is ruled out by E(ϕ) = 1.

The invariance of Q for the random walk t 7→ τ−t,Yt(a) on Ω is a consequence of
(5.40). To prove ergodicity, we adapt an argument of Andres [1, Proposition 2.1]. Let A
be a measurable set of environments such that for Q-a.e. a ∈ A and each t > 0 we
have τ−t,Yt(a) ∈ A for P0

a -a.e. sample of Y. This implies

0 = EQ(1Ac1A) = EQE0(1Ac1A ◦ τ−t,Yt

)
= ∑

x∈Z

E
(

ϕ1Ac1A ◦ τ−t,xK(0, 0;−t, x)
)

.
(5.47)

But ϕ > 0 and, for t > 0, also K(0, 0;−t, x) > 0 P-a.s. and so we get 1Ac1A ◦ τ−t,x = 0
or, equivalently, 1A ◦ τ−t,x ≤ 1A P-a.s. for each t > 0 and each x ∈ Z. Swapping the
roles of A and Ac then gives 1A = 1A ◦ τ−t,x P-a.s. for each t > 0 and each x ∈ Z.
By shift-ergodicity of P, we have P(A) ∈ {0, 1}. Since Q is equivalent to P, the same
applies to Q(A). �

6. PARABOLIC COORDINATES

Having established the necessary facts pertaining to the dual random walk Y we now
move to the construction of the parabolic coordinates. This proves the first of the two
technical theorems underpinning the main convergence result. We then also prepare the
ground for proving the second technical claim by developing an alternative representa-
tion for the corrector.

Let ϕ be a quantity constructed in Theorem 5.5; we assume that ϕ is the version that
satisfies (5.42) for all t and x on a set of full P-measure. Set

χ(t, 0) := −
∫ t

0
ds
(
bs(0)ϕ ◦ τs,0 − bs(−1)ϕ ◦ τs,−1

)
, t ≥ 0, (6.1)

where the integral converges absolutely P-a.s. by Tonelli’s Theorem and the fact that
b0(0)ϕ ∈ L1(P) as implied by b0(0)ϕ2 ∈ L1(P) and the second condition in (1.4). The
quantity χ(t, 0) will serve as the corrector in time t; compare with its precursor in (5.6).
Remembering that ϕ should correspond to the spatial gradients of the parabolic coordi-
nate, the cocycle conditions (3.5) dictate that we define

ψ(t, x) :=
x−1

∑
k=0

ϕ ◦ τ0,k + χ(t, 0) ◦ τ0,x , x ≥ 0, t ≥ 0. (6.2)

The quantities in (6.1), resp., (6.2) are defined analogously for negative t, resp., x, by
swapping the limits of the integral/sum and changing the overall sign of the expression.
With this definition in hand, we are ready to give:
Proof of Theorem 3.2. A similar calculation to that in the proof of Lemma 5.2 shows, with
the help of the PDE (5.42) obeyed by ϕ, that

χ(t, 0) ◦ τ0,x+1 − χ(t, 0) ◦ τt,x = ϕ ◦ τt,x − ϕ ◦ τ0,x. (6.3)
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This readily implies
ψ(t, x + 1)− ψ(t, x) = ϕ ◦ τt,x (6.4)

and proves the cocycle condition (3.5). The PDE (3.4) obeyed by ψ is then a direct con-
sequence of the definition (6.1). The identities (3.6–3.7) follow from (5.39) while (3.8) is a
rewrite of (5.41). �

Although the formula (6.1) serves well for the construction of the parabolic coordi-
nate, it appears less amenable for the purposes of proving Theorem 3.4. There we will
use a different representation which we will prove next:

Proposition 6.1 For each t ≥ 0,

χ(t, 0) = ∑
x<0

∑
y≥0

ϕ ◦ τt,x K(t, x; 0, y)− ∑
x≥0

∑
y<0

ϕ ◦ τt,x K(t, x; 0, y) , (6.5)

where each of the double sums converges to a finite number P-a.s.

