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Abstract: We study random walks on the integers driven by a sample of time-dependent
nearest-neighbor conductances that are bounded but are permitted to vanish over time
intervals of positive Lebesgue-length. Assuming only ergodicity of the conductance law
under space-time shifts and a moment assumption on the time to accumulate a unit con-
ductance over a given edge, we prove that the walk scales, under a diffusive scaling of
space and time, to a non-degenerate Brownian motion for a.e. realization of the environ-
ment. The conclusion particularly applies to random walks on one-dimensional dynami-
cal percolation subject to fairly general stationary edge-flip dynamics.

1. DEFINITIONS AND MAIN RESULTS

This note is concerned with large-scale behavior of a particular class of one-dimensional
nearest-neighbor random walks in dynamical random environments. Each of our ran-
dom walks is technically a continuous-time Markov chain on Z with time-varying gen-
erator Lt at time t that acts on f : Z Ñ R as

Lt f pxq :“
ÿ

z“˘1

atpx, x` zq r f px` zq ´ f pxqs . (1.1)

Here the coefficients atpx, x ` zq are non-negative numbers with the intuitive meaning
of the jump rate from x to x` z at time t. The key restriction we impose is that this jump
rate is symmetric,

atpx, x` zq “ atpx` z, xq, x P Z, z “ ˘1, (1.2)

and so atpeq is just a function of the unordered edge e. No jump across edge e can occur
at time t when atpeq vanishes.

In order to construct the Markov chain precisely we need to make some regularity
assumptions on the environment. Writing EpZq for the set of unordered edges of Z, let
Ω :“ r0,8qRˆEpZq denote the set of all environments and F :“

Â

RˆEpZq Bpr0,8qq for
the product σ-algebra on Ω. For each t P R and x P Z let τt,x : Ω Ñ Ω be the canonical
space-time shift acting on a P Ω as

pτt,xaqspy, y` zq “ at`spy` x, y` x` zq, s P R, x P Z, z “ ˘1. (1.3)
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We will assume throughout that a probability measure P on pΩ,Fq is given, with expec-
tation denoted as E, such that the following holds:

Assumption 1.1 For each edge e P EpZq, the map t Ñ atpeq is Borel measurable and locally
Lebesgue integrable. The law P is invariant and ergodic with respect to the family of space-time
shifts tτt,x : t P R, x P Zu.

Under Assumption 1.1, a Z-valued Markov chain with generator (1.1) can be con-
structed for all environments in a measurable set Ω0 of full P-measure. (See [6] for
an outline of that construction with non-explosivity being its main concern.) Let X “

tXt : t ě 0u denote the càdlàg trajectory of the chain and write Px
a to denote the law of X

in environment a P Ω0 subject to the initial condition Px
a pX0 “ xq “ 1. The aim of the

present note is to give sufficient conditions under which the walk behaves “usually” at
large space-time scales. We formalize this as:

Definition 1.2 We say that a Quenched Invariance Principle holds if there exists a constant
σ2 P p0,8q such that for any t0 ą 0 and P-a.e. environment a, the law of

t ÞÑ
1
?

n
Xnt, 0 ď t ď t0, (1.4)

induced by P0
a on the Skorohod space Dr0, t0s of càdlàg paths converges, as n Ñ8, to the law of

Brownian motion tBt : t P r0, t0su with EBt “ 0 and EB2
t “ σ2t.

We note that, for one-dimensional walks subject to Assumption 1.1, a Quenched In-
variance Principle was proved earlier by Deuschel and Slowik [9] assuming finiteness of
p-th positive and q-th negative moments of atpeq subject to p, q ě 1 and 1

p´1p1`
1
q q ă 1.

The latter inequality stems from the method of proof, which is based on elliptic regu-
larity techniques. In [6], the first author discovered a different proof that works solely
under the first-moment conditions

Eratpeqs ă 8 and Eratpeq´1s ă 8. (1.5)

These were also shown to be necessary for the result to hold in general.
Unfortunately, under Assumption 1.1, the negative moment condition in (1.5) makes

it impossible for t ÞÑ atpeq to vanish on a set of positive Lebesgue measure. This excludes
natural examples of prime interest. We mend this partially in:

Theorem 1.3 In addition to Assumption 1.1, suppose that

(1) atpeq P r0, 1s for all t P R and e P EpZq,
(2) the quantity

T :“ inf
"

t ě 0 :
ż t

0
atp0, 1qdt ě 1

*

(1.6)

obeys

Dε ą 0 : EpT3`εq ă 8. (1.7)

Then a Quenched Invariance Principle holds.
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An important family of examples covered by Theorem 1.3, but not the conclusions
of [6, 9], are random walks on dynamical percolation. Here atpeq takes values in t0, 1u,
with value 1 representing the edge being “ON” and 0 for the edge being “OFF.” The
processes tt ÞÑ atpequePEpZq are i.i.d. copies of a given stationary process on t0, 1u which
we assume to have càdlàg (and thus piecewise-constant) sample paths and take both
values a.s. To make a connection to percolation we note that, at each given time t P R,
the configuration of the “ON” edges is Bernoulli with probability p :“ Ea0p0, 1q.

While the nature of the individual edge dynamics can be quite arbitrary, the assump-
tions permit a representation via a sequence of pairs of strictly positive random variables

 

pT OFF
i , T ON

i q
(

iPZ
, (1.8)

to be called “OFF” and “ON”-times, that stand for the lengths of successive time inter-
vals on which t ÞÑ atpeq equals 0 and 1, respectively. Explicitly, writing tτiuiPZ for the
successive times when t ÞÑ atpeq switches from 1 to 0 and tτ1i uiPZ for the times it switches
from 0 to 1, indexed so that τi ă τ1i ă τi`1 for each i P Z and τ0 ă 0 ă τ1 a.s., these are
defined as T OFF

i :“ τ1i ´ τi and T ON
i :“ τi`1 ´ τ1i .

