
RESEARCH STATEMENT OF MAREK BISKUP

Here is the list of of what I presently regard as my five best papers (labeled [A-E] below). Further
work is described in my Prague summer school notes [9] or can be found in my publication list.

[A] N. Berger and M. Biskup, Quenched invariance principle for simple random walk on perco-
lation clusters, Prob. Theory Rel. Fields 137 (2007), no. 1-2, 83–120.

The main result is the proof that the simple random walk on a.e. supercritical percolation cluster
scales to Brownian motion under the usual diffusive scaling of space and time.

Sidoravicius and Sznitman [47] previously proved this in dimensions d ≥ 4 by comparing
the quenched and annealed path distributions; their estimates used the fact that two random walk
paths in high-enough dimensions are unlikely to meet at a large number of points. Much work
has been done in recent years on estimates of the heat kernel (Mathieu-Remy [35], Barlow [4]).

The approach of [A] is different from that of Sidoravicius and Sznitman and is based on the
notion of harmonic deformation of the infinite cluster. This is an embedding of the percolation
graph on which the random walk is a martingale. The construction of the deformation invokes
the so called corrector, which has been a standard tool in homogenization theory, and it follows
the line of e.g. Kipnis and Varadhan’s paper [31]. The hard part is the proof that the deformation
grows sublinearly with the distance which is needed in order to show that the paths of the walk
on the natural embedding and the harmonic embedding stay sufficiently close to each other. This
is achieved by combining facts about percolation (comparison of the graph distance and the Eu-
clidean distance, a’la Antal-Pisztora [3]) and ergodic theory. The proof in d = 2 does not need
anything beyond that; in d ≥ 3 we also need rather sophisticated heat-kernel estimates proved
recently by Barlow [4].

An independent proof of this result was simultaneously given by Mathieu-Piatnitski [34] who
employ more traditional tools of homogenization theory.

FIGURE 1. The percolation cluster for p = 0.7 in a 30×30 box, and its harmonic deformation.
The random walk on the deformed graph is a martingale.
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The novel contribution of this work is the use of geometric methods as opposed to homogeniza-
tion which has been dominating this area in the past. This manifests itself both in the interpreta-
tion of the corrector as a harmonic deformation as well as in the estimates of the corrector growth,
which are done in purely geometric terms. The harmonic embedding is a subject of its own inter-
est and is currently studied by a number of people. Further interesting phenomena occur for the
random conductance model (Berger-Biskup-Hoffman-Kozma [8]).

[B] M. Biskup, L. Chayes and R. Kotecký, Critical region for droplet formation in the two-
dimensional Ising model, Commun. Math. Phys. 242 (2003), no. 1-2, 137-183.

The main result is that, for 2D Ising model in a box of side L, temperature below critical and
magnetization smaller than equilibrium value by a constant times L4/3, a droplet of the opposite
phase appears “discontinuously” once the constant exceeds a certain critical value.

This work can be regarded as the final dot after the long program of “2D Wulff construction.”
This program started with the work of Alexander-Chayes-Chayes [2] and Dobrushin-Kotecký-
Shlosman [22], and continued via Dobrushin-Shlosman [23], Pfister [41], Pfister-Velenik [42],
Ioffe [28] to Ioffe-Schonmann [29]. These works covered deviations of the magnetization from
the equilibrium value up to L4/3+ε for all subcritical temperatures.

It turns out that the case of deviations proportional to L4/3 is the most interesting. The phe-
nomenon that occurs for such cases is that only part of the magnetization goes into a droplet and
the rest dissolves in background fluctuations. If the excess is smaller than some critical value, all
of it dissolves. The droplet thus “appears” discontinuously.

