Giambattista Giacomin

Université Paris Diderot and Laboratoire Probabilités et Modeles Aléatoires (LPMA)

June 2nd, 2011

Joint work with:
Christophe Poquet (LPMA)
Khashayar Pakdaman, Xavier Pellegrin (IJM)

G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011



Coupling noisy excitable systems

Example of noisy excitable system: neurons.
@ Finite dimensional dynamical systems.
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Coupling noisy excitable systems

Example of noisy excitable system: neurons.

@ Finite dimensional dynamical systems.

@ They have a stable rest position, which could be a limit cycle, but
noise may drive the system sufficiently far away (threshold
phenomenon) and then the system follows a complex trajectory ( “it
fires") before getting back to to rest.

@ Firing can be induced by external perturbations, notably if the neuron
is in a network.

A fundamental paradigm in biology

coupled (noisy) excitable systems, i.e. large families of interacting finite
dimensional dynamical systems, may display global behaviors that have
very little to do with the behavior of the isolated systems. The global
system can be itself described by a finite dimensional excitable system.
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Coupling noisy excitable systems

Example of noisy excitable system: neurons.

@ Finite dimensional dynamical systems.

@ They have a stable rest position, which could be a limit cycle, but
noise may drive the system sufficiently far away (threshold
phenomenon) and then the system follows a complex trajectory ( “it
fires") before getting back to to rest.

@ Firing can be induced by external perturbations, notably if the neuron
is in a network.

A fundamental paradigm in biology

coupled (noisy) excitable systems, i.e. large families of interacting finite
dimensional dynamical systems, may display global behaviors that have
very little to do with the behavior of the isolated systems. The global
system can be itself described by a finite dimensional excitable system.

One can of course recognize here the fundamental paradigm of statistical

mechanics...
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Example: synchronization of interacting dynamical systems

@ Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)
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@ Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)

@ They influence each other (how = which mechanism? Spatial
structure?)
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Example: synchronization of interacting dynamical systems

@ Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)

@ They influence each other (how = which mechanism? Spatial
structure?)

@ Noise (time dependent) and disorder (chosen once for all):

@ Noise is the randomness in each dynamical system
@ Disorder accounts for the fact the dynamical systems are not identical
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Example: synchronization of interacting dynamical systems

@ Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)
@ They influence each other (how = which mechanism? Spatial
structure?)
@ Noise (time dependent) and disorder (chosen once for all):
@ Noise is the randomness in each dynamical system
o Disorder accounts for the fact the dynamical systems are not identical

Can we remain in a neighborhood of equilibrium statmech?
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Active rotator model

[Kuramoto, Sakaguchi, Shinomoto] 80s and 90s
Consider the N-dimensional difFusion'

doj(t) = =8V (p;(t))dt — Zsm @j(t) — pi(t)) dt + o dw;(t),

for j=1,2,...,N, where

Q V(9) =0 —acos(), 6,0,K > 0.

Q@ {w;(-)}j=1,,.. are IID standard Brownian motions.
Isolated deterministic system: 1, = — V' (1))

v - a>1 2 a<l1

T T T T T T
-5 0 5 -5 0 5
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Simulation 1: N =4000, K =2, a=0.7,0 =0.5
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Simulation 2: N =4000, K =2, a=1.4,0=0.5
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Simulation 3: N =4000, K=2,a=1.1,0=0.5
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Large N limit

Notation: empirical probability measure

VNt dﬂ Z

2

Still for

dgj(t) = —0V'(gj(t))dt — Zsm ¢j(t) = wi(t)) dt + o dw;(t)

N—oo

with initial condition such that vy o(df) = p(¢)de.
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Large N limit

Notation: empirical probability measure

VNt dﬂ Z

2

Still for
kN
Agi(t) = OV (g(e) dt — 53 sin (g5(1) — @i(t)) dt + o (1)
i=1
with initial condition such that vy o( d6) g p(0)de.