The sequence (1.8) in turn determines the trajectory t ÞÑ atpeq except for the placement
of the “initial” jump time τ0. For this we note that, as t ÞÑ atpeq is stationary, the random
variable U :“ ´τ0{pτ1 ´ τ0q is uniform on r0, 1s and independent of the family (1.8).
Starting from (1.8) and an independent uniform U, we just set τ0 :“ ´pT OFF

0 ` T ON
0 qU

and define the other τi and τ1i accordingly. A minor complication is that the law of the
interarrival times tpT OFF

i , T ON
i quiPZ is not stationary under P but rather under the de-

size-biased measure rP defined for A P σpatpeq : t P Rq by

rPpAq :“
EppT OFF

0 ` T ON
0 q´11Aq

EppT OFF
0 ` T ON

0 q´1q
, (1.9)

where, as before, E is expectation with respect to P.
The representation based on (1.8) and (1.9) makes it easier to describe specific exam-

ples. For instance, tpT OFF
i , T ON

i quiPZ could be i.i.d. under rP which makes t ÞÑ atpeq a sta-
tionary renewal process modulo 2 under P. This is exactly the setting that many earlier
studies (e.g., by Peres, Stauffer and Steif [16], Peres, Sousi and Steif [17, 18] or Hermon
and Sousi [12]) have focused on. Another possibility is to draw tpT OFF

i , T ON
i quiPZ from a

stationary Markovian law on p0,8qˆ p0,8q although even this is still too restrictive for
our purposes. Our result on dynamical percolation is thus cast as follows:

Theorem 1.4 Consider the random walk on dynamical percolation as specified above: The con-
ductance processes tt ÞÑ atpequePEpZq are i.i.d. taking values in t0, 1u with the associate sequence
tpT OFF

i , T ON
i quiPZ of interarrival times stationary under rP. Assume, in addition to T OFF

1 , T ON
1

being positive and finite, that

Dp ą 4 Ds ą 4
1´ 1{p
1´ 4{p

: rE
`

pT OFF
1 ` T ON

1 qp˘ ă 8 ^ rE
`

pT ON
1 q´s˘ ă 8, (1.10)

where rE is expectation with respect to rP. Then a Quenched Invariance Principle holds.
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The restriction to (at least) four moments of the “OFF” and “ON” times comes from
that in Theorem 1.3. That being said, some moment condition is definitely needed
to ensure convergence to a non-degenerate Brownian motion. Indeed, as we show
in Lemma 4.3, when T ON

i :“ 1 for all i P Z and tT OFF
i uiPZ are i.i.d. under rP with

rEppT OFF
1 q1{2q “ 8, the random walk behaves subdiffusively. We do not know what

moments of the “ON/OFF”-times are critical for existence of such singular examples
and/or the validity of a Quenched Invariance Principle. We do not believe that our
conditions (1.7) and (1.10) are optimal; cf Remark 3.8.

The specific example of random walk on dynamical percolation irregardless, the main
thrust of our result is that it requires no assumptions (beyond stationarity and ergodicity
under space-time shifts) on how the conductances evolve. This takes our approach sig-
nificantly beyond earlier work (e.g., by Bérard [3], Rassoul-Agha and Seppälainen [19],
Bandyopadhyay and Zeitouni [2], Boldrighini, Minlos and Pellegrinotti [8], Dolgopyat,
Keller and Liverani [10], Redig and Völlering [20]) that requires more explicit assump-
tions. A limitation of our approach compared to these studies is its restriction to time-
continuous variable speed random walks with uniformly bounded jump rates.

2. MAIN STEPS AND TECHNICAL CLAIMS

We proceed to discuss the main steps of the proof articulating the key technical state-
ments to be established. The actual proofs come in Section 3.

2.1 Overall picture.

There are two strategies we could follow in the proof of Theorem 1.3. One could be
based on elliptic regularity techniques developed earlier by Andres, Chiarini, Deuschel
and Slowik [1] in d ě 2 and by Deuschel and Slowik [9] in d “ 1 for models satisfy-
ing, besides Assumption 1.1, suitable positive and negative moment conditions on the
conductances. Besides the restriction to (a.s.) strictly positive conductances, a disadvan-
tage of this approach is the significant complexity caused by its reliance on advanced
techniques such as functional inequalities and Moser iteration.

The complexity notwithstanding, an important feature of the proofs in [1] and [9] is
that the negative-moment condition is used only lightly — mainly, to convert unadorned
norms of important quantities to norms weighted by the conductances. In dimensions
d ě 2, this was observed and fruitfully utilized by the first author and P.-F. Rodriguez [7]
to prove a Quenched Invariance Principle for models with bounded conductances as-
suming that the quantity in (1.6) obeys

Dε ą 0 : EpT4d`εq ă 8. (2.1)

While a similar (albeit still very technical) proof is expected to work for random walks
with degenerate conductances in d “ 1, details of this have not been completed due to a
different behavior of the Sobolev inequality in one spatial dimension.

Another strategy we could follow would rely on the aforementioned work of the first
author [6]. An inspection of the proofs of [6] reveals that also here the negative mo-
ment condition is used only sporadically; namely, only in [6, Lemma 4.2], dealing with
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the construction of an auxiliary random walk that the whole proof is based on, and in [6,
Theorem 5.5] that constructs and proves the relevant properties of so called parabolic co-
ordinates. We will follow this route and show that a slightly weaker form of Lemma 4.2
remains true, still sufficient to serve our purpose, and so does Theorem 5.5 provided we
replace the negative-moment condition by assumptions (1-2) of Theorem 1.3.

