
Chapter 2

Random walks

Random walks are one of the basic objects studied in probability theory. The moti-
vation comes from observations of various random motions in physical and biolog-
ical sciences. The most well-known example is the erratic motion of pollen grains
immersed in a fluid — observed by botanist Robert Brown in 1827 — caused, as
we now know, by collisions with rapid molecules. The latter example serves just
as well for the introduction of Brownian motion. As will be discussed in a par-
allel course, Brownian motion is a continuous analogue of random walk and, not
surprisingly, there is a deep connection between both subjects.

2.1 Random walks and limit laws

The definition of a random walk uses the concept of independent random variables
whose technical aspects are reviewed in Chapter 1. For now let us just think of
independent random variables as outcomes of a sequence of random experiments
where the result of one experiment is not at all influenced by the outcomes of the
other experiments.

Definition 2.1 [Random walk] Suppose that X1, X2, . . . is a sequence of Rd-valued
independent and identically distributed random variables. A random walk started at
z ∈ Rd is the sequence (Sn)n≥0 where S0 = z and

Sn = Sn−1 + Xn, n ≥ 1. (2.1)

The quantities (Xn) are referred to as steps of the random walk.

Our interpretation of the above formula is as follows: The variable Sn marks the
position of the walk at time n. At each time the walk chooses a step at random —
with the same step distribution at each time — and adds the result to its current
position. The above can also be written as

Sn = z + X1 + · · ·+ Xn (2.2)

for each n ≥ 1. Note that while the steps X1, X2, . . . are independent as random
variables, the actual positions of the walk S0, S1, . . . are not.
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Figure 2.1: A path of length 104 of the simple random walk on Z drawn by inter-
polating linearly between the points with coordinates (n, Sn), n = 0, . . . , 104.

Exercise 2.2 Let (Sn)n≥0 be a random walk. Show that S2n − Sn and Sn are inde-
pendent and have the same distribution.

Here are some representative examples of random walks:

Example 2.3 Simple random walk (SRW) on Z: This is the simplest of all random
walks — hence the name. Here X1 takes values in {+1,−1} and the walk Sn started
from 0 is thus confined to the set of all integers Z. Often enough, X1 takes both
values with equal probabilities, i.e.,

P(X1 = 1) = P(X1 = −1) = 1/2 (2.3)

The walk then jumps left or right equally likely at each time. This case is more cor-
rectly referred to as the “simple symmetric random walk,” but the adjective “sym-
metric” is almost invariably dropped. In the other cases, i.e., when

P(X1 = 1) = p and P(X1 = −1) = 1− p (2.4)

with p 6= 1/2, the walk is referred to as biased. The bias is to the right when p > 1/2
and to the left when p < 1/2.

Example 2.4 Simple random walk on Zd: This is a d-dimensional version of the first
example. Here X1 takes values in {±ê1, . . . ,±êd} where êk is the “coordinate vec-
tor” (0, . . . , 0, 1, 0, . . . , 0) in Rd with the “1” appearing in the k-th position. This
random walk is confined to the set of points in Rd with integer coordinates,

Zd =
{
(n1, . . . , nd) : n1, . . . , nd ∈ Z

}
. (2.5)
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Figure 2.2: The set of vertices visited by a two-dimensional simple random walk
before it exited a box of side 103. The walk was started at the center of the box and
it took 682613 steps to reach the boundary.

The easiest example to visualize is the case of d = 2 where the set Z2 are the vertices
of a square grid. Thinking of Z2 as a graph, the links between the neighboring
vertices represent the allowed transitions of the walk. A majority of appearances
of this random walk is in the symmetric case; i.e., when X1 takes any of the 2d
allowed values with equal probabilities.

Example 2.5 “As the knight jumps” random walk on Z2: This random walk takes
steps allowed to the knight in the game of chess; i.e., there are 8 allowed jumps

2ê1 + ê2, ê1 + 2ê2, −2ê1 − ê2, −ê1 − 2ê2, (2.6)
2ê1 − ê2, ê1 − 2ê2, −2ê1 + ê2, −ê1 + 2ê2. (2.7)

Some experience with chess reveals that the random walk can reach every vertex
of Z2 in a finite number of steps. This fails to be true if we further reduce the steps
only to those in the top line; the random walk is then restricted to the fraction of 3/16
of all vertices in Z2; see Fig. 2.3.

Example 2.6 Gaussian random walk: This random walk has steps that can take any
value in R. The probability distribution of X1 is normal (or Gaussian) with mean
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Figure 2.3: The set of allowed steps (arrows) and reachable vertices (dots) for the
random walk discussed in Example 2.5.

zero and variance 1, i.e., X1 = N (0, 1) or, explicitly,

P(X1 ≤ x) =
∫ x

−∞

1√
2π

e−x2/2 dx (2.8)

A distinguished feature of this walk that the distribution of Sn is also normal with
mean zero but variance

√
n. A typical displacement of this random walk after n

steps is thus “order-
√

n” — a scale that, as we will see in Theorem 2.11, is quite
typical for random walks with zero mean.

Example 2.7 Heavy tailed random walk: To provide contrast to the previous example,
we can also take a random walk on R with a step distribution that is symmetric
but has “heavy tails.” (We discuss these briefly in Chapter 1.) For instance, take X1
continuous with probability density

f (x) =


α

2
1
|x|α+1 , if |x| ≥ 1,

0, otherwise.
(2.9)

where α is a parameter with 0 < α < 2. As is seen by comparing Fig. 2.1 and
Fig. 2.4, a distinction between this random walk and the SRW is clear at first sight.

We finish our introduction to random walks by adapting standard limit theorems
for sequences of i.i.d. random variables to the quantity Sn = X1 + · · ·+ Xn. Note
the requirement of a particular moment condition in each theorem.