We have

0upi(0) = Z-03p0(0) — 0 [2(0)( + p2)(0)] + 600 [620)V'(0)]

with J(6) = —K'sin(0).
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Phenomenon is captured: K =2,a=11,0=.5
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Let us look at the PDE
General form:
o’

~-03p3(0) — 90 [PE(0)(J = p1)(0)] + 3G pf]

where G € C}(L3, H-1), where 1§ = {ue [*: [ju=1}.

3tPf(9) =
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Let us look at the PDE

General form:
5 0% 2 5 5
0:pl(0) = - 08pi(0) — 0 [P(O)(J + P1)(O)] + 0G[f]
where G € C}(L3, H-1), where 1§ = {ue [*: [ju=1}.
Examples include

© the case of G[p](0) = Ip[p(P)U(0)] and ||U]|c < o0
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Let us look at the PDE

General form:

03(6) = L 3RpE(0) — 0n [PR(6)U + P2)(O)] + 56151

where G € C}(L3, H-1), where 1§ = {ue [*: [ju=1}.
Examples include

© the case of G[p](0) = Ip[p(P)U(0)] and ||U]|c < o0
Q the case of

G[pl(6) = Oelp(0)h* p(0)]
with h € L
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Let us look at the PDE

General form:

0.2

2pi(0) = Z-0703(0) — 0 [PE(O)(J % P1)(O)] + 5GIl)

where G € C}(L3, H-1), where 1§ = {ue [*: [ju=1}.
Examples include

© the case of G[p](0) = Ip[p(P)U(0)] and ||U]|c < o0
Q the case of

G[pl(0) = Op[p()h * p(0)]
with h € L*®
© the case of

G16) = 04 |p(0) [ 10,0010

with h € L°°, as well as generalizations like
Dolp(0) Js h(8,0",6")p(8")p(6")] and so on.
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Let us look at the PDE

General form:

0 (0) = S0R0(0) — 00 [p2O)U D) + 5610 (1)

where G € C*(L3, H-1), where 1§ ={ue [*: [ju=1}.
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Let us look at the PDE
General form:

03(6) = % 5RE(0) 0 [PR(6)U + PE)(E)] + 56151

where G € C*(L3, H-1), where 1§ ={ue [*: [ju=1}.

Particular case: § =0, 0 =1, i.e. “reversible Kuramoto PDE”

0upY(6) = 303p0) — 3y [B2O)(J * PE)(O)]

G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011
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Let us look at the PDE

General form:

0 (0) = S0R0(0) — 00 [p2O)U D) + 5610 (1)

where G € C*(L3, H-1), where 1§ ={ue [*: [ju=1}.

Particular case: § =0, 0 =1, i.e. “reversible Kuramoto PDE”

0upY(6) = 303p0) — 3y [B2O)(J * PE)(O)] )

Facts on the semigroup defined by (2):
@ the associated particle system is reversible
@ it is a gradient flow (Lyapunov function)

@ it is rotation invariant, that is if p;(6) is a solution to (2), so is
pt(9 + 00)
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A remark on the nonlocal PDE

This equation can be rewritten in gradient form

ow0) = ¥ |07 (52 0))

opt

Fp) = 5 /S p(0) log p(6) 0 + 3 /S 30— 0)p(B)p(6) a6 a0

our case J(-) = K cos(+), and it appears in different contexts, among them

© In the hydrodynamic limit (for the density profile) of Kawasaki
dynamics with Kac potentials (Lebowitz, Presutti,...)
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A remark on the nonlocal PDE

This equation can be rewritten in gradient form

ow0) = ¥ |07 (52 0))

opt

Fp) = 5 /S p(0) log p(6) 0 + 3 /S 30— 0)p(B)p(6) a6 a0

our case j() = K cos(-), and it appears in different contexts, among them
© In the hydrodynamic limit (for the density profile) of Kawasaki
dynamics with Kac potentials (Lebowitz, Presutti,...)
© In the large scale limit of nematic crystals/colloidal suspensions
systems (Costantin, Titi,...)
© Self gravitating systems (Chavanis, Ruffo,...)
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A remark on the nonlocal PDE