2.2 Main steps.

In order to bring the reader into the picture, let us recount the main steps of the proof
in [6]. The overall structure adheres to that of the proofs of invariance principles by the
corrector method; see Biskup [5] or Kumagai [13] for recent reviews. The proof thus
starts with the construction of a parabolic coordinate which is a random map ψ : RˆZ Ñ

R of which we require the following:
(1) t ÞÑ ψpt, xq is continuous for each x P Z and t, x ÞÑ ψpt, xq is a weak solution to

B

Bt
ψpt, xq ` Ltψpt, xq “ 0, t P R, x P Z, (2.2)

with the “initial” data
ψp0, 0q “ 0. (2.3)

Here Lt acts only on the second coordinate.
(2) For each t, s P R and each x, y P Z, the cocycle condition holds

ψpt` s, x` yq ´ ψpt, xq “ ψps, yq ˝ τt,x. (2.4)

(3) ψp¨, xq is, for each x P Z, a jointly measurable function of time (i.e., the first vari-
able) and the random environment and we have

ψpt, xq P L1pPq and Eψpt, xq “ x, t P R, x P Z, (2.5)

and
E
`

a0p0, 1qψp0, 1q2
˘

ă 8. (2.6)
(4) The spatial gradients of ψpt, ¨q are a.s. positive,

ψpt, x` 1q ´ ψpt, xq ą 0, t P R, x P Z. (2.7)

Thinking of the map x ÞÑ ψpt, xq as a different embedding of Z into R, the above
properties ensure that, in the new embedding, the random walk t ÞÑ ψpt, Xtq is an L2-
martingale (under P0

a ).
Relying on the point of view of the particle enabled by Assumption 1.1 and the Markov

property of X, we now check the conditions of the Functional Central Limit Theorem
(see, e.g., Helland [11, Theorem 5.1(a)]) for the process t ÞÑ ψpt, Xtq, which thus tends in
law, under a diffusive scaling of space and time, to Brownian motion with variance

σ2 :“ 2E
`

a0p0, 1qψp0, 1q2
˘

. (2.8)

The proof of [6, Theorem 1.2] contains all relevant (and explicit) details that apply to the
present setting more or less verbatim.

While σ2 ă 8 by (2.6) and σ2 ą 0 is checked via (2.7), the next, and usually the hard-
est, technical problem is to show that the “deformation” ψpt, Xtq ´ Xt of the random-
walk path caused by the change of embedding of Z is asymptotically irrelevant under
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the diffusive scaling of the process. As usual, it suffices to show this for the embedding
itself which amounts to proving that the parabolic corrector,

χpt, xq :“ ψpt, xq ´ x, (2.9)

obeys

max
xPZ
|x|ď

?
n

sup
tPR

0ďtďn

|χpt, xq|
?

n
ÝÑ
nÑ8

0, P-a.s. (2.10)

Indeed, the aforementioned Functional CLT gives max0ďtďn |ψpt, Xtq| “ Op
?

nq and
(2.10) then shows max0ďtďn |χpt, Xtq| “ op

?
nq as desired.

The proof of Theorem 1.3 is thus reduced to two technical steps: a construction of the
parabolic coordinate ψ satisfying (1-4) above and a proof of the sublinear/subdiffusive
bound (2.10). In the approach of references [1, 7, 9], this is exactly where elliptic regu-
larity techniques are employed to their full extent. The approach of [6] instead relies on
the observation that, thanks to the one-dimensional nature of the problem, the spatial
gradient of the parabolic coordinate

gpt, xq :“ ψpt, x` 1q ´ ψpt, xq (2.11)

obeys the PDE

´
B

Bt
gpt, xq “ L`t gpt, xq, (2.12)

where the operator on the right-hand side acts on the spatial variable as

L`t f pxq :“ btpx` 1q f px` 1q ` btpx´ 1q f px´ 1q ´ 2btpxq f pxq (2.13)

with
btpxq :“ atpx, x` 1q (2.14)

abbreviating the conductance of edge px, x` 1q.
As our use of adjoint notation suggests, L`t is the adjoint in `2pZq of an operator Lt

that acts on f : Z Ñ R as

Lt f pxq “ btpxq
“

f px` 1q ` f px´ 1q ´ 2 f pxq
‰

. (2.15)

A key point is that this is the generator of a continuous time simple symmetric random
walk Y time-changed so that the jump rate at x at time t is 2btpxq, which is a much
simpler process than X to analyze. More importantly, the process Y also provides all the
needed tools for the proof of a Quenched Invariance Principle for the walk X.

2.3 Statements to be proved.

We will now describe what needs to be done in order to extend the proofs of [6] to that
of Theorem 1.3. The first item of business is a formal construction of the random walk Y.
Note that this walk moves on the set of edges of Z, which why we will refer to it as a dual
random walk. The negative sign on the left of (2.12) necessitates that Y be run in negative
time direction. The following generalizes [6, Lemma 4.2] to the situation when t ÞÑ btpxq
is allowed to vanish over sets of positive Lebesgue measure:
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Lemma 2.1 Suppose that t Ñ b´tpxq is Borel-measurable and locally integrable on p0,8q and,
in addition, for all x P Z,

ż 8

0
b´tpxqdt “ 8 (2.16)

Given x P Z, let Px be the measure under which Z is a discrete-time simple symmetric random
walk on Z started from x and N is an independent rate-1 Poisson point process. Then, for all
x P Z, there is a non-decreasing continuous function A : r0,8q Ñ r0,8q satisfying

Aptq “
ż t

0
2b´spZNpApsqqqds, t ě 0, (2.17)

such that PxpAptq ă 8q “ 1 for each t ě 0 and x P Z. Moreover, the process

Yt :“ ZNpAptqq, t ě 0 (2.18)

is a continuous-time Markov chain on Z with generator Lt in (2.15).