We begin by extracting the leading order (linear) scaling of Sn:
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Theorem 2.8 [Strong Law of Large Numbers] Suppose that E|X1| < ∞. Then, with
probability one,

lim
n→∞

Sn

n
exists and equals EX1 (2.10)

The expectation EX1 thus defines the asymptotic velocity of the walk. In particular,
if EX1 6= 0 then the walks moves away from the starting point at linear speed while
for EX1 = 0 the speed is zero.

Exercise 2.9 Show that if EX1 6= 0, the probability that the random walk with
steps X1, X2, . . . visits the starting point infinitely often is zero.

Problem 2.10 An example of a heavy tailed random walk is the Cauchy random walk
where X1 has Cauchy distribution characterized by the probability density

f (x) =
1
π

1
1 + x2 . (2.11)

This example is analogous — or technically, in same “basin of attraction” — as
the α = 1 random walk discussed in Example 2.7. Show that if X1, . . . , Xn are
independent Cauchy, then so is Sn/n for each n. In particular, the conclusion of
Theorem 2.8 fails in this case.

Next we will describe the fluctutations of the position Sn around its mean:

Theorem 2.11 [Central Limit Theorem] Consider a one-dimensional random walk
with E(X2

1) < ∞. Then, as n→ ∞,

Sn − nEX1√
n

(2.12)

has asymptotically normal distribution with mean zero and variance σ2 = Var(X1).

The crux of this result is that, for the walks with EX1 = 0, the distribution of the
endpoint is asymptotically very close to that of the Gaussian random walk with a
properly adjusted variance. This is a manifestation of a much more general invari-
ance principle that deals with the distribution of the entire path of the random walk.
The limiting object there is Brownian motion.

Problem 2.12 Consider the Gaussian random walk of length n. Show that the
largest step is of size order

√
log n and that the difference between the first and

second largest positive step tends to zero as n→ ∞.

Exercise 2.13 Suppose 1 < α < 2 and consider the first n steps of the heavy tailed
random walk from Example 2.7. Show that the probability that the largest step is
twice as large than any other step is bounded away from zero uniformly in n.

Problem 2.14 Suppose now that 0 < α < 1. Show that that with probability that is
uniformly positive in n, the largest step of a heavy tailed random walk of length n
is larger than the sum of the remaining steps. See Fig. 2.4.
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Figure 2.4: A plot of 25000 steps of the heavy tailed random walk from Example 2.7
with α = 1.2. The defining feature of heavy tailed random walks is the presence of
“macroscopic” jumps, i.e., those comparable with the typical distance of the walk
from the starting point at the time of their occurrence. In particular, the Central
Limit Theorem does not apply due to the lack of the second moment of X1.

2.2 Transition in d = 2: Recurrence vs transience

In the previous section we introduced random walks in quite some generality.
However, to make our discussion easier, we will henceforth assume that

all random walks have step distribution concentrated on Zd

Our next business is to try to address two basic questions:

(1) Under what conditions does a random walk come infinitely often back to its
starting position?

(2) When do the paths of two independent copies of the same random walk inter-
sect infinitely often?

The interest in these is bolstered by the fact that the answer depends sensitively on
the dimension. Explicitly, for rather generic step distributions, the character of the
answer changes as dimension goes from 2 to 3 for the first question and from 4 to 5
for the second question.

Throughout this section we will focus on the first question.
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Definition 2.15 [Recurrence & transience] We say that a random walk is recurrent
if it visits its starting position infinitely often with probability one and transient if it visits
its starting position finitely often with probability one.

Our analysis begins by showing that every random walk is either recurrent or tran-
sient; no intermediate scenarios take place. Let N be the number of visits of (Sn) to
its starting point S0,

N = ∑
n≥0

1{Sn=S0}. (2.13)

Recurrence then means P(N = ∞) = 1 while transience means P(N < ∞) = 1 and
so absence of intermediate scenarios is equivalent to showing P(N < ∞) ∈ {0, 1}.
Let τ denote the first time the walk is back to the starting point:

τ = inf
{

n ≥ 1 : X1 + · · ·+ Xn = 0
}

(2.14)

If no such visit exists, then τ = ∞. Note that

P(N = 1) = P(τ = ∞). (2.15)

Lemma 2.16 [Either recurrent or transient] For each n ≥ 1,

P(N = n) = P(τ = ∞)P(τ < ∞)n−1. (2.16)

Then either P(τ = ∞) = 0 which implies P(N < ∞) = 0, or P(τ = ∞) > 0 which
implies P(N < ∞) = 1. In particular, every random walk is either recurrent or transient.

Proof. We first prove the identity

P(N = n + 1) = P(N = n)P(τ < ∞), n ≥ 1. (2.17)

Consider the first visit back to the origin and suppose it occurred at time τ = k.
Then N = n + 1 implies that the walk S′m = Sk+m − Sk — namely, the part of the
walk (Sn) after time k — makes n visits back to its starting point, S′0 = 0. But
the walk S′m is independent of the event {τ = k} because τ = k is determined
by X1, . . . , Xk while S′m is a function of only Xk+1, Xk+2, . . . . This implies

P(N = n + 1 & τ = k) = P
(

∑
m≥0

1{S′m=0} = n & τ = k
)

= P
(

∑
m≥0

1{S′m=0} = n
)

P(τ = k) = P(N = n)P(τ = k) (2.18)

where we used that the walk S′m has the same distribution as Sm. Summing

P(N = n + 1 & τ = k) = P(N = n)P(τ = k) (2.19)

over k in the range 1 ≤ k < ∞ gives (2.17).