For the proof of a.s. convergence we first show:

Lemma 6.2 There is a constant c > 0 such that each t ≥ 0,

E
(

ϕ ∑
z∈Z

K(0, 0;−t, z)|z|
)
≤ c
√

t. (6.6)

Proof. Using the stationary distribution on environments, Q(da) := ϕ(a)P(da), the
quantity in question is recognized as the left-hand side of

EQE0(|Yt|) ≤
[
EQE0(Y2

t )
]1/2. (6.7)

Since t 7→ Yt is a martingale with associated variance process

〈Y〉t =
∫ ∞

0
ds 2b−s(Ys) =

∫ ∞

0
ds 2b0(0) ◦ τ−s,Ys , (6.8)

from stationarity of Q under t 7→ τ−t,Yt(a) we readily get

EQE0(Y2
t ) = EQE0(〈Y〉t) = 2tEQ

(
b0(0)

)
= 2tE

(
b0(0)ϕ

)
. (6.9)

As noted above, the last expectation is finite by (5.5). �

Proof of Proposition 6.1. Fix t ≥ 0. A shift of the environment and a change of variables
show that the expectation under P of the sum of the two terms in (6.5) equals the expec-
tation in (6.6). Since ϕ > 0 P-a.s., the sums in (6.5) converge to a finite number P-a.s.
Denoting, with some abuse of our earlier notation, by χn(t) the quantity in (6.6) with
the sums over x and y additionally restricted to values in [−n, n], we in particular have
χn(t)→ χ(t, 0) as n→ ∞ a.s. by the Dominated Convergence Theorem.

We will now calculate the t-derivative of χn(t). Fix y ∈ Z and let us temporarily
abbreviate

ϕx := ϕ ◦ τt,x, bx := bt(x) and Kx := K(t, x; 0, y). (6.10)

Then (5.42) reads as

∂

∂t
ϕ ◦ τt,x = −bx+1ϕx+1 − bx−1ϕx−1 + 2bx ϕx (6.11)
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while the Backward Kolmogorov Equation (4.9) becomes

∂

∂t
K(t, x; 0, y) = bx

[
Kx+1 + Kx−1 − 2Kx

]
. (6.12)

The product rule for the derivative then shows

∂

∂t
(

ϕ ◦ τt,xK(t, x; 0, y)
)

=
(
bx ϕxKx+1 − bx−1ϕx−1Kx

)
+
(
bx ϕxKx−1 − bx+1ϕx+1Kx

)
. (6.13)

Using the standard telescoping argument, we have

−1

∑
x=−n

(
bx ϕxKx+1 − bx−1ϕx−1Kx

)
= b−1ϕ−1K0 − b−n−1ϕ−n−1K−n,

−1

∑
x=−n

(
bx ϕxKx−1 − bx+1ϕx+1Kx

)
= b−n ϕ−nK−n−1 − b0ϕ0K−1.

(6.14)

Similarly we obtain
n

∑
x=0

(
bx ϕxKx+1 − bx−1ϕx−1Kx

)
= bn ϕnKn+1 − b−1ϕ−1K0,

n

∑
x=0

(
bx ϕxKx−1 − bx+1ϕx+1Kx

)
= b0ϕ0K−1 − bn+1ϕn+1Kn.

(6.15)

We will now return to the full notation while still abbreviating (bϕ)t,x := bt(x)ϕ ◦ τt,x.
Summing (6.14–6.15) over y in the respective range of values (still confined to [−n, n])
and then subtracting the sums in (6.15) from those in (6.14) yields

∂

∂t
χn(t) = (bϕ)t,−1 P0(|Yt| ≤ n

)
◦ τt,0 − (bϕ)t,0 P−1(|Yt| ≤ n

)
◦ τt,0

− (bϕ)t,−n−1 P−n(0 ≤ Yt ≤ n) ◦ τt,0 + (bϕ)−n P−n−1(0 ≤ Yt ≤ n) ◦ τt,0

− (bϕ)t,n Pn+1(−n ≤ Yt < 0) ◦ τt,0 + (bϕ)t,n+1 Pn(−n ≤ Yt < 0) ◦ τt,0.

(6.16)

Here the first term on the right of (6.16) arose by combining the contributions from the
terms b0ϕnK−1 in (6.14–6.15). Similarly, the second term combines the contributions from
the term b−1ϕ−1K0. The remaining terms in (6.16) collect the contributions of the terms
b−n−1 ϕ−n−1K−n, b−n ϕ−nK−n−1, bn ϕnKn+1 and bn+1ϕn+1Kn, respectively.