Since P-a.s. validity of (2.16) is ensured by (1.7), Lemma 2.1 shows that the dual ran-
dom walk Y is well defined (as a time change of the constant-speed simple symmet-
ric random walk) for P-a.e. sample of the random environment. As it turns out, the
construction of the parabolic coordinate for X is equivalent to the construction of an
invariant measure Q for the environment as seen by the walk Y. In [6], such an invari-
ant measure is extracted by constructing directly its Radon-Nikodym derivative with
respect to P, and thus proving that Q ! P. For us this comes in:

Theorem 2.2 Under the conditions of Theorem 1.3, there exists ϕ P L1pPq that satisfies
(1) Ppϕ ą 0q “ 1 and Eϕ “ 1,
(2) Epb0p0qϕ2q ď Eb0p0q,
(3) the map t Ñ ϕ ˝ τt,x is continuous and weakly differentiable such that

B

Bt
ϕ ˝ τt,x `L`t ϕ ˝ τt,x “ 0 (2.19)

holds for all t P R and x P Z.
In particular, Q defined for A P F by QpAq :“ Epϕ1Aq is a probability measure on pΩ,Fq that
is stationary and ergodic for the chain t ÞÑ τ´t,Ytpaq.

The link between the above Radon-Nikodym derivative and the parabolic coordinate
is supplied by the observation that the PDEs (2.12) for t, x ÞÑ gpt, xq and (2.19) for t, x ÞÑ
ϕ ˝ τt,x are identical. Setting gpt, xq :“ ϕ ˝ τt,x would give us access to the gradient of ψ.
The parabolic coordinate ψ is extracted from this via

ψpt, xq :“ χpt, 0q ˝ τ0,x `

x´1
ÿ

k“0

ϕ ˝ τ0,k (2.20)

where

χpt, 0q :“ ´
ż t

0

`

bsp0qϕ ˝ τs,0 ´ bsp´1qϕ ˝ τs,´1
˘

ds. (2.21)

Here the (Lebesgue) integral converges absolutely under expectation, and thus P-a.s., by
Tonelli’s Theorem along with ϕ P L1pPq and btpxq P r0, 1s as implied by the assumptions
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of Theorem 1.3. Standard interpretations of the integral in (2.21) and the sum in (2.20)
are to be used for negative t and x.

It is straightforward to check (see the proof of [6, Theorem 3.2]) that ψ from (2.20)
obeys conditions (1-4) listed earlier. It then remains to prove the bound (2.10) for the
corrector. (Note that (2.9) and (2.21) are consistent.) In light of the cocycle conditions
(2.4), for this suffices to prove separately sublinearity in space

lim
nÑ˘8

|χp0, nq|
n

“ 0, P-a.s. (2.22)

and subdiffusivity in time

lim
tÑ8

|χpt, 0q|
?

t
“ 0, P-a.s. (2.23)

Indeed, the “good grid” argument (originally designed in Berger and Biskup [4] for
random walk on static percolation) used in [6] then builds this into (2.10).

As to the above almost sure limits, the one in (2.22) is proved by following the argu-
ment from [6, Lemma 7.1] with the moment conditions supplied by Theorem 2.2(1). (In
particular, no path interpolation as used in Berger and Biskup [4] are needed, nor is the
conversion of the first moment of χ to the weighted second moment from Biskup [5].)
The proof of (2.23), which comes as [6, Proposition 7.2], is considerably longer as it in-
volves a different representation of χp0, tq and the use of a Quenched Central Limit The-
orem for the walk Y (which needs the invariant measure Q and its equivalence with P,
as implied by Theorem 2.2(1)). But, as an inspection of these proofs reveals, the negative
moment condition is not used throughout and some proofs (e.g., that of [6, Lemma 8.1])
become even simpler for bounded conductances.

The bottom line is that the proof of Theorem 1.3 is reduced to those of Lemma 2.1
and Theorem 2.2. These proofs, which we will address in the next section, are the main
technical contributions of the present note.

3. ACTUAL PROOFS

We now move to the proofs of the technical claims from Section 2, starting with the
construction of the dual random walk Y on which the rest of the argument is based. We
assume the conditions of Theorem 1.3 throughout this section.

3.1 The dual random walk.

As is standard in the theory of continuous-time Markov chains (cf., e.g., Liggett [14]), we
first construct the transition probabilities of the desired Markov chain. For this we define
a family of non-negative kernels Knps, x; t, yq indexed by integers n ě 0 and depending
on reals ´8 ă t ď s ă 8 and vertices x, y P Z inductively via

Kn`1ps, x; t, yq :“ e´
şs

t 2bupxqdu δx,y

`

ż s

t
e´

şs
r 2bupxqdu brpxq

´

ÿ

z“˘1

Knpr, x` z; t, yq
¯

dr (3.1)
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with the initial value K0ps, x; t, yq :“ 0. Note that time runs in the opposite direction of
how the conductances are parametrized.

The definition (3.1) readily yields that n ÞÑ Knps, x; t, yq is non-decreasing and non-
negative with

ř

yPZ Knps, x; t, yq ď 1. The limit

Kps, x; t, yq :“ lim
nÑ8

Knps, x; t, yq (3.2)

thus exists, is non-negative and obeys
ř

yPZ Kps, x; t, yq ď 1 thanks to the Monotone
Convergence Theorem. With all these objects being random variables on the probability
space pΩ,F , Pq, we also have

Kps, x; t, yq ˝ τu,z “ Kps` u, x` z; t` u, y` zq (3.3)

for all s ě t, all u P R and all x, y, z P Z. The next task is to show that K is stochastic
which, as usual, is achieved by constructing the underlying Markov chain:
Proof of Lemma 2.1. As in the proof of [6, Lemma 4.2], instead of A we construct its
inverse. Unfortunately, due to s ÞÑ b´spxq potentially vanishing over sets of positive
Lebesgue measure, this inverse is no longer continuous which complicates its use. We
thus proceed by a perturbation argument.

Abusing our earlier notation, let τ0 :“ 0 ă τ1 ă . . . denote the successive arrivals
of a rate-1 (right-continuous) Poisson process N and let Z be the sample path of an
independent discrete-time simple symmetric random walk on Z. Given δ ą 0, and
restricting to the full-measure event

Ş

ně0tτn ă 8u, set Wδp0q :“ 0 and, for each n ě 0
and t P pτn, τn`1s, let Wδptq be the unique number such that

ż Wδptq

Wδpτnq

“

δ` 2b´spZnq
‰

ds “ t´ τn. (3.4)

The assumptions ensure that Wδptq is finite for each t ě 0 with t ÞÑ Wδptq continuous
and strictly increasing with the lower bound Wδptq ´Wδpsq ě p2` δq´1pt´ sq whenever
t ě s ě 0. In particular, limtÑ8Wδptq “ 8.