This equation can be rewritten in gradient form

Ope(0) = V {wa)v <M;E:t)(9)ﬂ

Fp) = 5 /S p(0) log p(6) 0 + 3 /S 30— 0)p(B)p(6) a6 a0

our case 7() = K cos(-), and it appears in different contexts, among them
© In the hydrodynamic limit (for the density profile) of Kawasaki
dynamics with Kac potentials (Lebowitz, Presutti,...)
© In the large scale limit of nematic crystals/colloidal suspensions
systems (Costantin, Titi,...)
© Self gravitating systems (Chavanis, Ruffo,...)

In all cases it is the simple case for a more general non reversible dynamics
/ non gradient system
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On the stationary solutions of reversible Kuramoto

All stationary (probability) solutions are (up to rotation invariance)

q(0) = eXp;ng;sr()e)), with r = W(2Kr)
where W(x) = I1(x)/l(x), where 27l;(x) = [ cos(jf) exp(x cos(f)) db
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On the stationary solutions of reversible Kuramoto

All stationary (probability) solutions are (up to rotation invariance)

q(0) = eXp;jgg;sr()e)), with r = W(2Kr)
where W(x) = I1(x)/l(x), where 27l;(x) = [ cos(jf) exp(x cos(f)) db

In particular r = 0 is always a solution and if K> 1

T b
V(2Kr)
1
- T 2w
0 r
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On the stationary solutions of reversible Kuramoto

The manifold (a circle)
Mo := {q(- + 00) =: gg,(*) : 6o € S}

is invariant for the reversible Kuramoto evolution and stable.
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On the stationary solutions of reversible Kuramoto

The manifold (a circle)

Mo := {q(- + 00) =: gg,(*) : 6o € S}
is invariant for the reversible Kuramoto evolution and stable.

Notably, the linearized (around q) evolution operator (on L3)

1
—Lqu = Eu" —[ud x g+ qJ * u]

is self-adjoint in H_j 1/, with compact resolvent and spectrum in [0, 00).

In fact, ¢’ is a simple eigenvector for the eigenvalue 0, so there is a
spectral gap A(K) > 0 (in fact, explicit estimate). [Bertini G P,10]
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On the stationary solutions of reversible Kuramoto

The manifold (a circle)
Mo := {q(- + 00) =: gg,(*) : 6o € S}
is invariant for the reversible Kuramoto evolution and stable.

Notably, the linearized (around q) evolution operator (on L3)

1
—Lqu = Eu" —[ud x g+ qJ * u]

is self-adjoint in H_j 1/, with compact resolvent and spectrum in [0, 00).

In fact, ¢’ is a simple eigenvector for the eigenvalue 0, so there is a
spectral gap A(K) > 0 (in fact, explicit estimate). [Bertini G P,10]

Put otherwise, M is a “Stable Normally Hyperbolic Manifold” and SNHMs

are rather robust structures.
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Stable Normally Hyperbolic Manifold in L2

This notion goes together with an evolution in L3: for us (1) and its
linearized evolution semigroup {®(p°, t)}+>0 in L3.
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Stable Normally Hyperbolic Manifold in L2

This notion goes together with an evolution in L3: for us (1) and its
linearized evolution semigroup {®(p°, t)}+>0 in L3.

A SNHM M; C L2 of characteristics A1, A2 (0 < A\; < Ap) and C >0is a
C! compact connected invariant manifold s.t. for every v € M; there

exists a projection P°(v) on the tangent space of M; at v such that if pf
is on Ms for t > 0 and u € L3

o
o(p’, t)P°(p3)u = P°(p{)®(p’, t)u
(2
|®(p°, £)P°(pg)ulla < Cexp(Art)||ul2
and, for P° :=1 — P°, we have

le(p°, t)P*(p)ull2 < Cexp(—Aat)|lul2 (3)

© there exists a negative continuation of the dynamics {p?}+<o and of
the linearized semigroup and for every such continuation

lo(p°, ~t)P°(pg)ullz < Cexp(—Ast)l|ull2

G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011
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Robustness of (S)NHMs

Recall

0.p1(0) = 20300(0) — 0 [p(0)(J * P1)(O)] + 9G]

where G € C1(L2,H_1)and DG unif. bounded in a L?-neighborhood of
Mo.