The hardest part is the proof that if there there is at most one droplet larger than a suitable
power of logL. This is complicated because if there is a droplet, it will be mesoscopic at best,
and because we do not currently have control of the large deviations of droplet shape beyond
the leading order provided by the skeleton calculus. The help comes from the Gaussian esti-
mates on the background fluctuations which can be pushed to a local-CLT level (i.e., order O(1)
multiplicative terms).
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FIGURE 2. Left: The large-deviation rate function Φ∆(λ) for the configurations with a droplet
containing λ-fraction of the excess magnetization, where ∆ is a dimensionless parameter en-
compassing all details of the system. Right: The plot of the global minimizer λ∆ of the
rate function λ 7→ Φ∆(λ) as ∆ varies through (0,∞). The jump to λc = 2/3 occurs at
∆c = 1
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The novel contribution of this work is primarily the discovery of the discontinuous droplet-
formation phenomenon, supported by its fully rigorous proof in the case of the 2D Ising model.
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Physicists and simulation people seem to be particularly excited about the “universal formula-
tion” of the result (Biskup-Chayes-Kotecký [13])—e.g., the fraction of excess going to the droplet
should be independent of the model—and have tested various predictions numerically with great
precision (Nussbaumer et al [39]) in relatively small systems (L of order 103). Their fascinating
conclusion is that the findings in L4/3-regime dominate the finite-size scaling picture.

[C] M. Biskup, On the scaling of the chemical distance in long range percolation models, Ann.
Probab. 32 (2004), no. 4, 2938-2977.

The main result is that, for long range percolation on Zd where x and y get connected by an
edge with probability proportional to |x − y|−s with d < s < 2d, the graph distance for sites at
Euclidean distance N grows like (logN)∆+o(1) as N →∞, where ∆−1 = log2(2d

s ).
The question about graph distance growth arose from a paper of Benjamini-Berger [5] who

came to it in the discussion of the role of geometry for small-world phenomena. Long-range
percolation is a natural model in this respect; and a lot is known about the existence of the
infinite connected component (Schulman [46], Newman-Schulman [38], Aizenman-Newman [1],
Berger [7]). Concerning the graph-distance asymptotic, the regime s ≤ d was addressed in
previous work of Benjamini-Kesten-Peres-Schramm [6] (s < d) and Coppersmith-Gamarnik-
Sviridenko [21] (s = d). For d < s < 2d, Benjamini-Berger could prove polylogarithmic bounds
on the growth but the precise asymptotic was open.

It turns out the edges in path of close to optimal length can be organized into a hierarchical
structure: There is one edge of length N , two edges of length N

s
2d , four edges of length N ( s

2d
)2 ,

etc. This provides a fairly easy upper bound; the hard part is the proof that this strategy is more
or less optimal. This is achieved by controlling all hierarchical path structures of this form that
can be found in the vicinity of the desired endpoints.

z0

z0001

z0010

z001

z010

z0101

z0110

z01

z10

z1001

z1010

z101

z110

z1101

z1110

z1

FIGURE 3. A schematic picture of the shortest path connecting points at distance N . Most of
the distance is covered by a single edge (z01, z10 of length about N . The parts to the endpoints
of this edge are covered by edges (z001, z010) and (z101, z110) of length about Nγ , where γ =
s
2d ; these are in turn connected by four edges of length Nγ2

, etc. The hierarchy needs to be
developed for about log logN generations to arrive at the desired conclusions.

The principal contribution of this work is the development of a multiscale approach to this prob-
lem which works under the sole condition that there exists a percolation cluster. The ideas ob-
tained thereby may prove useful in studying random walk on such clusters, and for the percolation
theory in its own right.
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[D] M. Biskup and L. Chayes, Rigorous analysis of discontinuous phase transitions via mean-
field bounds, Commun. Math. Phys. 238 (2003), no. 1-2, 53-93.

The main result is that any ferromagnetic spin model with the interaction Hamiltonian of the form
H = −

∑
〈x,y〉 Sx · Sy undergoes a first-order phase transition in sufficiently high dimension,

provided a corresponding transition occurs in the mean field theory.

Mean-field theory is one of the standard tools used by physicists; however, its rigorous justifi-
cation has been for the most part missing. Mathematical results have been available for the con-
vergence of the free energy and the magnetization in the d → ∞ limit (Pearce-Thompson [40],
Bricmont-Kesten-Lebowitz-Schonmann [18], Kesten-Schonmann [30]), but no conclusion could
be drawn for phase transitions in finite dimensions. Exceptions are the Kac models with in-
teractions smeared-out over large regions of the lattice (e.g., Cassandro-Pressutti [20], Bovier-
Zahradnı́k [16, 17], Cassandro-Ferrari-Merola-Presutti [19]) but, due to the large technical over-
head, progress there has for the most part been limited to symmetric, Ising-like situations.