It follows that Wδ admits a unique continuous and strictly increasing inverse Aδ map-
ping r0,8q onto itself. Thanks to the strict monotonicity, the defining relation (3.4)
shows that Aδpsq P rτn, τn`1q is equivalent to s P rWδpτnq, Wδpτn`1qq and, since this forces
NpAδpsqq “ n for all s P rWδpτnq, Wδpτn`1qq, we may rewrite (3.4) into

ż t

Wδpτnq

“

δ` 2b´spZNpAδpsqqq
‰

ds “ Aδptq ´ τn, t P rWδpτnq, Wδpτn`1qs. (3.5)

Here continuity of both sides in t was used to include t “ Wδpτn`1q.
We now take δ Ó 0 to extract the desired function A. To that end we first note that a

telescoping argument applied to (3.5) gives
ż t

0

“

δ` 2b´spZNpAδpsqqq
‰

ds “ Aδptq (3.6)

for all t ě 0, where we used that Aδp0q “ 0. A similar argument applied to (3.4) shows
that δ ÞÑ Wδptq is non-increasing and so δ ÞÑ Aδptq is non-decreasing. In light of the
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Lipschitz bound 0 ď Aδptq ´ Aδpsq ď p2` δqpt´ sq for t ě s ě 0, the limit

Aptq :“ lim
δÓ0

Aδptq (3.7)

exists and defines a continuous real-valued non-decreasing function t ÞÑ Aptqwith Ap0q “
0. The upward monotonicity of δ ÞÑ Aδpsq in conjunction with the right-continuity of N
gives b´spZNpAδpsqqq Ñ b´spZNpApsqqq as δ Ó 0, for each s ě 0. Taking δ Ó 0 in (3.6) with the
help of the Bounded Convergence Theorem then proves (2.17).

Define Y from the processes N, Z and A by the formula (2.18). Recall that Px is the
law of these objects such that PxpZ0 “ xq “ 1. The identity (3.1) then inductively shows
that, for all t ě 0,

Knp0, x;´t, yq “ Px`Yt “ y, NpAptqq ă n
˘

, n ě 0. (3.8)

As PxpNpAptqq ă 8q “ 1 due to PxpAptq ă 8q “ 1, taking n Ñ8 gives

Kp0, x;´t, yq “ PxpYt “ yq. (3.9)

In particular, K is stochastic and, taking n Ñ8 in (3.1) using the Monotone Convergence
Theorem, Y is a Markov chain with generator Lt. �

3.2 Proof of Theorem 2.2.

Having constructed the random walk Y, we now move to the construction of the Radon-
Nikodym derivative ϕ of the invariant measure on environments as seen from Y. As
in [6], we will extract ϕ as an ε Ó 0 limit of the quantity

ϕε :“ ε

ż 8

0
e´εt

´

ÿ

yPZ

Kpt, y; 0, 0q
¯

dt. (3.10)

We first pull some observations from [6]:

Lemma 3.1 For each ε ą 0,
Eϕε “ 1 (3.11)

and, in particular, ϕε P r0,8q P-a.s. Moreover, abbreviating

ϕεpt, xq :“ ϕε ˝ τt,x (3.12)

the function t ÞÑ ϕεpt, xq is continuous and weakly differentiable with

B

Bt
ϕεpt, xq “ ε pϕεpt, xq ´ 1q ´L`t ϕεpt, xq. (3.13)

Proof. Formula (3.11) is obtained by invoking stationarity of P along with (3.3) and the
Monotone Convergence Theorem to rewrite the sum in (3.10) under expectation into
ř

yPZ Kp0, 0;´t, yq “ 1. Formula (3.13) is a limit version of [6, formula 5.20] whose
derivation applies verbatim. �

Lemma 3.2 For each ε ą 0, we have

E
`

b0p0qϕ2
ε

˘

ď Eb0p0q. (3.14)
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Proof. This is a restatement of [6, Proposition 5.1] whose proof applies without changes
in our case as well. �

The argument of [6] proceeds by taking a weak limit of ϕε as ε Ó 0 and using (3.14) to
show that “no mass is lost” in (3.11) in this process. In [6], this step required the negative
moment condition which restricts us to b0p0q ą 0 P-a.s. Once this does not apply, even
the subsequent use of (3.14) becomes problematic as the inequality can at best provide
control of the weak limit only on the set where b0p0q ą 0.

In order to overcome these issues, we invoke an idea from Biskup and Rodriguez [7]
that is itself drawn from Mourrat and Otto [15]. In these works, the argument proceeds
by finding a version of (3.14) in which btpxq is replaced by the time-averaged quantity of
the form

ctpxq :“
ż 8

t
ks´tbspxqds, (3.15)

where t ÞÑ kt is a suitable positive function on p0,8q with sufficient decay at infinity.
Note that ctpxq is positive as soon as s ÞÑ bspxq is positive on a set of positive Lebesgue
measure, which for us occurs P-a.s. thanks to (1.7).