Fact: My (explicit) is a SNHM for the § = 0 case with characteristics 0,
A(K) and C (explicit) and explicit projection(s)
u, N /
PC‘]JU = (,C])/J
(d,q )—1,1/q
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Robustness of (S)NHMs

Recall

0.p1(0) = 20300(0) — 0 [p(0)(J * P1)(O)] + 9G]

where G € C1(L2,H_1)and DG unif. bounded in a L?-neighborhood of
Mo.

Fact: My (explicit) is a SNHM for the § = 0 case with characteristics 0,
A(K) and C (explicit) and explicit projection(s)
u, " /
P(‘,’u _ ( /q )/ 1,1/q9
(d,q )—1,1/q

NHMs are robust structures
@ Hirsch, Pugh, Shub “Invariant manifolds” 1977
o Bates, Lu, Zeng “Existence and persistence of inv. manif.” 1998
@ Sell, You “Dynamics of evolutionary equations” 2002

, but need more explicit estimates in order to set-up
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Robustness of (S)NHMs

Recall

0epi(0) = 503p0(60) — 3 [E(O)(J * PDO)] + 5G]

where G € C1(L2,H_1)and DG unif. bounded in a L?-neighborhood of

Theorem

|§

There exists 6 > 0 such that if § € [0, o] there exists a SNHM My in L3
with suitable characteristics. Moreover

Ms = {qy + ¢5(qy) : ¥ €S},

for a suitable function ¢5 € C*(M, L3) with the properties that
° ¢5(q) € R(Lq):
o there exists C > 0 such that both supy, ||¢s (qy) [|2 and
supy, |0y ¢5(qy)|l2 are bounded by Co.
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Robustness of (S)NHMs

There exists 6o > 0 such that if § € [0, o] there exists a SNHM Ms in L3.
Moreover Ms = {qy + ¢5(qy) : ¢ € S} for a ¢5 € C1(M, LE) with the
properties that ¢s(q) € R(Lq) and supy [|¢s (qy) |2 < CO and

supy, [|0pps(qy)ll2 < C6.

17 / 26
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Dynamics on M

Theorem

For 6 € [0,00] we have that t s 49 (the ‘“phase”) is C' and

(G[q@]aqz’pg)_

Y+ 4
' (qlv ql)—l,l/q

with O(62) uniform in t. Moreover if we call n, the unique solution of

/
(G[qu], q¢)_171/% /
(q/7 q/)—l,l/q

Lg,ny = Glay] — and 1y, G5)_y1/q, = O

we have

Sl:ppll%(qw) — dnylly, = 0(6%)

4
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Dynamics on M

Actually a fully satisfactory result demands more than

(G[%é]’ quf)_l,l/qwa

Rs(%) := b8 + 6 = 0(8?),
6(¢t) Vet (qlvql)—l,l/q ( )
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Dynamics on M

Actually a fully satisfactory result demands more than

(G[%é]’ qzlpf)_l,l/qwa

(¢, q')—l,l/q
In fact, we have the explicit expression

(I65(a)d * d5(au)] + (G lay + ds(au)] — G lav)) , a)

’ _171/qw
R, =
5(1/}) (q’, q')—l,l/q

Rs(4?) i= 0§ +6 = 0(8?),
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Dynamics on M

Actually a fully satisfactory result demands more than

(G[%g‘]’ qzlpf)_l,l/qwa

(¢, q')—l,l/q
In fact, we have the explicit expression
(I65(a)d * d5(au)] + (G lay + ds(au)] — G lav)) , a)