The first two terms on the right of (6.16) dominate the expression in the limit n → ∞.
Indeed, integrating over a compact interval of t and taking expectation with respect to P,
the remaining four terms on the right of (6.16) converge to zero in L1(P) as n→ ∞. The
term Px(|Yt| ≤ n) in turn increases to one as n → ∞ for both x = 0,−1. The Monotone
Convergence Theorem gives

r.h.s. of (6.5) =
∫ t

0
ds
(
bs(−1)ϕ ◦ τs,−1 − bs(0)ϕ ◦ τs,0

)
, P-a.s. (6.17)

The quantity on the right is χ(t, 0), as desired. �
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Remark 6.3 The reader may wonder at this point how we arrived at the above alterna-
tive expression for χ(t, 0) in the first place. This was done as follows. We know that the
spatial gradients of the corrector are given by ϕ− 1. Setting

χ̃ε := − ∑
x≥0

ϕ ◦ τ0,x − 1
(1 + ε)x+1 , (6.18)

where the sum converges because x 7→ ϕ ◦ τ0,x has a sublinear growth, we then get

χ̃ε ◦ τ0,1 − χ̃ε = ϕ− 1− εχ̃ε. (6.19)

This indicates that χ̃ε ◦ τt,x is an approximate (stationary) corrector at space time posi-
tion (t, x). We should thus be able to approximate χ(t, 0) by the quantity

χ̃ε ◦ τt,0 − χ̃ε = ∑
x≥0

ϕ ◦ τ0,x − ϕ ◦ τt,x

(1 + ε)x+1 . (6.20)

Using (5.40) for the term ϕ ◦ τ0,x and invoking (4.11) along with the fact that y 7→
K(t, x; 0, y) is a probability mass function, this is recast as

χ̃ε ◦ τ0,t − χ̃ε = ∑
x,y∈Z

ϕ ◦ τt,x

[
K(t, x; 0, y)
(1 + ε)y+1 1{y≥0} −

K(t, x; 0, y)
(1 + ε)x+1 1{x≥0}

]
. (6.21)

Noting that
1{y≥0} − 1{x≥0} = 1{x<0}1{y≥0} − 1{x≥0}1{y<0}, (6.22)

taking, at least formally, the limit ε ↓ 0 in (6.21) we then discover (6.5).

7. CORRECTOR SUBLINEARITY

To make the proof of our main result complete, it remains to establish the everywhere
sublinearity of the corrector as stated in Theorem 3.4. We will proceed by the argument
developed in Berger and Biskup [5] for the random walk on two-dimensional supercrit-
ical bond-percolation clusters which was later extended (Biskup [6]) to random walks in
general ergodic conductance models subject to moment conditions of the type (1.4). A
key novel ingredient, stated in Proposition 7.2, is proved in Section 8.

The starting point is sublinearity in the spatial direction:

Lemma 7.1 (Sublinearity in space) For P-a.e. sample of the environment,

lim
n→±∞

|χ(0, n)|
n

= 0, P-a.s. (7.1)

Proof. We follow the proof of [6, Lemma 4.8]. Fix n ∈ N and t ≥ 0. The cocycle
conditions give

χ(0, n) =
n−1

∑
k=0

χ(0, 1) ◦ τ0,k (7.2)

and
χ(0, n) ◦ τt,0 = χ(0, n) + χ(0, t) ◦ τ0,n − χ(0, t). (7.3)
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Since χ(0, 1) = ϕ− 1, the equality in (5.39) shows

χ(0, 1) ∈ L1(P) and Eχ(0, 1) = 0. (7.4)

Birkhoff’s Pointwise Ergodic Theorem then gives

χ := lim
n→∞

χ(0, n)
n

exists P-a.s. and in L1(P). (7.5)

The representation (6.1) along with b0(0)ϕ ∈ L1(P) ensure

χ(t, 0) ∈ L1(P). (7.6)

From (7.3) (and L1-convergence) we then get χ ◦ τt,0 = χ P-a.s. for each t ≥ 0. The
limit definition in (7.5) ensures that, also, χ ◦ τ0,x = χ P-a.s. for each x ∈ Z. Hence, χ
is shift invariant, and thus constant P-a.s. by the assumed ergodicity of P. Using the
L1-convergence part of (7.5) we get

χ = Eχ = Eχ(0, 1) = 0. (7.7)

This proves the claim for n → ∞ limit; replacing χ(0, 1) by χ(0,−1) extends this to
n→ −∞ limit as well. �

Looking at how the ranges of x and t in (3.16) scale with n, for the behavior of the
corrector in time we need to actually prove a subdiffusive growth estimate:

Proposition 7.2 (Sudiffusivity in time) For P-a.e. sample of the environment,

lim
t→∞

|χ(t, 0)|√
t

= 0. (7.8)