As it turns out, the most useful choice is to take t ÞÑ kt with a power-law decay and
so we henceforth set

kt :“ p1` tq´α (3.16)

for some α ą 0 to be determined momentarily. The reason for this is seen from:

Lemma 3.3 Recall the quantity T from (1.6) and let α ą 0. Then for c0p0q defined using the
kernel (3.16),

EpTαq ă 8 ñ Epc0p0q´1q ă 8. (3.17)

Proof. We have

c0p0q “
ż 8

0
ktbtp0qdt ě

ż T

0
ktbtp0qdt ě

1
p1` Tqα

ż T

0
btp0qdt “

1
p1` Tqα

, (3.18)

which yields c0p0q´1 ď p1` Tqα. The claim follows. �

The restriction on the moment of T now comes via:

Proposition 3.4 For any α ą 3 and for c0p0q defined using the kernel (3.16),

sup
0ăεă1

E
`

c0p0qϕ2
ε

˘

ă 8. (3.19)

Before giving the proof of Proposition 3.4, which comes in Section 3.3, we give:
Proof of Theorem 2.2 from Proposition 3.4. Suppose the moment condition (1.7) holds with
some ε ą 0 and let α :“ 3` ε. Writing L0pPq for the set of measurable f : Ω Ñ R modulo
changes on P-null sets, consider the Hilbert space

H :“
!

f P L0pPq : E
`

c0p0q´1 f 2˘ ă 8

)

(3.20)
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endowed with the inner product x f , gyH :“ Epc0p0q´1 f gq. Using C to denote the supre-
mum in (3.19), for any f P L8pPq and ε P p0, 1q the Cauchy-Schwarz inequality shows

Epϕε f q ď C1{2“Epc0p0q´1 f 2q
‰1{2. (3.21)

It follows that
φεp f q :“ Epϕε f q (3.22)

defines a continuous linear functional on H with the operator norm bounded by C1{2

uniformly in ε P p0, 1q. As H is separable, and the unit ball in H‹ thus weakly com-
pact, the Cantor diagonal argument yields a sequence εn Ó 0 and φ P H‹ such that
φεnp f q Ñ φp f q for all f P H. The Riesz lemma then shows that φ takes the form
φp f q “ E

“

c0p0q´1h f
‰

for some h P H. We define ϕ :“ c0p0q´1h.
Lemma 3.3 along with the moment condition (1.7) implies that the space L8pPq of

bounded measurable functions obeys

L8pPq Ă H. (3.23)

In particular, 1 P H. The identity φεp1q “ Eϕε “ 1 then survives the limit and so we get
Eϕ “ 1, proving the second half of (1). For the inequality in (2), we first note that the
bound Erb0p0qpϕε ´ f q2s ě 0 shows that, for any f P L8pPq,

2Epb0p0q f ϕεq ´Epb0p0q f 2q ď Erb0p0qϕ2
ε s ď Erb0p0qs, (3.24)

where the last inequality is taken from Lemma 3.2. Since b0p0q f P L8pPq for f P L8pPq,
the first term on the left converges to 2Epb0p0q f ϕq along the sequence tεnuně1 that was
used to define ϕ. Combining this with

Erb0p0qϕ2s “ sup
fPL8pPq

“

2Epb0p0q f ϕq ´Epb0p0q f 2q
‰

(3.25)

which, as is checked by a suitable truncation, holds regardless whether the left-hand
side is finite or infinite, then yields the inequality in (2).

The proof of the needed regularity of t ÞÑ ϕ ˝ τt,x — or, more precisely, the existence of
a continuous, weakly-differentiable version — so that the PDE (2.19) holds is identical
to that in [6] and we omit it here. It remains to prove the P-a.s. positivity of ϕ. First
note that ϕ is nonnegative. This is because Ep1tϕă0uϕεq tends to Ep1tϕă0uϕq in the limit
defining ϕ and ϕε ě 0 then shows Ep1tϕă0uϕq ě 0 forcing Ppϕ ă 0q “ 0. Next we
observe that, for each t ě 0 we have

ϕ “
ÿ

xPZ

ϕ ˝ τt,x Kpt, x; 0, 0q (3.26)

on a set of full P-measure, which is proved using the same argument as in [6]. As
Kpt, 0; 0, 0q ą 0, assuming ϕ “ 0 in (3.26) forces ϕ ˝ τt,0 “ 0 P-a.s. for each t ě 0. Using
shift invariance and continuity, we conclude

tϕ “ 0u P-a.s.
“

 

@t P R : ϕ ˝ τt,0 “ 0
(

. (3.27)

But for each x P Z and P-a.e. realization of the random environment, Kpt, x; 0, 0q ą 0
once t ě 0 is large enough and so, invoking (3.26) and shift invariance again we get

tϕ “ 0u P-a.s.
“

 

@t P R@x P Z : ϕ ˝ τt,x “ 0
(

. (3.28)
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The event on the right is shift invariant and so, in light of ergodicity of P from Assump-
tion 1.1, it is a zero-one event under P. The case of full measure is ruled out by Eϕ “ 1
thus proving Ppϕ “ 0q “ 0. �

3.3 Boundedness of weighted Dirichlet energy.

The last remaining item needed to complete the proof of Theorem 1.3 is the proof of the
uniform bound (3.19). We again need a couple lemmas that are drawn from, or otherwise
available in [6]. Define

χε :“
ż 8

0
e´εt“btp0qϕεpt, 0q ´ btp´1qϕεpt,´1q

‰

dt, (3.29)

where the integral of each of the two terms in the square bracket is finite under expecta-
tion with respect to P, and thus P-a.s., by the fact that 0 ď btp0qϕεpt, 0q ď ϕεpt, 0q thanks
to (1.6) and ϕεpt, 0q P L1pPq thanks to (3.11). We start with:

Lemma 3.5 For each ε ą 0,

}χε}L2pPq ď
2
ε

. (3.30)

Proof. Minkowski’s inequality yields

}χε}L2pPq ď

ż

e´εt›
›btp0qϕεpt, 0q ´ btp´1qϕεpt,´1q

›

›

L2pPq
dt

ď 2
ż

e´εt›
›btp0qϕεpt, 0q

›

›

L2pPq
dt ď 2

ż

e´εt›
›btp0q1{2ϕεpt, 0q

›

›

L2pPq
dt,

(3.31)

where we used btp0q ď 1 in the last inequality. Lemma 3.2 along with Eb0p0q ď 1 bounds
the last L2-norm by one. �

The motivation for introducing χε in [6] is that its spatial gradients (under environ-
ment shifts) are those of centered ϕε, which (in light of ϕ being the gradient of the para-
bolic coordinate) makes χε an approximate corrector. Indeed, we have:

Lemma 3.6 For each ε ą 0,
χε ˝ τ0,1 ´ χε “ ϕε ´ 1. (3.32)

Proof. [6, Lemma 5.2] proves a truncated version of this equation; namely,

χε,n ˝ τ0,1 ´ χε,n “ ϕε,n`1 ´ 1, (3.33)

where ϕε,n is defined by (3.10) with K replaced by Kn and

χε,n :“
ż 8

0
e´εt“btp0qϕε,n ˝ τt,0 ´ btp´1qϕε,n ˝ τt,´1

‰

dt. (3.34)

The monotonicity of n ÞÑ Kn implies ϕε,n Ò ϕε as n Ñ8 and the Monotone Convergence
Theorem shows χε,n Ñ χε as n Ñ8. Hence (3.32) follows from (3.33). �

Lemma 3.6 now extends the bound from Lemma 3.5 to ϕε as well:
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Lemma 3.7 For each ε ą 0,

Eϕ2
ε ď

´

1`
4
ε

¯2
. (3.35)

Proof. The triangle inequality applied to the identity from Lemma 3.6 gives

}ϕε}L2pPq ď 1` }χε ˝ τ0,1}L2pPq ` }χε}L2pPq “ 1` 2}χε}L2pPq. (3.36)

Lemma 3.5 now bounds the right-hand side by 1` 4
ε . �

With the above lemmas in hand, we are ready to give:
Proof of Proposition 3.4. Our task is to convert the Dirichlet energy with averaged conduc-
tance to the Dirichlet energy with instantaneous conductance to which the inequality in
Lemma 3.2 can be applied. As observed first in Mourrat and Otto [15] and further ex-
ploited in Biskup and Rodriguez [7], this is possible thanks to the fact that t, x ÞÑ ϕεpt, xq
obeys the (massive) heat equation (3.13). We start with the rewrite

c0p0qϕεp0, 0q2 “
ż 8

0
ktbtp0qϕεp0, 0q2dt

“

ż 8

0
ktbtp0q

“

ϕεp0, 0q ´ ϕεpt, 0q ` ϕεpt, 0q
‰2dt

ď 2
ż 8

0
ktbtp0qϕεpt, 0q2dt` 2

ż 8

0
ktbtp0q

`

ϕεp0, 0q ´ ϕεpt, 0q
˘2dt

ď 2
ż 8

0
ktbtp0qϕεpt, 0q2dt` 2

ż 8

0
kt
`

ϕεp0, 0q ´ ϕεpt, 0q
˘2dt,

(3.37)

where we use the inequality pa` bq2 ď 2a2 ` 2b2 and the assumption btp0q ď 1. For the
integrand of the second term, the heat equation in Lemma 3.1 along with the Cauchy-
Schwarz inequality and the bound p

ř4
i“1 aiq

2 ď 4
ř4

i“1 a2
i yields

`

ϕεp0, 0q ´ ϕεpt, 0q
˘2
“

„
ż t

0
L`s ϕεps, 0q ´ ε pϕεpt, xq ´ 1qds

2

“

”

ż t

0
bsp1qϕεps, 1q ` bsp´1qϕεps,´1q ´ 2bsp0qϕεps, 0q ´ ε pϕεps, 0q ´ 1qds

ı2

ď t
ż t

0

“

bsp1qϕεps, 1q ` bsp´1qϕεps,´1q ´ 2bsp0qϕεps, 0q ´ ε pϕεps, 0q ´ 1q
‰2ds

ď 4tε2
ż t

0
pϕεps, 0q ´ 1q2ds` 16t

1
ÿ

z“´1

ż t

0

“

bspzqϕεps, zq
‰2ds,

(3.38)

where the factor 16 involves overcounting that makes the resulting expression simpler
to write. Bounding pϕεps, 0q ´ 1q2 ď 2` 2ϕεps, 0q2 and using bspzq ď 1 to drop one bspzq
from the second integral wraps this into

`

ϕεp0, 0q ´ ϕεpt, 0q
˘2
ď 8t2ε2 ` 8tε2

ż t

0
ϕεps, 0q2ds` 16t

1
ÿ

z“´1

ż t

0
bspzqϕεps, zq2ds. (3.39)
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Plugging the resulting bound on the right of (3.37) and performing a simple change of
variables then shows

c0p0qϕεp0, 0q2 ď 2
ż 8

0
ktbtp0qφεpt, 0q2dt` 16ε2

ż 8

0
t2kt dt

` 16ε2
ż 8

0
Kt ϕεpt, 0q2dt` 32t

1
ÿ

z“´1

ż 8

0
Ktbtpzqϕεpt, zq2dt, (3.40)

where

Kt :“ t
ż 8

t
ks ds. (3.41)

Taking expectation and invoking stationarity of P with respect to shifts gives

E
`

c0p0qϕεp0, 0q2
˘

ď 2E
`

b0p0qϕ2
ε

˘

´

ż 8

0
kt dt

¯

` 16ε2
´

ż 8

0
t2kt dt

¯

`

´

ż 8

0
Kt dt

¯”

16ε2Epϕ2
ε q ` 96E

`

b0p0qϕ2
ε

˘

ı

. (3.42)

For our choice (3.16) with α ą 3, the integrals with respect to t converge and the terms
involving the expectations are bounded uniformly in ε P p0, 1q thanks to Lemma 3.7 and
Theorem 2.2(2). �

Remark 3.8 Similarly as in the derivations of [7], the use of Cauchy-Schwarz inequal-
ity along with dropping factors of bsp¨q is likely a wasteful step that forces the need for
higher moments of T than what should be optimal and limits us to bounded conduc-
tances. However, we do not know how to proceed otherwise.