To get (2.16), plug (2.15) in (2.17) and solve recursively for P(N = n). For the rest
of the claim, we note that if P(τ = ∞) = 0, then P(N = n) = 0 for all n < ∞
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implying P(N < ∞) = 0. If, on the other hand, P(τ = ∞) > 0 then P(τ < ∞) < 1
and, by (2.17), the probabilities P(N = n) form a geometric sequence. Summing
over all n in the range 1 ≤ n < ∞ gives

P(N < ∞) =
P(τ = ∞)

1−P(τ < ∞)
= 1 (2.20)

as desired.

Problem 2.17 Suppose (Sn) is a random walk and let x be such that P(Sn = x) > 0
for some n ≥ 0. Prove that with probability one (Sn) visits x only finitely often
if (Sn) is transient and infinitely often if (Sn) is recurrent.

The main technical point of the previous derivations is that transience can be char-
acterized in terms of finiteness of EN:

Lemma 2.18 A random walk is transient if EN < ∞ and recurrent if EN = ∞.

Proof. If EN < ∞ then P(N < ∞) = 1 and the walk is transient. However, the
other implication is more subtle. Assume P(N < ∞) = 1 and note that then also
P(τ = ∞) > 0. Then sequence P(N = n) thus decays exponentially and so

EN =
∞

∑
n=1

nP(N = n) = P(τ = ∞)
∞

∑
n=1

nP(τ < ∞)n−1

=
P(τ = ∞)

[1−P(τ < ∞)]2
=

1
P(τ = ∞)

(2.21)

Hence EN < ∞ as we intended to show.

Exercise 2.19 As noted in the proof, the fact that EN < ∞ implies P(N < ∞) = 1
is special for the context under consideration. To see this is not true in general, find
an example of an integer valued random variable Z ≥ 0 such that P(Z < ∞) = 1
but EZ = ∞.

Exercise 2.20 Show that the probability P(Sn = 0) for the simple symmetric ran-
dom walk in d = 1 decays like n−1/2. Conclude that the walk is recurrent.

A practical advantage of the characterization using the finiteness of EN is that the
expectation can be explicitly computed:

Lemma 2.21 [Expectation formula] Consider a random walk on Zd with steps denoted
by X1, X2, . . . and let

ϕ(k) = E(eik·X1) := E cos(k · X1) + i E sin(k · X2). (2.22)

Then

EN = lim
t↑1

∫
[−π,π]d

dk
(2π)d

1
1− tϕ(k)

(2.23)
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Proof. The proof is based on the formula

1{Sn=0} =
∫

[−π,π]d

dk
(2π)d eik·Sn , (2.24)

which is a consequence of d-fold application of the Fourier identity

∫
[−π,π]

dθ

2π
einθ =

{
1, if n = 0,
0, if n ∈ Z \ {0}.

(2.25)

(Here is where we used the fact that the walk is confined to integer lattice.)

Taking expectation in (2.24), we thus get

P(Sn = 0) =
∫

[−π,π]d

dk
(2π)d E(eik·Sn). (2.26)

Since Sn is the sum X1 + · · · + Xn, we have eiSn = eik·X1 · · · eik·Xn . Moreover,
as X1, . . . , Xn are independent, then so eik·X1 , · · · , eik·Xn . Using that expectation of a
product of independent random variables is a product of expectations,

E(eik·Sn) = E(eik·X1) · · ·E(eik·Xn) = ϕ(k)n (2.27)

Next multiply (2.26) by tn for some t ∈ [0, 1) and sum on n ≥ 0. This gives

∞

∑
n=0

tnP(Sn = 0) = ∑
n≥0

tn
∫

[−π,π]d

dk
(2π)d ϕ(k)n

=
∫

[−π,π]d

dk
(2π)d ∑

n≥0

[
tϕ(k)

]n

=
∫

[−π,π]d

dk
(2π)d

1
1− tϕ(k)

(2.28)

where we used that |tϕ(k)| ≤ t < 1 to see that the sum and integral can be inter-
changed in the second line. Taking the limit t ↑ 1 makes the left-hand side tend
to ∑n≥0 P(Sn = 0) = EN.

These observation allow us to characterize when the simple random walk is recur-
rent and when it is transient:

Theorem 2.22 The simple symmetric random walk on Zd is recurrent in dimensions
d = 1, 2 and transient in dimensions d ≥ 3.

Proof. To apply the previous lemma, we need to calculate ϕ for the SRW. Using that
the walk makes steps only in (positive or negative) coordinate directions, we get

ϕ(k) =
1

2d
eik1 +

1
2d

e−ik1 + · · ·+ 1
2d

eikd +
1

2d
e−ikd

=
1
d

cos(k1) + · · ·+ 1
d

cos(kd).
(2.29)
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This shows that ϕ(k) = 1 on [−π, π]d if an only if k1 = · · · = kd = 0 and so k = 0 is
the only point that could make the integral diverge in the limit as t ↑ 1. To find out
what happens precisely, we will need to control the behavior of the function 1−
tϕ(k) around k = 0 for t close to one. First we note that

1− cos(x) = 2 sin2(x/2) and
2x
π
≤ sin(x) ≤ x (2.30)

yield

2
k2

i
π2 ≤ 1− cos(ki) ≤

k2
i

2
(2.31)

Plugging this in the definition of ϕ(k) shows that

1− t + 2t
|k|2
π2d
≤ 1− tϕ(k) ≤ 1− t +

|k|2
2d

. (2.32)

Taking the limit we find that the function k 7→ 1− tϕ(k) is uniformly integrable
around k = 0 if and only if the function k 7→ |k|2 is integrable, i.e.,

EN < ∞ if and only if
∫
|k|<1

dk
|k|2 < ∞ (2.33)

The integral is finite if and only if d ≥ 3.

A famous quote sums up the previous theorem as follows: “A drunken man will
always find his way home but a drunken bird may get lost forever.” This, of
course, assumes that the spontaneous motion of intoxicated biological material is
described by a random walk with similar properties as the SRW.

