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Coupling noisy excitable systems

Example of noisy excitable system: neurons.

Finite dimensional dynamical systems.

They have a stable rest position, which could be a limit cycle, but
noise may drive the system sufficiently far away (threshold
phenomenon) and then the system follows a complex trajectory (“it
fires”) before getting back to to rest.
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Coupling noisy excitable systems

Example of noisy excitable system: neurons.

Finite dimensional dynamical systems.

They have a stable rest position, which could be a limit cycle, but
noise may drive the system sufficiently far away (threshold
phenomenon) and then the system follows a complex trajectory (“it
fires”) before getting back to to rest.

Firing can be induced by external perturbations, notably if the neuron
is in a network.

A fundamental paradigm in biology

coupled (noisy) excitable systems, i.e. large families of interacting finite
dimensional dynamical systems, may display global behaviors that have
very little to do with the behavior of the isolated systems. The global
system can be itself described by a finite dimensional excitable system.

One can of course recognize here the fundamental paradigm of statistical
mechanics...
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Example: synchronization of interacting dynamical systems

Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)
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Example: synchronization of interacting dynamical systems

Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)

They influence each other (how = which mechanism? Spatial
structure?)

Noise (time dependent) and disorder (chosen once for all):
Noise is the randomness in each dynamical system
Disorder accounts for the fact the dynamical systems are not identical
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Example: synchronization of interacting dynamical systems

Many (somewhat similar) noisy low dimensional dynamical systems
with a stable limit cycle (on a grid?)

They influence each other (how = which mechanism? Spatial
structure?)

Noise (time dependent) and disorder (chosen once for all):
Noise is the randomness in each dynamical system
Disorder accounts for the fact the dynamical systems are not identical

Can we remain in a neighborhood of equilibrium statmech?
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Active rotator model

[Kuramoto, Sakaguchi, Shinomoto] 80s and 90s

Consider the N-dimensional diffusion:

dϕj (t) = −δV ′(ϕj (t))dt −
K

N

N∑

i=1

sin (ϕj(t) − ϕi (t)) dt + σ dwj(t) ,

for j = 1, 2, . . . ,N, where
1 V (θ) = θ − a cos(θ), δ, σ,K ≥ 0.
2 {wj(·)}j=1,2,... are IID standard Brownian motions.

Isolated deterministic system: ψ̇t = −V ′(ψt)
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Simulation 1: N = 4000, K = 2, a = 0.7, δ = 0.5
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Simulation 2: N = 4000, K = 2, a = 1.4, δ = 0.5

G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011 6 / 26



Simulation 3: N = 4000, K = 2, a = 1.1, δ = 0.5
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Large N limit

Notation: empirical probability measure

νN,t(dθ) =
1

N

N∑

j=1

δϕj (t)(dθ)

Still for

dϕj(t) = −δV ′(ϕj (t))dt −
K

N

N∑

i=1

sin (ϕj (t) − ϕi (t)) dt + σ dwj (t)

with initial condition such that νN,0(dθ)
N→∞
=⇒ p(θ)dθ.
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Notation: empirical probability measure

νN,t(dθ) =
1

N

N∑

j=1

δϕj (t)(dθ)

Still for

dϕj(t) = −δV ′(ϕj (t))dt −
K

N

N∑

i=1

sin (ϕj (t) − ϕi (t)) dt + σ dwj (t)

with initial condition such that νN,0(dθ)
N→∞
=⇒ p(θ)dθ.

We have

∂tp
δ
t (θ) =

σ2

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δ∂θ

[
pδt (θ)V

′(θ)
]

with J(θ) = −K sin(θ).
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Phenomenon is captured: K = 2, a = 1.1, δ = .5
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Let us look at the PDE

General form:

∂tp
δ
t (θ) =

σ2

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δG [pδt ]

where G ∈ C 1(L2
1,H−1), where L2

1 = {u ∈ L2 :
∫

S
u = 1}.

Examples include

1 the case of G [p](θ) = ∂θ[p(θ)U(θ)] and ‖U‖∞ <∞
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]
+ δG [pδt ] (1)

where G ∈ C 1(L2
1,H−1), where L2

1 = {u ∈ L2 :
∫

S
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Let us look at the PDE
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∂tp
δ
t (θ) =

σ2

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δG [pδt ] (1)

where G ∈ C 1(L2
1,H−1), where L2

1 = {u ∈ L2 :
∫

S
u = 1}.