4. RANDOM WALK ON DYNAMICAL PERCOLATION

We will now apply the conclusions of Theorem 1.3 to random walk on dynamical per-
colation. Recall that, in our interpretation, a dynamical percolation is any conductance
environment with law P under which tt ÞÑ atpequePEpZq are i.i.d. copies of a zero-one val-
ued, non-degenerate (i.e., truly two-valued), stationary process on t0, 1uwith piece-wise
constant right-continuous sample paths. A standard argument gives:

Lemma 4.1 Any dynamical percolation law P obeys Assumption 1.1.

Proof. The required regularity of sample paths follows from the assumed piece-wise
constancy. The law P is also clearly invariant under all space time shifts. In order to
show ergodicity, let A P F be invariant under the space shifts (invariance under time
shifts is not required). The product structure of A ensures that, given n ě 1, there
exists An P σpatpx, x ` 1q : ´ n ď x ă nq such that E|1A ´ 1An | ă 1{n. Now define
A1n :“ τ0,npAnq and A2n :“ τ0,´npAnq and use space-shift invariance of A to check the in-
equalities PpA1nq ă PpAq ` 1{n, PpA2nq ă PpAq ` 1{n and PpAq ´PpA1n X A2nq ă 2{n.
Observing that A1n and A2n are independent under P and taking n Ñ 8 this yields
PpAq ď PpAq2, thus showing that A is trivial under P. �
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With this in hand, we now give:
Proof of Theorem 1.4. Thanks to the assumed non-degeneracy, we can identify each indi-
vidual conductance process t ÞÑ atpeq with a sequence tpT OFF

i , T OFF
i quiPZ of positive and

finite random variables which is stationary under the law rP. The restriction of the law P

to A P σptatpeq : t P Ruq is then obtained by inverting (1.9) to

PpAq “
rE
`

pT OFF
0 ` T ON

0 q1A
˘

rEpT OFF
0 ` T ON

0 q
, (4.1)

where the expectations exist thanks to our moment assumption in (1.10). (The law P on
full environment requires one size-biasing factor for each edge.)

Using the “OFF/ON”-times, the random variable T from (1.6) can be bounded as

T ď
N
ÿ

i“0

pT OFF
i ` T ON

i q, (4.2)

where

N :“ inf
!

n ě 1 :
n
ÿ

i“1

T ON
i ě 1

)

. (4.3)

In order to estimate the moments of the sum on the right of (4.2), we recall the following
observation from Berger and Biskup [4]:

Lemma 4.2 (Lemma 4.5 of [4]) Given reals p ą 1, r P r1, pq and s such that

s ą r
1´ 1{p
1´ r{p

, (4.4)

if X1, X2, . . . are random variables such that supiě1 }Xi}p ă 8 and N is integer valued such
that N P Ls, then

řN
i“1 Xi P Lr.

In order to apply this to our situation, let p and s be reals satisfying the inequalities
and the moment bounds in (1.10). Pick any s̃ satisfying

s ą s̃ ą 4
1´ 1{p
1´ 4{p

. (4.5)

Continuity then ensures that there is r P p4, pq such that (4.4) holds with s̃ in place of s.
In order to apply Lemma 4.2, we need to control the moments of N in (4.3). Here the
Markov and Jensen inequalities show

rPpN ą nq ď rP

ˆ n
ÿ

i“1

T ON
i ă 1

˙

ď rE

ˆ

´

n
ÿ

i“1

T ON
i

¯´s
˙

“
1
ns

rE

ˆ

´ 1
n

n
ÿ

i“1

T ON
i

¯´s
˙

ď
1
ns

rE

ˆ

1
n

n
ÿ

i“1

pT ON
i q´s

˙

“
1
ns

rE
`

pT ON
1 q´s˘

(4.6)

and the formula rEpN s̃q “
ş8

0 s̃ns̃´1
rPpN ą nqdn then gives N P Ls̃. Lemma 4.2 (with s̃ in

place of s) then shows rEpTrq ă 8. In order to convert this to a bound under expectation
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with respect to P, we invoke the Hölder inequality to get

EpTαq “
rE
`

pT OFF
0 ` T ON

0 qTα
˘

rEpT OFF
0 ` T ON

0 q
ď

“

rEppT OFF
0 ` T ON

0 q4q
‰1{4

rEpT OFF
0 ` T ON

0 q

“

rEpT4α{3q
‰3{4. (4.7)

Note that the fourth moment exists by our assumption in (1.10). Setting α :“ 3r{4 and
noting that then α ą 3, we have verified the moment condition (1.7). Theorem 1.3 shows
that a Quenched Invariance Principle holds. �

Lemma 4.3 Suppose that the conductances are independent with the associated “OFF/ON”-
times such that T ON

i :“ 1 for all i P Z and tT OFF
i uiPZ i.i.d. under rP with T OFF

0 R L1{2prPq. Then
Xt{
?

t Ñ 0 in probability as t Ñ8 for P-a.e. sample of the random environment.

Proof. For each edge e P EpZq, let

rTpeq :“ inf
 

t ě 0 : atpeq ą 0
(

. (4.8)

Under the assumptions of the lemma, and with the size-biasing in (4.1) taken into ac-
count, trTpequePEpZq are i.i.d. with the common law determined by

rP
`

rTpeq ą u
˘

“ rPb P
`

T OFF
0 ´Up1` T OFF

0 q ą u
˘

(4.9)

where P is the law of a uniform random variable U r0, 1s which (under rPb P) is inde-
pendent of T OFF

0 . The assumption T OFF
0 R L1{2prPq then forces rEprTpeq1{2q “ 8 and so, by

the standard facts about sequences of i.i.d. random variables,

@ε ą 0 :
1
n

max
0ďxďε

?
n
rTpx, x` 1q ÝÑ

nÑ8
8 rP-a.s. (4.10)

Since the random walk X cannot cross edge e before time rTpeq, on the event that the max-
imum in (4.10) is larger than n we have maxtPr0,ns Xt ď ε

?
n almost surely. By symmetry,

Xt “ op
?

tq a.s. as t Ñ8 thus showing that X is subdiffusive. �
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