Exercise 2.23 Show that a biased simple random walk on Z — i.e., the walk on Z

with P(X1 = +1) = p = 1−P(X1 = −1) — is transient for all p 6= 1/2.

Problem 2.24 Use the above techniques to show that the random walk described
in Fig. 2.3 is recurrent in dimensions d = 1, 2 and transient otherwise.

Problem 2.25 Consider a random walk on Z with step distribution

P(X1 = n) =
1
2

( 1
|n|α −

1
(|n|+ 1)α

)
, n 6= 0. (2.34)

Characterize the values of α > 0 for which the walk is recurrent.

2.3 Transition in d = 4 & Loop-erased random walk

In this section will be devoted to the second question from Section 2.2 which con-
cerns the non-intersection of the paths of independent copies of the same random
walk. Consider two independent copies (Sn) and (S̃n) of the same random walk.
We are interested in the cardinality of the set

I(S, S̃) := {Sn : n ≥ 0} ∩ {S̃n : n ≥ 0}. (2.35)

First we note that in some cases the question can be answered directly:
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Exercise 2.26 Use Problem 2.17 to show that paths of two independent copies of a
(non-constant) recurrent random walk meet at infinitely many distinct points.

This allows us to focus, as we will do from now on, on transient random walks
only. Some of these can be still handled by geometric arguments:

Problem 2.27 Show that the paths of two independent copies of a simple random
walk on Z, biased or symmetric, intersect infinitely often with probability one.

To address the general case, instead of |I(S, S̃)| we will work with the number

N(2) = ∑
m,n≥0

1{Sm=Sn} (2.36)

that counts the number of pairs of times when the walks collided. To see this comes
at no loss, we note that

N(2) < ∞ ⇒
∣∣I(S, S̃)

∣∣ < ∞ (2.37)

To get the opposite implication, we note:

Lemma 2.28 Suppose the random walks S and S̃ are transient. Then

P(N(2) = ∞) = 1 if and only if P
(
|I(S, S̃)| = ∞

)
= 1 (2.38)

Proof. Let nx be the number of visits of (Sn) to x,

nx = ∑
n≥0

1{Sn=x} (2.39)

and let ñx be the corresponding quantity for S̃n. By the assumption of transience,
nx < ∞ and ñx < ∞ for every x with probability one. Next we note

N(2) = ∑
m,n≥0

∑
x∈I(S,S̃)

1{Sn=x}1{S̃m=x} = ∑
x∈I(S,S̃)

nxñx (2.40)

If |I(S, S̃)| < ∞, then the sum would be finite implying N(2) < ∞. Thus, if
P(N(2) = ∞) = 1 then we must have |I(S, S̃)| = ∞ with probability one.

We now proceed to characterize the transient random walks which N(2) is finite
with probability one. The analysis is analogous to the question of recurrence vs
transience but some steps are more tedious and so will be a bit sketchy at times.

Using arguments that we omit for brevity, one can again show that P(N(2) < ∞)
takes only values zero and one and

P(N(2) < ∞) = 1 if and only if EN(2) < ∞. (2.41)

Next we prove:

Lemma 2.29 Consider a random walk on Zd with steps X1, X2, . . . and let, as before,
ϕ(k) = E(eik·X1). Then

EN(2) = lim
t↑1

∫
[−π,π]d

dk
(2π)d

1
|1− tϕ(k)|2 (2.42)
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Proof. A variant of the formula (2.24) gives

1{Sn=S̃m} =
∫

[−π,π]d

dk
(2π)d eik·(Sn−S̃m). (2.43)

Applying (2.27) we have

E(eik·(Sn−S̃m)) = ϕ(k)n ϕ(k)
m

(2.44)

and so taking expectations on both sides of (2.43) leads to

P(Sn = S̃m) =
∫

[−π,π]d

dk
(2π)d ϕ(k)n ϕ(k)

m
(2.45)

Multiplying by tn+m and summing over n, m ≥ 0 we get

∑
m,n≥0

tm+nP(Sn = S̃m) =
∫

[−π,π]d

dk
(2π)d

1
|1− tϕ(k)|2 . (2.46)

As before, from here the claim follows by taking the limit t ↑ 1.

The principal conclusion is now as follows:

Theorem 2.30 The paths of two independent simple symmetric random walks on Zd

intersect infinitely often with probability one in dimensions d ≤ 4 and only finitely often
with probability one in dimensions d ≥ 5.

Proof. Using the same estimates as in Theorem 2.22, we get

EN(2) < ∞ if and only if
∫
|k|<1

dk
|k|4 < ∞. (2.47)

The integral is finite if and only if d ≥ 5.

Problem 2.31 For what values of α > 0 do the paths of independent copies of the
walk described in Problem 2.25 intersect infinitely often.

There is a heuristic explanation of the above phenomena: The fact that the ran-
dom walk is recurrent in d = 2, but just barely, means that the path of the walk
is two dimensional. (This is actually a theorem if we interpret the dimension in the
sense of Hausdorff dimension.) Now it is a fact from geometry two generic two-
dimensional subspaces of Rd do not intersects in dimension d ≥ 5 and they do
in dimensions d ≤ 4. Hence we should expect that Theorem 2.30 is true, except
perhaps for the subtle boundary case d = 4.

Problem 2.32 To verify the above heuristics, let us investigate the intersections of m
paths of SRW. Explicitly, let S(1), . . . , S(m) be m independent SRW and define

N(m) = ∑
`1,...,`m≥0

1{S`1
=···=S`m} (2.48)

Find in what dimensions we have EN(m) < ∞.
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Figure 2.5: A path of the loop erased random walk obtained by loop-erasure from
the SRW from Fig. 2.2. The trace of the SRW is depicted in light gray. While the
SRW needed 682613 steps to exit the box, its loop erasure took only 3765 steps.