We remark that finding a representation of the corrector that makes subdiffusivity of
the corrector in time transparent has been the primary driving force behind the approach
developed in the present paper. Before we delve into its proof (which is deferred to the
next section), let us show how it implies the desired theorem:
Proof of Theorem 3.4 from Proposition 7.2. We follow arguments developed in Berger and
Biskup [5]; see also [6, Lemma 4.12]. First we identify a “good grid” of space-time points
where the corrector can be controlled by way of ergodic-theoretical and geometric ar-
guments. The oscillation of the corrector over the “holes” left out by the grid is then
controlled by methods of harmonic analysis. The proof is divided into three steps.
Step 1 (Definition of good grid): Let us call the space-time point (0, 0) K, ε-good if∣∣χ(0, x)

∣∣ ≤ K + ε|x|, x ∈ Z, (7.9)

and ∣∣χ(t, 0)
∣∣ ≤ K + ε

√
t, t ≥ 0. (7.10)

Similarly, we will call (x, t) K, ε-good in environment a if (0, 0) is K, ε-good in the envi-
ronment τt,x(a). In light of (7.1) and (7.8),

P
(
(t, x) is K, ε-good

)
−→
K→∞

1 (7.11)

holds for all ε > 0 and all (t, x) ∈ [0, ∞)×Z.
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Let ρK,ε be the density of K, ε-good points in Z; this quantity exist by Birkhoff’s Er-
godic Theorem and is generally random but, since its expectation equals the probability
in (7.11), from the obvious monotonicity in K we have

ρK,ε −→
K→∞

1, P-a.s. (7.12)

Similarly, if θK,ε is the density of {n ∈ N : (n, 0) is K, ε-good} in N (remember that t 7→
χ(t, 0) is continuous so checking only integer times will be enough) we have

θK,ε −→
K→∞

1, P-a.s. (7.13)

It follows that, for each ε > 0 and P-a.e. environment a there is K = K(a) < ∞ such that

ρK,ε ≥
1
2

, θK,ε ≥
1
2

and (0, 0) is K, ε-good. (7.14)

We now fix this K and let GK,ε denote the set of (t, x) ∈ [0, ∞)×Z such that at least one
of the following conditions holds:

(1) t = 0 or x = 0 or both,
(2) t is integer and (t, 0) is K, ε-good,
(3) (0, x) is K, ε-good.

The set GK,ε is the aforementioned “good grid.”
Step 2 (Estimating χ on good grid): We now derive a pointwise estimate of the corrector
on the good grid. Note that each (t, x) ∈ GK,ε can be connected to the origin by following
a pair of horizontal and vertical lines that lie entirely in GK,ε — which line comes first
depends on which of the three condition above applies at (t, x); one or both lines are
trivial when (1) is in force. Since these line segments meet at a K, ε-good point, the
cocycle condition and the triangle inequality show∣∣χ(t, x)

∣∣ ≤ 2K + ε|x|+ ε
√

t, (x, t) ∈ GK,ε. (7.15)

It remains to control the corrector at points away from GK,ε.
Note that the “holes” left out by GK,ε are rectangles bounded by horizontal and ver-

tical lines in GK,ε. We will write ∂R for the points in GK,ε bounding rectangle R (which
we think as disjoint from GK,ε). Next recall that the parabolic coordinates are defined
so that ψ(t, Xt) is a martingale. Using the Optional Stopping Theorem (or the PDE
for ψ directly), this implies a Maximum Principle: For any rectangle R as above and
any x0 ∈ R ∪ ∂R,

sup
(t,x)∈R

∣∣ψ(t, x)− x0
∣∣ ≤ sup

(t,x)∈∂R

∣∣ψ(t, x)− x0
∣∣ . (7.16)

Since χ(t, x) = ψ(t, x)− x, we thus get

sup
(t,x)∈R

∣∣χ(t, x)
∣∣ ≤ sup

(t,x)∈∂R

∣∣χ(t, x)
∣∣+ diamZ(R), (7.17)

where diamZ(R) is the diameter of the projection of R ∪ ∂R onto the spatial coordinate.
Since ∂R ⊂ GK,ε, the supremum on the right can be controlled via (7.15) provided we can
control the diameter of any rectangle that intersects [0, n]× [−