The principal tool of the above work is the infrared bound—going back to the work of Fröhlich-
Simon-Spencer [26] and Dyson-Lieb-Simon [24]—combined with a number of convexity in-
equalities. The main technical result is a bound on the large-deviation rate function Φβ for
the magnetization on the complete graph—the ultimate playground of the mean-field theory—
evaluated at the magnetization m? of an actual system on Zd:

Φβ(m?) ≤ inf
m

Φβ(m) + CβId

where C is a model-dependent constant and

Id =
∫

[−π,π]d

dk
(2π)d

Ĵ(k)2

1− Ĵ(k)

with Ĵ(k) = 1
d

∑d
i=1 cos(kj). As Id → 0 for d → ∞, in d � 1 the physical magnetization

is a near minimizer of the large-deviation rate function for the mean-field magnetization. This
permits proofs of phase transitions in actual systems on Zd by studying the associated mean-field
theory—which is generally a manageable problem in multivariable calculus.
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FIGURE 4. The plot of the extrema of the mean-field large-deviation rate function (solid lines)
and the values allowed for the physical magnetization (shaded areas) by the above bounds in the
Potts ferromagnet with q = 15 and d � 1. Forced to vary between two disconnected regions,
the physical magnetization undergoes a discontinuity at some βt.
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The principal contribution of this work is the development of a rigorous connection between
phase transitions in mean-field theory and those in actual lattice systems. This connection can
be extended to all interactions for which one can prove the infrared bound (Biskup-Chayes-
Crawford [12]). An ultimate product is a proof of first-order phase transition in systems in which
other techniques failed so far; e.g., the 3-state Potts ferromagnet in d ≥ 3. The proofs are fairly
modest (a few pages compared to 40+ page proof by Gobron-Merola [27] of the corresponding
theorem for the Kac-version of the Potts model).

[E] M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks, R. Kotecký, Partition function zeros at
first-order phase transitions: A general analysis, Commun. Math. Phys. 251 (2004) 79–131.

The loci of the zeros of partition functions with periodic boundary conditions are described in a
class of models amenable to analysis by Pirogov-Sinai theory. The zeros are determined up to
errors that are exponentially small in the linear size of the system.

One of the most celebrated results of lattice statistical mechanics is the Lee-Yang Circle The-
orem [32] from 1951. The theorem states that the zeros of the partition function of the Ising
model with complex external field h and periodic boundary conditions lie on the unit circle in
the complex z = eh plane. The appearance of phase transitions corresponds to zeros pinch-
ing the physical part of the z-plane in the thermodynamic limit. However, despite numerous
Lee-Yang type results (e.g., Fisher [25], Ruelle [45], Newman [37], Lieb-Sokal [33], Nashimori-
Griffiths [36]), the program of understanding phase transitions by means of the partition function
zeros was never fulfilled for the lack of tools to control the loci of the zeros.

As was shown in [E], the situation improves drastically for models amenable to analysis by the
Pirogov-Sinai theory (Pirogov-Sinai [43, 44], Zahradnı́k [48]). The latter is an analytic version of
the Peierls’ argument and, when applicable, it offers full analytic control of most of the relevant
quantities even under complexified parameters (Borgs-Imbrie [14], Borgs-Kotecký [15]).

The hard part of the analysis was to develop a corresponding machinery for computing the
zeros while maintaining the local analyticity (which ensures that no extraneous roots appear, etc).
This is difficult because the zeros occur exactly at the points where the limiting quantities (free
energy, magnetization) fail to be analytic. A convenient tool here is Rouché’s Theorem.

(a) (b) (c)

FIGURE 5. The partition function zeros for the Blume-Capel model on spins taking values ±1
and 0, in an external field h distinguishing +1 from −1 and under a varying parameter λ that
alters the balance between the 0’s and ±1’s. The zeros generally lie on two non-circular closed
curves in the z = eh plane, but as λ varies to give more favor to ±1’s, part of them collapses
onto the unit circle. Despite a perturbative approach, the non-degeneracy of the zeros forces
them exactly on the unit circle once they fall sufficiently close to it.



6

The principal contribution of this work—and its follow-up [10]—is the development of finite-
size scaling for the partition function, and its derivatives, deep in the complex plane. The work
settled a controversy about the existence of zeros inside the unit circle for the Potts model in com-
plex external field [11]. A “perturbative Lee-Yang” theorem was proved stating that, in systems
with h→ −h symmetry, the zeros that get too close to the unit circle necessary fall on it.
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