The non-intersection property of the simple random walk above 4 dimensions
plays a crucial role in the understanding of a walk derived from the SRW called
the loop-erased random walk (LERW). Informally, the LERW is extracted from a finite
path of the SRW by sequentially erasing all cycles on the path of the SRW in the
order they were created. The main point of doing this is that the resulting LERW
has self-avoiding paths — i.e., paths that visit each point at most once.

Definition 2.33 [Loop erasure of SRW path] Let S0, S1, . . . , Sn be a finite path of
the SRW. Define the sequence of times T0 < T1 < . . . by setting T0 = 0 and

Tk+1 = 1 + sup
{

m : Tk ≤ m ≤ n & Sm = STk

}
(2.49)

The loop erasure of (Sk) is then the sequence (Zm) where

Zm = STm , Tm ≤ n. (2.50)

The subject of the LERW goes way beyond the level and scope of these notes. (In-
deed, it has only been proved recently that, in all dimensions, the LERW has a well
defined scaling limit which is understood in d = 2 — see Fig. 2.5 — and d ≥ 4,
but not in d = 3.) However, the analysis of the path-avoiding property of the SRW
allows us to catch at least a glimpse of what is going on in dimensions d ≥ 5.



28 CHAPTER 2. RANDOM WALKS

Figure 2.6: A schematic picture of the path of a two sided random walk which, in
high dimension, we may think of as a chain of little tangles or knots separated by
cutpoints (marked by the bullets).

The key notion to be studied in high dimension is that of a cut point. The cleanest
way to define this notion is for the two sided random walk which is a sequence
of random variables (Sn)n∈Z indexed by (both positive and negative) integers,
where Sn is defined by (2.1) even for negative n. (We assume, of course, that the
sequence (Xn) of steps is doubly infinite as well.)

Definition 2.34 [Cut point] Consider a two sided random walk on Zd. Then x ∈ Zd

is said to be a cut point if there exists k such that Sk = x and the paths of one sided walks

S′n = Sn+k and S′′n = Sk−n, n ≥ 0, (2.51)

intersect only at their starting point. The time k is then referred to as the cut time of the
random walk (Sn).

Lemma 2.35 Consider the two sided random walk (Sn) and let (Zn) be the loop erasure of
the n ≥ 0 portion of the path. Then the sequence (Zn) visits all cutpoints (of the two-sided
path) on the n ≥ 0 portion of the path (Sn) in chronological order.

Proof. The loop erasure removes only vertices on the path that are inside cycles.
Cut points are never part of a cycle and so they will never be loop-erased.

The fact that the SRW and the LERW agree on all cutpoints has profound conse-
quences provided we can control the frequency of occurrence of cutpoints. We
state a very weak claim to this extent:

Lemma 2.36 Let Rn be the number of cut times — in the sense of Definition 2.34 — in
the set of times {1, . . . , n}. Then

ERn = nP(N(2) = 1). (2.52)

In particular, for each ε ∈ [0, 1),

P(Rn ≥ εn) ≥ P(N(2) = 1)− ε

1− ε
. (2.53)

Proof. We have

Rn =
n

∑
k=1

1{k is a cut time} (2.54)
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Taking expectation we get

ERn =
n

∑
k=1

P(k is a cut time). (2.55)

But the path of the two-sided random walk looks the same from every time and
so P(k is a cut time) equals the probability that 0 is a cut time. That probability in
turn equals P(N(2) = 1). This proves (2.52). To get also (2.53) we note

ERn ≤ εn
[
1−P(Rn ≥ εn)

]
+ nP(Rn ≥ εn). (2.56)

Then (2.53) follows from (2.52) and some simple algebra.

Of course having a positive density of points where the SRW and the LERW agree is
not sufficient to push the path correspondence through. However, if we can show
that the “tangles” between the cutpoints have negligible diameter and that none of
them consumes a macroscopic amount of time, then on a large scale the paths of
the LERW and the SRW will be hardly distinguishable.

2.4 Harmonic analysis and electric networks

Random walks have a surprising connection to electric or, more specifically, resistor
networks. This connection provides very efficient means to estimate various hitting
probabilities and other important characteristics of random walks. The underlying
common ground is the subject of harmonic analysis.

We begin by a definition of a resistor network:

Definition 2.37 [Resistor network] A resistor network is an unoriented (locally fi-
nite) graph G = (V, E) endowed with a collection (cxy)(x,y)∈E of positive and finite num-
bers — called conductances — that obey the symmetry

cxy = cyx, (x, y) ∈ E, (2.57)

and local boundedness

∑
y∈V

cxy < ∞, x ∈ V, (2.58)

conditions. The reciprocal values, re = 1/ce are referred to as resistances.

The above definition builds on applications of electric networks in engineering
where one often considers circuits with nodes and links. The links transport elec-
tric current between the nodes and the resistance of the link characterizes energy
dissipation — generally due to heat production — of the link. The nodes, on the
other hand, are characterized by the value of the electric potential. The currents and
voltages are in one-to-one correspondence via Ohm’s Law, which we will regard as
a definition of the currents:
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Figure 2.7: A circuit demonstrating the setting in the first electrostatic problem
mentioned above. Here vertices on the extreme left and right are placed on con-
ducting plates that, with the help of a battery, keep them at a constant electrostatic
potential. The problem is to determine the potential at the “internal” vertices.

Definition 2.38 [Ohm’s Law] Suppose G = (V, E) is an resistor network with con-
ductances (cxy). Let u : V → R be an electric potential at the nodes. Then the electric
current ixy from x to y is given by

ixy = cxy
[
u(y)− u(x)

]
. (2.59)

For ease of exposition, we also introduce the notation i(x) for the total current,

i(x) := ∑
y∈V

ixy (2.60)

out of vertex x. There are two basic engineering questions that one may ask about
resistor networks:

(1) Suppose the values of the potential u are fixed on a set A ⊂ V. Find the poten-
tial at the remaining nodes.

