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 Surface:
 Hamiltonian:

 Random surface: sampled with probability 
(density) proportional to             with 
parameter         representing inverse 
temperature.

 Boundary conditions: zero on boundary, zero 
at one point, sloped boundary conditions, 
etc.
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 Properties predicted to be universal. 
Independent of potential V under minor 
assumptions. 

 When Λ is a box of side length n, have:
fluctuations in 1 dimensions.

fluctuations in 2 dimensions.
Bounded fluctuations in ≥3 dimensions.

 When V is strictly convex, many universal 
properties established by a long list of authors.

 Some recent progress also for continuous, 
non-convex potentials (Adams, Biskup, Cotar, 
Deuschel, Kotecký, Müller, Spohn). 
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 When the surface takes integer values                
a new transition is expected: a two-
dimensional roughening transition.

 Transition from previous logarithmic
fluctuations to bounded fluctuations as the 
temperature decreases.

 Established only in 2 models! The integer-
valued DGFF:             and the Solid-On-Solid 
model:            (Fröhlich and Spencer 81)
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 A random Lipschitz function is the case

 The so-called hammock potential.

 Here, the parameter β is irrelevant and the 
function is a just a uniformly sampled 
Lipschitz function on Λ.
Natural also from an analytic point of view.

 Analysis of this case is wide open for all d≥2!
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 A random M-Lipschitz function is an                     sampled with the 
potential

 Almost no analysis available for these functions.

 A random (graph) homomorphism function is the case

 Investigated on general graphs as a generalization of SRW.
In    , it is the height function for the square ice model.

 Benjamini,Yadin, Yehudayoff 07:lower bound (logn)1/d  on maximum.

 Galvin, Kahn 03-04: On hypercube         , takes ≤5 values with high 
probability as            .
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Outermost 0→1 level sets of homomorphism functions
Trivial level sets (having exactly 4 edges) not drawn





 Equals 0 (Green
in the picture) 
on nearly all of 
the even sub-
lattice (when 
the boundary 
values are 0 on 
even boundary 
vertices).

 Obtain 2 values 
for 1-Lipschitz 
functions (M=1 
case).



 Given a box            , uniformly sample a proper q-coloring 
of    .

 How does this coloring look? Does it have long-range 
order? Are there multiple Gibbs measures as             ?

 Predicted interplay between d and q as follows:
 No structure when q is large compared to d – a unique 

Gibbs measure. Proven when q≥11d/3 (Vigoda 00).
 Rigidity when d is large compared to q – most colorings 

use only about half of the colors on the even sub-lattice 
and about half of the colors on the odd sub-lattice. Little 
is proven about this regime.

 Proper q-colorings are the same as the anti-ferromagnetic 
q-state Potts model at zero temperature.
Transition from above behavior to unique Gibbs measure 
as temperature increases.
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 Normalized homomorphism height functions:

are in bijection with proper 3-colorings 
taking the color zero at the origin.

 The bijection is given simply by f    f mod 3.

 Works also for               when    is a box in    .

 Does not work when           is a torus due to 
existence of non-trivial cycles (there exist 3-
colorings on      which are not modulo 3 of 
homomorphisms).
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 Theorem(P.):      such that if         and f is a 
uniformly sampled homomorphism function on  
then

 The boundary values for the above theorem are 
fixing f to be 0 on an arbitrary subset of     .

 Matching lower bound on maximum follows from 
results of BYY in the case of a one-point 
boundary condition.

 The results extend to 1-Lipschitz functions via a 
bijection of Yadin.
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 A level set of f is a (minimal) set of edges 
separating the boundary set from a point and 
having 0’s on one side and 1’s on the other.

 Main Theorem(P., P. & Feldheim):      such 
that if                    and f is a uniformly 
sampled homomorphism function on     then

 We prove                 0 1 0 -1 0 1

-1 0 1 0 1 0

0 1 2 1 2 1

1 2 3 2 1 0

0 1 2 1 0 -1

-1 0 1 0 1 0
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 It follows that if f is sampled with zeros on 
the even boundary of a large box, then it will 
be zero on nearly all even vertices inside the 
box, with the largest breakup of the pattern 
having logarithmic boundary length.

 By taking modulo 3, we obtain the same 
rigidity also for proper 3-colorings.

 This establishes for the first time the 
existence of a phase transition in the 3-state 
anti-ferromagnetic Potts model.



 The results do not apply to the homomorphism model in 2 
dimensions (the square ice model).

 However, they may be applied to tori with non-equal side 
lengths:                        . Need only that d is large and that 
the torus is non-linear: 

 Thus the model on the n x n x 2 x 2 x … x 2 torus (with a 
fixed number of 2’s) has bounded fluctuations.
I.e., the roughening transition occurs when adding a 
critical number of such 2’s!