√
n,
√

n]; this then takes
care also of the second term on the right.
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Step 3 (Away from good grid): Let {xk : k ∈ Z}, with x0 := 0, be the increasing se-
quence enumerating K, ε-good points on the line t = 0; this sequence exists by the fact
that ρK,ε > 0 (note that the left and right densities of ε, K-good points are equal P-a.s.).
The existence and positivity of the density of good points implies

lim
k→±∞

|xk − xk−1|
k

= 0. (7.18)

Similarly, letting {tk : k ≥ 0}, where t0 := 0, enumerate the K, ε-good points with integer
time coordinate and zero space coordinate, we have

lim
k→∞

|tk − tk−1|
k

= 0. (7.19)

Since xk/k as well as tk/k tend to positive numbers as k→ ∞, there is a (random) K̃ < ∞
such that, for all k,

|xk − xk−1| ≤ K̃ + ε(|xk| ∧ |xk−1|) and |tn − tk−1| ≤ K̃ + εtk−1. (7.20)

It follows that, once n ≥ K̃ + εn, any rectangle R in ([0, ∞)×Z)r GK,ε that intersects
[0, n]× [−

√
n,
√

n] satisfies R ∪ ∂R ⊂ [0, 2n]× [−
√

2n,
√

2n] and

diamZ(R) ≤
√

K̃ + εn . (7.21)

Combining this with (7.15) and (7.17) yields

sup
0≤t≤n

max
|x|≤
√

n

∣∣χ(t, x)
∣∣ ≤ 2K + ε

√
2n + ε

√
2n +

√
K̃ + εn. (7.22)

Dividing by
√

n and taking n→ ∞ followed by ε ↓ 0 then yields the claim. �

8. SUBDIFFUSIVITY IN TIME

As a final point of the proof, it remains to prove the subdiffusive estimate for the correc-
tor in time. It is here where we will benefit from the representation in Proposition 6.1. As
it turns out, it suffices to focus on the limit of large negative times. The cocycle conditions
give χ(−t, 0) = −χ(t, 0) ◦ τ−t,0 for any t > 0, and so

χ(−t, 0) = ∑
x≥0

ϕ ◦ τx Px(Yt < 0)− ∑
x<0

ϕ ◦ τ0,x Px(Yt ≥ 0), t ≥ 0, (8.1)

where Y is the dual random walk. We start by showing that the sums in (8.1) are domi-
nated by x-values of order

√
t:

Lemma 8.1 For P-a.e. environment,

lim
M→∞

lim sup
t→∞

1√
t ∑

x≥M
√

t

ϕ ◦ τ0,x Px(Yt < 0
)
= 0 (8.2)

and

lim
M→∞

lim sup
t→∞

1√
t ∑

x≤−M
√

t

ϕ ◦ τ0,x Px(Yt > 0
)
= 0. (8.3)
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Proof. By symmetry it suffices to prove just (8.2). Recall the definition (4.13) of the
time-change process A(t) that links Y to the discrete time simple symmetric random
walk (Zn)n≥0 and an independent rate-1 Poisson process (N(t))t≥0. Pick p ∈ (0, 1/2)
and note that the sum in (8.2) is bounded by the sum of the following terms

IM(t) := ∑
x≥M

√
t

ϕ ◦ τ0,x Px
(

A(t) ≥ x2(1−p)tp
)

(8.4)

and
IIM(t) := ∑

x≥M
√

t

ϕ ◦ τ0,x Px
(

A(t) ≤ x2(1−p)tp, Yt < 0
)

. (8.5)

We will now estimate these two terms separately.
Since dA(t) = 2b0(0) ◦ τ−t,Yt dt, we can analyze the behavior t 7→ A(t) by following

the evolution of the environment from the point of view of the random walk Y. To this
end, define the maximal function A? := supt>0

A(t)
t . The Markov inequality shows, for

any q > 0, that

IM(t) ≤ ∑
x≥M

√
t

ϕ ◦ τ0,x Px
(

A? ≥ (x2/t)(1−p)
)

≤ tq ∑
x≥M

√
t

ϕ ◦ τ0,x
1

x2q Ex((A?)
q

1−p
)
.