(2) Suppose that we are given the total current i(x) out of the vertices in A ⊂ V.
Find the potential at the nodes of V that is consistent with these currents.

The context underlying these questions is sketched in Figs. 2.7 and 2.10.

Of course, the above questions would not come even close to having a unique
solution without imposing an additional physical principle:
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Figure 2.8: A circuit demonstrating the setting in the second electrostatic problem
above. The topology of the circuit is as in Fig. 2.7, but now the vertices on the
sides have a prescribed current flowing in/out of them. The problem is again to
determine the electrostatic potential consistent with these currents.

Definition 2.39 [Kirchhoff’s Law of Currents] We say that a collection of currents
(ixy) obeys Kirchhoff’s law of currents in the set W ⊂ V if the total current out of any
vertex in W is conserved, i.e.,

i(x) = 0, x ∈W. (2.61)

The imposition of Kirchhoff’s law has the following simple consequence:

Lemma 2.40 For a function f : V → R, define (L f ) : V → R by

(L f )(x) = ∑
y∈V

cxy
[

f (y)− f (x)
]

(2.62)

Let W ⊂ V and suppose u is an electric potential for which the currents defined by Ohm’s
law satisfy Kirchhoff’s law of currents in W. Then

(Lu)(x) = 0, x ∈W. (2.63)

Proof. Using Ohm’s Law, the formula for the current out of x becomes

i(x) = ∑
y∈V

ixy = ∑
y∈V

cxy
[
u(y)− u(x)

]
= (Lu)(x) (2.64)

Thus if i(x) = 0, then Lu vanishes at x.

Definition 2.41 [Harmonic function] We say that f : V → R is harmonic in W
with respect to L if (L f )(x) = 0 for each x in a subset W ⊂ V.
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Note that while the definition of harmonicity of f speaks only about the vertices
in W, vertices outside W may get involved due to the non-local nature of L. Har-
monic functions are special in that they satisfy the Maximum Principle. Given a
set W ⊂ V, we use

∂W =
{

y ∈ V \W : ∃x ∈W such that (x, y) ∈ E
}

(2.65)

to denote its outer boundary. Then we have:

Theorem 2.42 [Maximum Principle] Let W ⊂ V be finite and connected and sup-
pose f : V → R is harmonic on W with respect to L. Then

inf
y∈∂W

f (y) ≤ min
x∈W

f (y) ≤ max
x∈W

f (x) ≤ sup
y∈∂W

f (y), (2.66)

Proof. Let x ∈W be a local maximum of f on W ∪ ∂W. We claim that then

f (y) = f (x) for all y with (x, y) ∈ E (2.67)

Indeed, if f (y) ≤ f (x) for all neighbors of x with at least one inequality strict, then

∑
y∈V

cxy f (x) > ∑
y∈V

cxy f (y). (2.68)

But that is impossible because the difference of the left and right-hand side equals
(L f )(x) which is zero because x ∈W and because f is harmonic at x.

Now suppose that the right-inequality on (2.66) does not hold. Then the maximum
of f over W ∪ ∂W occurs on W. We claim that then f is constant on W ∪ ∂W.
Indeed, if x ∈ W ∪ ∂W were a vertex where f is not equal its maximum but that
has a neighbor where it is, then we would run into a contradiction with the first
part of the proof by which f must be constant on the neighborhood of any local
maxima. Hence, f is constant on W ∪ ∂W. But then the inequality on the right of
(2.66) does hold and so we have a contradiction anyway. The inequality on the left
is equivalent to that on the right by passing to − f .

Corollary 2.43 [Rayleigh’s Principle] Let W ⊂ V be finite and let u0 : V \W → R

be bounded. Then there exists a unique u : V → R which is harmonic on W with respect
to L and satisfies

u(x) = u0(x), x ∈ V \W. (2.69)

Moreover, this function is the unique minimizer of the Dirichlet energy functional,

E(u) =
1
2 ∑

x,y∈V
cxy
[
u(y)− u(x)

]2 (2.70)

subject to the condition (2.69).

Proof. First we will establish uniqueness. Suppose u and ũ are two distinct func-
tions which are harmonic on W with respect to L and both of which obey (2.69).
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Figure 2.9: A regular ternary tree.

Then v = u − ũ is harmonic on W and vanishes on V \W. But the Maximum
Principle implies

0 = inf
y∈∂W

v(y) ≤ min
x∈W

v(x) ≤ max
x∈W

v(x) ≤ sup
y∈∂W

v(y) = 0 (2.71)

and so v ≡ 0. It follows that u ≡ ũ.

To see that the desired harmonic function in W exists for each “boundary condi-
tion” u0, we will use the characterization by means of the minimum of E(u). The
function u 7→ E(u), regarded as a function of variables {u(x) : x ∈ W}— with u0
substituted for u outside W — is continuous and bounded from below, and so it
achieves its minimum. The minimizer is characterized by the vanishing of partial
derivatives,

∂

∂u(x)
E(u) = −2 ∑

y∈V
cxy
[
u(y)− u(x)

]
= −2(Lu)(x) (2.72)

for all x ∈W. This means that it is harmonic on W.

An important consequence of the characterization in terms of a minimizer of the
Dirichlet energy is the monotonicity in cxy. Indeed, we note:

Lemma 2.44 Let W ⊂ V be finite or infinite. The (value of the) minimum of u 7→ E(u)
subject to u = u0 on V \W is non-decreasing in all variables cxy.

Proof. This is an immediate consequence of the fact that the minimum of a family
of non-decreasing functions is non-decreasing.