Particular case: δ = 0, σ = 1, i.e. “reversible Kuramoto PDE”

∂tp
0
t (θ) =

1

2
∂2
θp

0
t (θ) − ∂θ

[
p0
t (θ)(J ∗ p0

t )(θ)
]

(2)

Facts on the semigroup defined by (2):

the associated particle system is reversible

it is a gradient flow (Lyapunov function)

it is rotation invariant, that is if pt(θ) is a solution to (2), so is
pt(θ + θ0)
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A remark on the nonlocal PDE

This equation can be rewritten in gradient form

∂tpt(θ) = ∇

[
pt(θ)∇

(
δF(pt)

δpt

(θ)

)]

where

F(p) :=
1

2

∫

S

p(θ) log p(θ)dθ +
1

2

∫

S2

J̃(θ − θ′)p(θ)p(θ′)dθ dθ′

our case J̃(·) = K cos(·), and it appears in different contexts, among them

1 In the hydrodynamic limit (for the density profile) of Kawasaki
dynamics with Kac potentials (Lebowitz, Presutti,...)
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A remark on the nonlocal PDE

This equation can be rewritten in gradient form

∂tpt(θ) = ∇

[
pt(θ)∇

(
δF(pt)

δpt

(θ)

)]

where

F(p) :=
1

2

∫

S

p(θ) log p(θ)dθ +
1

2

∫

S2

J̃(θ − θ′)p(θ)p(θ′)dθ dθ′

our case J̃(·) = K cos(·), and it appears in different contexts, among them

1 In the hydrodynamic limit (for the density profile) of Kawasaki
dynamics with Kac potentials (Lebowitz, Presutti,...)

2 In the large scale limit of nematic crystals/colloidal suspensions
systems (Costantin, Titi,...)

3 Self gravitating systems (Chavanis, Ruffo,...)

In all cases it is the simple case for a more general non reversible dynamics
/ non gradient system
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On the stationary solutions of reversible Kuramoto

All stationary (probability) solutions are (up to rotation invariance)

q(θ) =
exp(2Kr cos(θ))

2πI0(2Kr)
, with r = Ψ(2Kr)

where Ψ(x) = I1(x)/I0(x), where 2πIj(x) =
∫

S
cos(jθ) exp(x cos(θ))dθ.
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On the stationary solutions of reversible Kuramoto

All stationary (probability) solutions are (up to rotation invariance)

q(θ) =
exp(2Kr cos(θ))

2πI0(2Kr)
, with r = Ψ(2Kr)

where Ψ(x) = I1(x)/I0(x), where 2πIj(x) =
∫

S
cos(jθ) exp(x cos(θ))dθ.

In particular r = 0 is always a solution and if K > 1:

0

1

r

Ψ(2Kr)

π−π
1
2π

q(θ)
q(· + θ0)
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On the stationary solutions of reversible Kuramoto

The manifold (a circle)

M0 := {q(· + θ0) =: qθ0(·) : θ0 ∈ S}

is invariant for the reversible Kuramoto evolution and stable.
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On the stationary solutions of reversible Kuramoto

The manifold (a circle)

M0 := {q(· + θ0) =: qθ0(·) : θ0 ∈ S}

is invariant for the reversible Kuramoto evolution and stable.

Notably, the linearized (around q) evolution operator (on L2
0)

−Lqu :=
1

2
u′′ − [uJ ∗ q + qJ ∗ u]′

is self-adjoint in H−1,1/q with compact resolvent and spectrum in [0,∞).
In fact, q′ is a simple eigenvector for the eigenvalue 0, so there is a
spectral gap λ(K ) > 0 (in fact, explicit estimate). [Bertini G P,10]
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M0 := {q(· + θ0) =: qθ0(·) : θ0 ∈ S}

is invariant for the reversible Kuramoto evolution and stable.

Notably, the linearized (around q) evolution operator (on L2
0)

−Lqu :=
1

2
u′′ − [uJ ∗ q + qJ ∗ u]′

is self-adjoint in H−1,1/q with compact resolvent and spectrum in [0,∞).
In fact, q′ is a simple eigenvector for the eigenvalue 0, so there is a
spectral gap λ(K ) > 0 (in fact, explicit estimate). [Bertini G P,10]

Put otherwise, M is a “Stable Normally Hyperbolic Manifold” and SNHMs
are rather robust structures.
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Stable Normally Hyperbolic Manifold in L2

This notion goes together with an evolution in L2
1: for us (1) and its

linearized evolution semigroup {Φ(pδ, t)}t≥0 in L2
0.
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Stable Normally Hyperbolic Manifold in L2

This notion goes together with an evolution in L2
1: for us (1) and its

linearized evolution semigroup {Φ(pδ, t)}t≥0 in L2
0.