(8.6)

Since b0(0) ∈ L1(Q) and Q is invariant for the environment observed from the walk Y,
the Maximal Ergodic Theorem gives EQE0((A?)r) < ∞ for all r ∈ (0, 1) and so

∀q ∈ (0, 1− p) : ϕ E0((A?)
q

1−p
)
∈ L1(P). (8.7)

Now use the fact that if f ∈ L1(P) is non-negative, and f ? := supn≥1
1
n ∑n−1

k=0 f ◦ τ0,k is
the associated maximal function under spatial shifts, then integration by parts yields

∑
x≥M

f ◦ τ0,x
1

x2q ≤ c(q) f ?
1

M2q−1 (8.8)

with c(q) < ∞ whenever 2q > 1. Hence, if we assume q ∈ (1/2, 1− p), applying this to
the function f := ϕ E0((A?)

q
1−p ) results in

IM(t) ≤ c(q) f ? tq 1
(M
√

t)2q−1
. (8.9)

This shows that 1√
t
IM(t) tends to zero as t → ∞ followed by M → ∞. The convergence

occurs on { f ? < ∞} which is a full-measure event because f ∈ L1(P) by (8.7).
Concerning the expression in (8.5), abbreviate t(x) := x2(1−p)tp and note that

Px(A(t) ≤ t(x), Yt < 0
)
≤ P0(N(t(x)) > 2t(x)

)
+ P0( max

n≤2t(x)
|Zn| > x

)
. (8.10)

Since N(t) is Poisson with parameter t, the first probability is at most e−ct(x), for some
constant c > 0, by a standard large-deviation estimate. The Reflection Principle in turns
bounds the second probability by 2e−cx2/t(x). Bounding the sum over x ≥ M

√
t as the
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sum over n ≥ M− 1 and a sum over x ∈ [n
√

t, (n + 1)
√

t) and invoking integration by
parts shows

IIM(t) ≤ ϕ? ∑
x≥M

√
t

x
(
e−cx2(1−p)tp

+ 2e−cx2p/tp)
≤ ϕ?

√
t ∑

n≥M−1
(n + 1)

(
e−cn2(1−p)t + 2e−cn2p)

,
(8.11)

where ϕ? is the maximal function associated with spatial shifts of ϕ. The resulting sum
tends to zero as M→ ∞ uniformly in t ≥ 1. �

In order to handle the remaining part of the sums in (8.1), we will prove:

Lemma 8.2 There is σ̂ > 0 such that, for W := N (0, σ̂2), P-a.e. environment and any M > 0,

lim
t→∞

1√
t ∑

0≤x≤M
√

t

ϕ ◦ τ0,x Px(Yt < 0) =
∫ M

0
ds P(W < −s) (8.12)

as well as

lim
t→∞

1√
t ∑
−M
√

t≤x<0

ϕ ◦ τ0,x Px(Yt ≥ 0) =
∫ 0

−M
ds P(W > s). (8.13)

Before we give the proof, note that from here we now quickly get:
Proof of Proposition 7.2 from Lemma 8.2. Since the right-hand sides of (8.12–8.13) coincide,
Lemma 8.1 gives

lim
t→∞

|χ(−t, 0)|√
t

= 0, P-a.s. (8.14)

so we just need to turn this into a statement about the limit of times tending to positive
infinity. Let ε > 0 and set

K := sup
t≥0

(
|χ(−t, 0)| − ε

√
t
)
. (8.15)

Then K < ∞ P-a.s. by (8.14) and so, by the Pointwise Ergodic Theorem, for P-a.e. envi-
ronment there is a (random) R < ∞ such that the set ΞR := {n ∈N : K ◦ τn,0 ≤ R} has a
positive (and well defined) density in N. This implies that there is a (random) n0 < ∞
such that ΞR ∩ [n, 2n] 6= ∅ for all n ≥ n0. Now assume that t ∈ [n/2, n] for some n ≥ n0
and use the above observation to find tn ∈ ΞR ∩ [n, 2n]. Then∣∣χ(t, 0)

∣∣ ≤ ∣∣χ(tn, 0)− χ(t, 0)
∣∣+ ∣∣χ(tn, 0)

∣∣
=
∣∣χ(t− tn, 0)

∣∣ ◦ τtn,0 +
∣∣χ(−tn, 0)

∣∣ ◦ τtn,0

≤ K ◦ τtn,0 + ε
√

tn − t + K ◦ τtn,0 + ε
√

tn .