Let us go back to the two questions we posed above and work them out a little
more quantitatively. Suppose A and B are disjoint sets in V and suppose that A
is kept at potential u = 0 and B at a constant potential u = U > 0. A current I
will then flow from A to B. Thinking of the whole network as just one resistor, the
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natural question is what is its effective resistance Reff = U/I. A formal definition of
this quantity is as follows:

Definition 2.45 [Effective resistance] Let A, B ⊂ V be disjoint. The effective resis-
tance Reff(A, B) is a number in [0, ∞] defined by

Reff(A, B)−1 = inf
{
E(u) : 0 ≤ u ≤ 1, u ≡ 0 on A, u ≡ 1 on B

}
. (2.73)

Problem 2.46 Show that adding or removing the condition 0 ≤ u ≤ 1 does not
change the value of the infimum.

A consequence of Lemma 2.44 is that the effective resistance Reff(A, B) increases
when the individual resistances rxy are increased.

Exercise 2.47 Show that adding an extra link of positive conductance to the graph G
decreases the effective resistance Reff(A, B) between any two disjoint sets A and B.

Problem 2.48 Abusing the notation slightly, we write Reff(x, y) for Reff({x}, {y}).
Show that (x, y) 7→ Reff(x, y) defines a metric distance on G, e.g., a non-negative
function which is symmetric,

Reff(x, y) = Reff(y, x), x, y ∈ V, (2.74)

and obeys the triangle inequality,

Reff(x, y) ≤ Reff(x, z) + Reff(y, z), x, y, z ∈ V. (2.75)

As it turns out, the most important instance of effective resistance Reff(x, y) is when
one of the points is “at infinity.” The precise definition is as follows:

Definition 2.49 [Resistance to infinity] Consider an infinite resistor network and
let BR be a sequence of balls of radius R centered at a designated point 0. The resistance
Reff(x, ∞) from x to ∞ is then defined by the monotone limit

Reff(x, ∞) = lim
R→∞

Reff
(
{x}, Bc

R
)
. (2.76)

Exercise 2.50 Show that the value of Reff(x, ∞) does not depend on the choice of
the designated point 0.

Problem 2.51 Consider the tree as in Fig. 2.9. Use the aforementioned facts about
effective resistance to show that, for any vertex v, we have Reff(v, ∞) < ∞.

Apart from monotonicity, the resistor networks have the convenient property that
certain parts of the network can be modified without changing effective resistances
between sets non-intersecting the modified part. The most well known examples
of these are the parallel and serial laws.

For the sake of stating these laws without annoying provisos, we will temporarily
assume that vertices of G may have multiple edges between them each of which
has its own private conductance. In graph theory, this means that we allow G to
be an unoriented multigraph. The parallel and serial laws tell us how to reinterpret
such networks back in terms of graphs.
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Figure 2.10: The setting for the application of the serial law (top) and parallel law
(bottom). In the top picture the sequence of nodes is replaced by a single link whose
resistance is the sum of the individual resistances. In the bottom picture, the cluster
of parallel links can be replaced by a single link whose conductatance is the sum of
the individual conductances.

Lemma 2.52 [Serial Law] Suppose a resistor network contains a sequence of incident
edges e1, . . . , e` of the form ej = (xj−1, xj) such that the vertices xj, j = 1, . . . , ` − 1,
are all of degree 2. Then the effective resistance Reff(A, B) between any sets A, B not
containing x1, . . . , x`−1 does not change if we replace the edges e1, . . . , e` by a single edge e
with resistance

re = re1 + · · ·+ re`
(2.77)

Lemma 2.53 [Parallel Law] Suppose two vertices x, y have multiple edges e1, . . . , en
between them. Then the effective resistance Reff(A, B) between any sets A, B does not
change if we replace these by a single edge e with conductance

ce = ce1 + · · ·+ cen (2.78)

Problem 2.54 Prove the parallel and serial laws.

2.5 Random walks on resistor networks

To demonstrate the utility of resistor networks for the study of random walks, we
will now define a random walk on a resistor network. Strictly speaking, this will not be
a random walk in the sense of Definition 2.1 because resistor networks generally do
not have any underlying (let alone Euclidean) geometry. However, the definition
will fall into the class of Markov chains that are natural generalizations of random
walks to non-geometric setting.

Definition 2.55 [Random walk on resistor network] Suppose we have a resistor
network — i.e., a connected graph G = (V, E) and a collection of conductances ce, e ∈ E.
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A random walk on this network is a collection of random variables Z0, Z1, . . . such that
for all n ≥ 1 and all z1, . . . , zn ∈ V,

P(Z1 = z1, . . . , Zn = zn) = P(z, z1)P(z1, z2) · · ·P(zn−1, zn) (2.79)

where P : V ×V → [0, 1] is a symmetric matrix defined by

P(x, y) =
cxy

π(x)
with π(x) = ∑

y∈V
cxy. (2.80)

We say that the random walk starts at z if

P(Z0 = z) = 1. (2.81)

To mark the initial condition explicitly, we will write Pz for the distribution of the walks
subject to the initial condition (2.81).

Example 2.56 Any symmetric random walk on Zd is a random walk on the resis-
tor network with nodes Zd and an edge between any pair of vertices that can be
reached in one step of the random walk. Indeed, if X1, X2, . . . denote the steps of
the random walk (Sn) with S0 = z, then

Pz(S1 = z1, . . . , Sn = zn) = P(X1 = z1 − z) · · ·P(Xn = zn − zn−1). (2.82)

To see that this is of the form (2.79–2.80), we define the conductance cxy by

cxy = P(X1 = y− x) (2.83)

and note that symmetry of the step distribution implies cxy = cyx while the nor-
malization gives π(x) = 1.