A SNHM Mδ ⊂ L2
1 of characteristics λ1, λ2 (0 ≤ λ1 < λ2) and C > 0 is a

C 1 compact connected invariant manifold s.t. for every v ∈ Mδ there
exists a projection Po(v) on the tangent space of Mδ at v such that if pδt
is on Mδ for t ≥ 0 and u ∈ L2

0
1

Φ(pδ, t)Po(pδ0)u = Po(pδt )Φ(pδ, t)u

2

‖Φ(pδ, t)Po(pδ0)u‖2 ≤ C exp(λ1t)‖u‖2

and, for Ps := 1 − Po , we have

‖Φ(pδ, t)Ps(pδ0)u‖2 ≤ C exp(−λ2t)‖u‖2 (3)

3 there exists a negative continuation of the dynamics {pδt }t≤0 and of
the linearized semigroup and for every such continuation

‖Φ(pδ,−t)Po(pδ0)u‖2 ≤ C exp(−λ1t)‖u‖2
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Robustness of (S)NHMs

Recall

∂tp
δ
t (θ) =

1

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δG [pδt ]

where G ∈ C 1(L2
1,H−1)and DG unif. bounded in a L2-neighborhood of

M0.

Fact: M0 (explicit) is a SNHM for the δ = 0 case with characteristics 0,
λ(K ) and C (explicit) and explicit projection(s)

Po
q u =

(u, q′)−1,1/qq′

(q′, q′)−1,1/q
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∂tp
δ
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1
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∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δG [pδt ]

where G ∈ C 1(L2
1,H−1)and DG unif. bounded in a L2-neighborhood of

M0.

Fact: M0 (explicit) is a SNHM for the δ = 0 case with characteristics 0,
λ(K ) and C (explicit) and explicit projection(s)

Po
q u =

(u, q′)−1,1/qq′

(q′, q′)−1,1/q

NHMs are robust structures

Hirsch, Pugh, Shub “Invariant manifolds” 1977

Bates, Lu, Zeng “Existence and persistence of inv. manif.” 1998

Sell, You “Dynamics of evolutionary equations” 2002

We use [Sell and You], but need more explicit estimates in order to set-up
a perturbation argument.G.G. (Paris Diderot and LPMA) BIRS June 2nd 2011 16 / 26



Robustness of (S)NHMs

Recall

∂tp
δ
t (θ) =

1

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δG [pδt ]

where G ∈ C 1(L2
1,H−1)and DG unif. bounded in a L2-neighborhood of

M0.

Theorem

There exists δ0 > 0 such that if δ ∈ [0, δ0] there exists a SNHM Mδ in L2
1

with suitable characteristics. Moreover

Mδ = {qψ + φδ (qψ) : ψ ∈ S} ,

for a suitable function φδ ∈ C 1(M,L2
0) with the properties that

φδ(q) ∈ R(Lq);

there exists C > 0 such that both supψ ‖φδ (qψ) ‖2 and
supψ ‖∂ψφδ(qψ)‖2 are bounded by Cδ.
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Robustness of (S)NHMs

Theorem

There exists δ0 > 0 such that if δ ∈ [0, δ0] there exists a SNHM Mδ in L2
1.

Moreover Mδ = {qψ + φδ (qψ) : ψ ∈ S} for a φδ ∈ C 1(M,L2
0) with the

properties that φδ(q) ∈ R(Lq) and supψ ‖φδ (qψ) ‖2 ≤ Cδ and
supψ ‖∂ψφδ(qψ)‖2 ≤ Cδ.

pδ(·)qψ(·)
qψ(·)

ψ

pδ = qψ + φδ(qψ)

θ π−π 0
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Dynamics on Mδ

Theorem

For δ ∈ [0, δ0] we have that t 7→ ψδt (the “phase”) is C 1 and

ψ̇δt + δ

(
G [qψδt ], q

′

ψδt

)
−1,1/q

ψδt

(q′, q′)−1,1/q

= O(δ2)

with O(δ2) uniform in t. Moreover if we call nψ the unique solution of

Lqψnψ = G [qψ] −

(
G [qψ], q′

ψ

)
−1,1/qψ

(q′, q′)−1,1/q

q′
ψ and

(
nψ, q

′
ψ

)
−1,1/qψ

= 0

we have
sup
ψ

‖φδ(qψ) − δnψ‖H1
= O(δ2)
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Dynamics on Mδ

Actually a fully satisfactory result demands more than

Rδ(ψ
δ
t ) := ψ̇δt + δ

(
G [qψδt ], q

′

ψδt

)
−1,1/q

ψδt

(q′, q′)−1,1/q

= O(δ2) ,
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(
[φδ(qψ)J ∗ φδ(qψ)]′ + δ (G [qψ + φδ(qψ)] − G [qψ]) , q′