(8.16)

Since tn ≤ 2n ≤ 4t and K ◦ τtn,0 ≤ R, the right-hand side is at most 2R+ 2ε
√

4t. Dividing
by
√

t and taking t→ ∞ followed by ε ↓ 0, we get the desired result. �

It remains to prove Lemma 8.2. Here we will use:
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Lemma 8.3 For P-a.e. realization of the environment, under P0 we have

1√
t

Yt
law−→

t→∞
N (0, σ̂2) (8.17)

where
σ̂2 := 2E

(
b0(0)ϕ

)
. (8.18)

Proof. Under P0 we have Yt = ZN(A(t)) where t 7→ ZN(t) is the constant-speed conti-
nuous-time simple symmetric random walk which obeys the Functional CLT with unit
limit variance. It thus suffices to show that the clock process converges to a deterministic
linear function. This follows from

A(t)
t

P0

−→
t→∞

σ̂2, P-a.s. (8.19)

which is itself proved by the Birkhoff Pointwise Ergodic Theorem applied under the
stationary and ergodic law Q and the fact that Q is equivalent to P. �

Proof of Lemma 8.2. We will again focus only on (8.12) as (8.13) is obtained analogously.
Let σ̂ be the quantity in (8.18) and denote W := N (0, σ̂2). Given ε > 0, the quenched
CLT for Y in Lemma 8.3 ensures there is a P-a.s. finite random variable T0 on the space
of environments such that

sup
r∈R

∣∣∣P0(Yt/
√

t ≤ r
)
− P(W ≤ r)

∣∣∣ < ε, t ≥ T0. (8.20)

Denote Tx := T0 ◦ τ0,x and observe that

Px(Yt < 0) = P0(Yt < −x) ◦ τ0,x. (8.21)

Decomposing the sum in (8.12) according to whether {Tx ≤ t} occurs or not, we get∣∣∣ ∑
0≤x≤M

√
t

ϕ ◦ τ0,x Px(Yt < 0)− ∑
0≤x≤M

√
t

ϕ ◦ τ0,x P
(
W < −x/

√
t
)∣∣∣

≤ ∑
0≤x≤M

√
t

ϕ ◦ τ0,x
(
ε + 1{Tx>t}

)
. (8.22)

Dividing both sides by
√

t, the Pointwise Ergodic Theorem along with the Monotone
Convergence Theorem show that the right-hand side tends to zero as t → ∞ followed
by ε ↓ 0. In light of the fact that χ(0, 1) = ϕ− 1, Lemma 7.1 gives

lim
n→∞

1
n

n−1

∑
x=0

ϕ ◦ τ0,x = 1, P-a.s. (8.23)

From the monotonicity and continuity of the CDF of W we then readily get

lim
t→∞

1√
t ∑

0≤x≤M
√

t

ϕ ◦ τ0,x P
(
W < −x/

√
t
)
=
∫ M

0
ds P(W < −s). (8.24)

In combination with (8.22), this now proves (8.12). �
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Remark 8.4 Although have not quite managed to prove this, we believe that

E
(
b0(0)ϕ2) = E

(
b0(0)ϕ

)
. (8.25)

This is because stationarity of P under spatial shifts combined with some elementary
calculus allow us to derive

1
t

E
(
χ(t, 0)2) −→

t→∞
2E
(
b0(0)(ϕ− 1)ϕ

)
(8.26)

and because we expect the convergence in Lemma 8.2 to hold in L2(P)-sense as well.
(Alternatively, we expect εE(χ2

ε) to vanish in the limit as ε ↓ 0.) If (8.25) indeed holds,
then the limiting variance of the Brownian motion arising from the walk X is the same as
the limit variance of the Brownian motion arising from Y, a fact for which we have no
intuitive explanation.

9. NECESSITY OF THE MOMENT CONDITIONS

In this final section, we will address the situations when one of the moment condition
fails. We start by the lower moment condition in Theorem 2.1. Fix β > 0 and consider
the following quantity

Rβ(t) :=
1

t1/2 E ∑
x,y∈Z

|x|,|y|≤
√

t

∫ ∞

0
du e−βu Px

a (Xtu = y) . (9.1)

The absence of the lower moment condition manifests itself as follows:

Lemma 9.1 If P is as in the statement of Theorem 2.1, then

lim inf
t→∞

Rβ(t) ≥
2
β

. (9.2)

Proof. The proof is based on a monotonicity argument with respect to the underlying
law P of static conductances. Let L denote the generator of the random walk and let
ft(x) := 1[−

√
t,
√

t](x). Then

Rβ(t) =
1

t3/2 E
(

ft, (β− L)−1 ft
)
`2(Z)

. (9.3)

The inner product on the right-hand side is monotone decreasing with respect to the
standard partial order on individual conductances and so Rβ(t) is decreasing in P. Next
observe that, whenever P is such that the moment conditions in (1.4) hold, and X thus
obeys an annealed invariance principle, we have