 We prove the full roughening transition occurs between 
the model on an n x log(n) torus and the model on an       
n x log(n) x 2 x … x 2 torus.

 Refutes a conjecture of Benjamini, Yadin, Yehudayoff and 
answers a question of Benjamini, Häggström and Mossel.
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 Infinite volume limit: We prove that as            
with zero boundary conditions, the model 
converges to a limiting Gibbs measure – gives a 
meaning to a uniformly sampled homomorphism 
or 1-Lipschitz function on the whole    .

 For 3-colorings prove existence of 6 different 
Gibbs measures (in each, one of the 3 colors is 
dominant on one of the two sub-lattices).

 Scaling limit: Embedding    in       and taking finer 
and finer mesh, we find that the scaling limit of 
the model is white noise. Integrals over disjoint 
regions converge to independent Gaussian limits.
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 Work on     . Place zeros on the even 
boundary and uniformly sample a 
homomorphism function.

 Fix a point x and consider outermost level set 
around x. Denote it by LS(f).

 We want to show that 
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0 1 2 1 2 1

1 2 3 2 1 0

0 1 2 1 0 -1
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0 1 0 -1 0 1

-1 0 1 0 1 0

0 1 2 1 2 1

1 2 3 2 1 0

0 1 2 1 0 -1

-1 0 1 0 1 0

0 1 0 -1 0 1

-1 0 -1 0 -1 0

0 1 0 1 0 -1

1 2 1 0 -1 0

0 1 0 -1 0 -1

-1 0 -1 0 1 0

Shift
Transformation

 The value at each vertex inside the level set is 
replaced by the value to its right minus 1.
Remain with a homomorphism height 
function!



0 1 0 -1 0 1

-1 0 1 0 1 0

0 1 2 1 2 1

1 2 3 2 1 0

0 1 2 1 0 -1

-1 0 1 0 1 0

0 1 0 -1 0 1

-1 0 -1 0 -1 0

0 1 0 1 0 -1

1 2 1 0 -1 0

0 1 0 -1 0 -1

-1 0 -1 0 1 0

Shift
Transformation

 Vertices with level set on right are surrounded by 
zeros after the shift! Can change their values 
arbitrarily to ±1.
There are exactly |LS(f)|/2d such vertices.
Transformation still invertible given the level set.



LS(f)=Γ
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 Thus, given a contour, or cutset, Γ, we 
associate to each f with LS(f) = Γ a set of          
other homomorphisms in an invertible way.

 It follows that

 Can we conclude by a union bound (Peierls
argument), by enumerating all possible 
contours?

 The union bound fails!!! There are too many 
possible contours.
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 Instead of using a union bound, we use a coarse 
graining technique, grouping the cutsets into 
sets according to common features and 
bounding the probability of each set.

 We note that our cutsets have a distinguishing 
feature – they are odd cutsets. Cutsets whose 
interior boundary is on the odd sub-lattice.

 Denote by           the set of all odd cutsets with 
exactly L edges.

 It turns out that while                       , there are 
much fewer “global shapes” for cutsets and most 
cutsets are minor perturbations of some shape.
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 Say that            is an interior approximation
to if 

where exposed(Γ) is the set of vertices 
adjacent to many edges of Γ               edges).
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 Theorem: For any L, there exists a set Ω containing 
an interior approximation to every cutset in                
with

 Much smaller if d is large than                      .

 Thus, to conclude the proof it is sufficient to give a 
good bound on the probability that LS(f) is any of the 
cutsets with a given interior approximation.

 This is what we end up doing, but our bound is 
sufficiently good only for cutsets having a certain 
regularity. That they do not have almost all their 
edges on exposed vertices.
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 We conclude by proving that there are 
relatively few irregular cutsets.
Fewer than exp(L/100d) of them in         .

 Thus, we may separately apply a union bound 
using our previous estimate

to show that none of these cutsets occur as a 
level set of f.
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1. Analyze other Lipschitz function models. Is the behavior 
similar? As mentioned, analysis of the 1-Lipschitz model 
follows from our results by a bijection of Yadin. Analyze 
sloped boundary values.

2. Analyze proper q-colorings for q>3. Show rigidity of a typical 
coloring when d is sufficiently high. There does not seem to 
be a similar connection to height functions any more.

3. Analyze regular (non odd) cutsets and prove similar structure 
theorems. Can be useful in many models (Ising, percolation, 
colorings, etc.) as the cutsets form the phase boundary 
between two pure phases.

4. Improve structure theorems for odd cutsets – will reduce the 
minimal dimension for our theorems and will help in analyzing 
other models. 
With W. Samotij we use these theorems to improve the bounds 
on the phase transition point in the hard-core model. 