ψ

)
−1,1/qψ

(q′, q′)−1,1/q

Theorem

Assuming in addition that DG (recall that G ∈ C 1(L2
1;H−1)) is uniformly

continuous in a L2-neighborhood of M0, we have that there exists ℓ(·),
with ℓ(δ) = o(1) as δ ց 0, such that

sup
ψ∈S

|R ′
δ(ψ)| ≤ δ ℓ(δ)
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A generic dynamics on the circle

Theorem

For a generic dynamics on the circle ψ̇t = −f (ψt) with f a trigonometric
polynomial s. t. if f (0) = 0 then f ′(0) 6= 0 and for any value of K > 1
there exists V (explicit!) such that for δ small enough, the phase dynamic
on Mδ is equivalent to ψ̇t = −f (ψf ) with speed factor δ.
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A generic dynamics on the circle

Theorem

For a generic dynamics on the circle ψ̇t = −f (ψt) with f a trigonometric
polynomial s. t. if f (0) = 0 then f ′(0) 6= 0 and for any value of K > 1
there exists V (explicit!) such that for δ small enough, the phase dynamic
on Mδ is equivalent to ψ̇t = −f (ψf ) with speed factor δ.

Proof. If

V ′(θ) = a0 +

n∑

k=1

(ak cos(kθ) + bk sin(kθ))

then a straightforward calculation gives

(
G [qψ], q′

ψ

)
−1,1/qψ

(q′, q′)−1,1/q

= a0 +
I0

I 2
0 − 1

n∑

k=1

(Ikak cos(kψ) + Ikbk sin(kψ))
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A generic dynamics on the circle

So the phase dynamics on Mδ is equivalent to ψ̇t = −f (ψt) with

f (θ) = A0 +
n∑

k=1

(Ak cos(kθ) + Bk sin(kθ))

where A0 = a0 and
Ak

ak

=
Bk

bk

=
I0Ik

I 2
0 − 1

The link can be made more explicit:

f = a0 + D(K ) q0 ∗ (V ′ − a0)

where D(K ) = I 2
0 /(I

2
0 − 1).
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A first particular case

Let us look at

∂tp
δ
t (θ) =

1

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δ∂θ

[
pδt (θ)V

′(θ)
]

with V (θ) = θ − a cos(θ).

a = 0: last term is just a drift and qδt(·) is solution.
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A first particular case

Let us look at

∂tp
δ
t (θ) =

1

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δ∂θ

[
pδt (θ)V

′(θ)
]

with V (θ) = θ − a cos(θ).

a = 0: last term is just a drift and qδt(·) is solution.

a > 0: look at phase dynamics

ψ̇δt = −δ

(
1 +

a

ac(K )
sin(ψδt )

)
+ O(δ2) .

where

ac(K ) :=
I 2
0 (2Kr) − 1

I0(2Kr)I1(2Kr)

and recall that r = r(K ).

So if ac(K ) > a then for δ small the solution is periodic.
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Dynamics on the manifold

1 2 3 4 5

0.
7

0.
8

0.
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1.
0

1.
1

1.
2

a c
(K

)

K

ac(K ) =
I 2
0 (2Kr)−1

I0(2Kr)I1(2Kr) and r = I1(2Kr)
I0(2Kr)

a
periodic

one stable fixed pointstable

one stable fixed point here too (a < 1!)
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The period

Always for

∂tp
δ
t (θ) =

1

2
∂2
θp

δ
t (θ) − ∂θ

[
pδt (θ)(J ∗ pδt )(θ)

]
+ δ∂θ

[
pδt (θ)V

′(θ)
]

with V (θ) = θ + a cos(θ).

For ac(K ) > a the solution is periodic of period Tδ

Tδ =
τ

δ
+ O(1)

(actually one can show O(δ)!) with

τ :=
2π√

1 − (a/ac(K ))2

It is a pulsating wave...
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Numerics on Tδ

For K = 2 and a = 1.1, so τ = 18.0779 . . .

δ Tδ τ/δ

0.005 3615.5928 3615.6229

0.010 1807.7964 1807.8566

0.020 903.8982 904.0186

0.040 451.9491 452.1901

0.080 225.9745 226.4577

0.160 112.9873 113.9624

0.320 56.4936 58.5178

0.640 28.2468 33.0278

This is in agreement with

δTδ −
τ
δ

τ
δ

=
δτδ
τ

− 1 ∼ cδ2

with c = 0.333 . . .
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Active rotators with V (θ) = θ − a cos(jθ)/j , j = 2, 3, . . .

Large scale phase dynamics lead by

f (ψ) = −

(
1 +

a

ac,j(K )
sin(jψ)

)

with ac,j(K ) = (I 2
0 − 1)/I0Ij .
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