Rβ(t) −→
t→∞

∫
[−1,1]2

dxdy
∫ ∞

0
du e−βu 1√

2πσ2u
e−

1
2σ2u

(x−y)2
, (9.4)

where σ2 is the variance of the limiting Brownian motion. In this case σ2 can in fact be
explicitly computed to be

σ2 = 2
[
E(a(0, 1)−1)

]−1 (9.5)
thanks to the explicit representation of the corrector (see, e.g., Biskup and Prescott [8]).
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We will now use these facts to derive the claim. Consider P as in the statement of The-
orem 2.1 and let Rβ(t) be related to P as in (9.2). Given ε > 0, consider the conductance

model with conductances a(ε)(x, y) := a(x, y) ∨ ε and let R(ε)
β (t) be the corresponding

quantity in (9.2). The monotonicity in the conductance law gives

Rβ(t) ≥ R(ε)
β (t), ε > 0. (9.6)

Moreover, (9.4–9.5) apply to R(ε)
β (t). It follows that, for any ε > 0, the limes inferior

of Rβ(t) is bounded from below by the right hand side of (9.4) with σ2 replaced by

σ2
ε := [E(a(ε)(0, 1)−1)]−1. (9.7)

The Monotone Convergence Theorem shows that σ2
ε → 0 as ε ↓ 0 in which limit the

right-hand side of (9.4) tends to 2/β, as desired. �

We are now ready to give:

Proof of Theorem 2.1. In what follows we write
√

t instead of b
√

tc to ease notation. Let P

be as in the statement. The key point is to prove, with the help of Lemma 9.1, that Rβ(t)
tends to 2/β as t→ ∞. For this we first use the translation invariance of P to rewrite the
desired quantity as

Rβ(t) =
1√

t
E ∑
|x|≤2

√
t+1

(
2
√

t + 1− |x|
) ∫ ∞

0
du e−βu P0

a (Xtu = x). (9.8)

If we drop the term |x|, extend the sum to all x ∈ Z and use that P0
a (Xtu = ·) is a

probability, we readily get

Rβ(t) ≤
2
√

t + 1√
t

1
β

. (9.9)

The right-hand side tends to 2/β as t→ ∞.
Lemma 9.1 now tells us that, for any P as in the statement, the bounds we used in the

upper bound become sharp in the t→ ∞ limit. In particular, we must have

1√
t

E ∑
x∈Z

(
|x| ∧

√
t
) ∫ ∞

0
du e−βu P0

a (Xtu = x) −→
t→∞

0. (9.10)

Markov’s inequality readily converts this into∫ ∞

0
du e−βu EP0

a
(
|Xut| ≥

√
t
)
−→
t→∞

0. (9.11)

Pick δ > 0 and consider the event {|Xt| ≥ δ
√

t}. Let U be uniform on [0, 1] indepen-
dent of a and X and decompose the said event according to which of the terms |XtU |
and |Xt − XtU | is larger. A union bound combined with the Markov property for X and
the invariance of P under the evolution t 7→ τt,Xt(a) of the environment from the point
of view of the particle (cf Lemma 3.1) yield

EP0
a
(
|Xt| ≥ δ

√
t
)
≤
∫ 1

0
du E

[
P0(|Xut| ≥ 1

2 δ
√

t
)
+ P0(|X(1−u)t| ≥ 1

2 δ
√

t
)]

. (9.12)
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Replacing t by 4t/δ2 now shows, via (9.11) and a routine change of variables, that the
integral on the right-hand side tends to zero as t→ ∞. The claim follows. �

Concerning the failure of the upper moment condition, we give:
Proof of Theorem 2.2. Consider the spatially-homogeneous (dynamical) conductances de-
rived from process ηt as in (2.3). Since the environment is homogeneous in space, the
random walk X has the law of a time change of the simple symmetric random walk.
Explicitly,

Xt
law
= ZN(Ã(t)), t ≥ 0, (9.13)

where N is an independent rate-1 Poisson process, Z is the discrete-time simple sym-
metric random walk on Z and

Ã(t) := 2
∫ t

0
ds ηs. (9.14)

The claim follows from the Central Limit Theorem for the random walk t 7→ ZN(t) and
the fact that, under the assumption of ergodicity of t 7→ ηt and diverging expectation
of η0, we have Ã(t)/t→ ∞ as t→ ∞ P-a.s. �
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