R, =
i(v) (¢, q')—l,l/q

Rs(4?) i= 0§ +6 = 0(8?),

Theorem

Assuming in addition that DG (recall that G € CY(L3; H_1)) is uniformly
continuous in a L2—neighborhood of My, we have that there exists {(-),
with £(0) = o(1) as 6 \, 0, such that

sup [Rs(¥)] < 64(9)
PES
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A generic dynamics on the circle

For a generic dynamics on the circle vy = —f (v¢) with f a trigonometric
polynomial s. t. if f(0) = 0 then f'(0) # 0 and for any value of K > 1
there exists V' (explicit!) such that for § small enough, the phase dynamic
on My is equivalent to ¢, = —f(vf) with speed factor 0.
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A generic dynamics on the circle

For a generic dynamics on the circle vy = —f (v¢) with f a trigonometric
polynomial s. t. if f(0) = 0 then f'(0) # 0 and for any value of K > 1
there exists V' (explicit!) such that for § small enough, the phase dynamic
on My is equivalent to ¢, = —f(vf) with speed factor 0.

Proof. If

V'(0) = ap + z”: (ak cos(k@) + by sin(k8))
k=1

then a straightforward calculation gives

/
= 40
(q', q/)_1,1/q Io2 -1

n

Z (Ixak cos(kip) + Ik by sin(kv)))

k=1
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A generic dynamics on the circle

So the phase dynamics on M; is equivalent to 1)y = —f(¢¢) with

F(0) = Ao+ > _(Ax cos(k0) + Bysin(kb))
k=1
where Ag = ap and
Ac _ B _ ol
ax b g-1

The link can be made more explicit:
f=ap+ D(K)qox (V' — ap)

where D(K) = I2/(Ig — 1).
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A first particular case

Let us look at

0upi(0) = 303pi0) — 05 [R(0O)(J* P1)(O)] + 00 [p2(O)V'(0)

with V(0) = 6 — acos(6).

a=0: last term is just a drift and gs(+) is solution.
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A first particular case

Let us look at

0upi(0) = 303pi0) — 05 [R(0O)(J* P1)(O)] + 00 [p2(O)V'(0)

with V(0) = 6 — acos(6).
a=0: last term is just a drift and gs(+) is solution.

a > 0: look at phase dynamics

R 2 sin(x? 2).

0t = =6 (14 e sin(e)) + 003
where 2(2Kr) - 1
2c(K) = I0(02Kr)ll(2Kr)

and recall that r = r(K).

So if ac(K) > a then for § small the solution is periodic.
G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011 22 /26



Dynamics on the manifold

stablef\ one stable fixed point
’ T~
periodic \

| 12(2Kr)—1 h(2Kr
ac(K) = heKNheRny and r = /égzKr;

one stable fixed point here too (a < 1!)

K

BIRS June 2nd 2011
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The period

Always for

0epi(6) = 303pi(6) — 0 [1(O)(I PE)(E)] + 600 [2(O)V'(9)
with V(0) = 0 + acos().

For ac(K) > a the solution is periodic of period Ts

Ts = §+0(1)

(actually one can show O(6)!) with

27
T = 5
1—(a/ac(K))
It is a pulsating wave...
G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011
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Numerics on T

For K=2and a=1.1, so ™ = 18.0779...

) Ts T/
0.005 | 3615.5928 | 3615.6229
0.010 | 1807.7964 | 1807.8566
0.020 | 903.8982 | 904.0186
0.040 | 451.9491 | 452.1901
0.080 | 225.9745 | 226.4577
0.160 | 112.9873 | 113.9624
0.320 56.4936 58.5178
0.640 28.2468 33.0278

This is in agreement with
M = @ — 1 ~ b2
3 T

with ¢ = 0.333...

G.G. (Paris Diderot and LPMA)
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Active rotators with V(0) = 6 — acos(j0)/j, j =2,3,. ..

Large scale phase dynamics lead by
f(y) = — <1 +

with acj(K) = (12 — 1)/lo;.

R )
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