The symmetry assumption is crucial for having P(x, y) of the form (2.80). If one
is content with just the Markov property (2.79), then any random walk on Zd will
do. The simplest example of a symmetric random walk is the simple random walk,
which just chooses a neighbor at random and passes to it. This “dynamical rule”
generalizes to arbitrary graphs:

Example 2.57 Random walk on a graph: Consider a locally finite unoriented graph G
and let d(x) denote the degree of vertex x. Define

cxy = 1, (x, y) ∈ E. (2.84)

This defines a resistor network; the random walk on this network is often referred
to as random walk on G because the probability to jump from x to neighbor y is

P(x, y) =
1

d(x)
, (x, y) ∈ E, (2.85)

which corresponds to choosing a neighbor at random. In this case π(x) = d(x).

We proceed by a characterization of the electrostatic problems for resistor networks
by means of the random walk Z0, Z2, . . . on the network:
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Lemma 2.58 [Dirichlet problem] Let W ⊂ V be a finite subset of the resistor network
and let

τWc = inf{n ≥ 0 : Zn ∈Wc} (2.86)

be the first time the walk (Zn) visits Wc. Then

Pz(τWc < ∞) = 1, z ∈ V. (2.87)

In addition, if u0 : Wc → R is a bounded function then

u(x) = Ex(u0(XτWc )
)
, x ∈ V, (2.88)

defines the unique function u : V → R that is harmonic on W with respect to L defined in
(2.62) and that coincides with u0 on Wc.

Proof. Let u be given by (2.88). We clearly have Pz(τWc = 0) = 1 when z ∈ Wc and
so u = u0 outside W. Since there is only one harmonic function for each boundary
condition u0, we just need to show that u defined above is harmonic on W with
respect to L. This is quite easy: If the walk started at x ∈ W, then τWc ≥ 1. Fixing
explicitly the value of Z1 yields

u(x) = ∑
y∈V

Ex(u0(XτWc )1{Z1=y}
)
. (2.89)

Since the probability of each path factors into a product (2.79), we have

Ex(u0(XτWc )1{Z1=y}
)

= P(x, y)Ey(u0(XτWc )
)

= P(x, y)u(y) (2.90)

and so
u(x) = ∑

y∈V
P(x, y)u(y). (2.91)

In explicit terms,
π(x)u(x) = ∑

y∈V
cxyu(y). (2.92)

But π(x) is the sum of cxy over all y and so we can write the difference of the right
and left-hand side as (Lu)(x) = 0.

The probabilistic interpretation of the solution allows us to rewrite the formula for
effective resistance as follows:

Lemma 2.59 Let W ⊂ V be a finite set and let x ∈ W. Let Tx denote the first return
time of the walk (Zn) to x,

Tx = inf{n ≥ 1 : Zn = x}. (2.93)

Then
Reff
(
{x}, Wc)−1 = π(x)Px(Tx ≥ τWc). (2.94)
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Proof. Consider the function

u(z) =


1, z = x,
Pz(Tx < τWc), x ∈W \ {x},
0, x ∈Wc.

(2.95)

Then u is a solution to the Dirichlet problem in W \ {x} with boundary condi-
tion u = 1 on {x} and 0 on Wc. In particular,

Reff
(
{x}, Wc)−1 = E(u). (2.96)

We thus have to show that E(u) equals the RHS of (2.94). For that we insert[
u(y)− u(z)

]2 = u(z)
[
u(y)− u(z)

]
+ u(y)

[
u(z)− u(y)

]
(2.97)

into the definition of E(u) to get

E(u) = ∑
z∈V

u(x) ∑
y∈V

cyz
[
u(y)− u(z)

]
= ∑

z∈V
u(z)(Lu)(z), (2.98)

where we used that cyz = czy to write the contribution of each term on the right
of (2.97) using the same expression. But Lu(z) = 0 for z ∈ W \ {x} and u(z) = 0
for z ∈Wc. At z = x we have u(z) = 1 and

(Lu)(x) = ∑
y∈V

cxy
[
1−Pz(Tx < τWc)

]
= π(x)− π(x) ∑

y∈V
P(x, y)Py(Tx < τWc)

= π(x)− π(x)Px(Tx < τWc) = π(x)Px(Tx ≥ τWc)

(2.99)

Plugging this in (2.98) yields E(u) = π(x)Px(Tx ≥ τWc).

Theorem 2.60 [Effective resistance and recurrence vs transience] Recall the nota-
tion (2.93) for Tx. Then

Reff(x, ∞) = ∞ ⇔ Px(Tx < ∞) = 1 (2.100)

and
Reff(x, ∞) < ∞ ⇔ Px(Tx = ∞) > 0. (2.101)

Proof. It clearly suffices to prove only (2.101). By Lemma 2.59 and Exercise 2.50, for
the sequence of balls BR of radius R centered at any designated point,

π(x) lim
R→∞

Px(Tx > τBc
R
) = Reff(x, ∞)−1. (2.102)

But τBc
R
≥ R and so

lim
R→∞

Px(Tx > τBc
R
) ≤ lim

R→∞
Px(Tx ≥ R) = Px(Tx = ∞) (2.103)
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On the other hand,
Px(Tx > τBc

R
) ≥ Px(Tx = ∞) (2.104)

and so
π(x)Px(Tx = ∞) = Reff(x, ∞)−1. (2.105)

As π(x) > 0, the claim now directly follows.

Corollary 2.61 [Monotonicity of recurrence/transience] Suppose that the random
walk (Zn) on a resistor network with conductances (cxy) is recurrent. Then so is the
random walk on the network with conductances (c̃xy) provided cxy ≤ c̃xy for all (x, y) ∈ E.

Similarly, if the random walk is transient for conductances (cxy) then it is transient also
for any conductances (c̃xy) provided c̃xy ≤ cxy for all (x, y) ∈ E.

Proof. This follows because the effective resistance, Reff(x, ∞), is a decreasing func-
tion of the conductances.


