Scaling limits for dynamic models of Young diagrams *

Tadahisa Funaki (Univ. Tokyo)

[^0]
Motivation

- Scaling limits for random Young diagrams (LLN).
- 2D: Vershik '96 discussed under several types of statistics and derived Vershik curves in the limit.
- 3D: Cerf-Kenyon '01 derived the limit surface Wulff shape characterized by a certain variational formula (under uniform statistics).
- Our goal is to establish the corresponding dynamic theory.
- Our model describes a motion of (decreasing) interfaces, called SOS dynamics.

Zero-temperature Stochastic Ising model

(taken from Caputo-Martinelli-Simenhaus-Toninelli '10)

Plan of talk

1. Ensembles of 2D Young diagrams
2. Non-conservative systems
2.1. Static results (for grandcanonical ensembles)

LLN (Vershik curves), CLT
2.2. Dynamic results
2.2.1. Dynamics of gradient fields (WAZRP, WASEP with stochastic reservoirs at boundary)
2.2.2. Hydrodynamic limits (LLN)
2.2.3. Non-equilibrium fluctuations (CLT, SPDEs)
3. Conservative systems
3.1. Static results (for canonical ensembles of gradients)
3.1.1. Equivalence of ensembles under inhomogeneous conditioning (Local equilibrium)
3.1.2. Related Young diagrams
3.2. Hydrodynamic limits

Surface diffusion: conservative dynamics (conjecture)

- Dynamics associated with canonical ensembles

4. 3D case

Honeycomb dimers dynamics

1. Ensembles of 2D Young diagrams

Uniform (Bose)-case: Restricted Uniform (Fermi)-case:
height $\psi:[0, \infty) \rightarrow \mathbb{Z}_{+}$

height difference $\eta: \mathbb{N} \rightarrow \mathbb{Z}_{+}$

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

- Uniform (Bose)-case:

$$
\mathcal{P}_{n}=\{\psi ; \text { Young diagram with area } n\}, \quad \mathcal{P}=\bigcup_{n=0}^{\infty} \mathcal{P}_{n}
$$

- Restricted Uniform (Fermi)-case:

$$
\begin{array}{r}
\mathcal{Q}_{n}=\left\{\psi \in \mathcal{P}_{n} ; \text { height difference } \in\{0,1\}\right\}, \quad \mathcal{Q}=\bigcup_{n=0}^{\infty} \mathcal{Q}_{n} \\
\left.n(\psi):=n \quad \text { if } \psi \in \mathcal{P}_{n} \quad \text { (i.e. } n(\psi)=\text { area of } \psi\right)
\end{array}
$$

- canonical ensembles:

Uniform statistics (U-case)
$\mu_{U}^{n}:=$ uniform prob. meas. on \mathcal{P}_{n}
Restricted uniform statistics (RU-case)
$\mu_{R}^{n}:=$ uniform prob. meas. on \mathcal{Q}_{n}

- grandcanonical ensembles (superposition of CE):
$0<\varepsilon<1$: parameter
U-case

$$
\mu_{U}^{\varepsilon}(\psi):=\frac{1}{Z_{U}(\varepsilon)} \varepsilon^{n(\psi)}, \quad \psi \in \mathcal{P}
$$

RU-case $\quad \mu_{R}^{\varepsilon}(\psi):=\frac{1}{Z_{R}(\varepsilon)} \varepsilon^{n(\psi)}, \quad \psi \in \mathcal{Q}$

2. Non-conservative systems

2.1. Static results (for grandcanonical ensembles)
(a) LLN (Vershik curves)

- For $N>0$, choose $\varepsilon \equiv \varepsilon(N)=\varepsilon_{U}(N), \varepsilon_{R}(N)$ s.t.

$$
E^{\mu_{U}^{\varepsilon}}[n(\psi)]=N^{2}, \quad E^{\mu_{R}^{\varepsilon}}[n(\psi)]=N^{2}
$$

(i.e., the averaged areas of $\mathrm{YD}=N^{2}$). Then,

$$
\begin{array}{ll}
\varepsilon_{U}(N)=1-\frac{\alpha}{N}+\cdots, & \alpha=\frac{\pi}{\sqrt{6}} \\
\varepsilon_{R}(N)=1-\frac{\beta}{N}+\cdots, & \beta=\frac{\pi}{\sqrt{12}}
\end{array}
$$

(cf. Hardy-Ramanujan's formula: $\sharp \mathcal{P}_{n} \sim \frac{1}{4 \sqrt{3} n} e^{2 \alpha \sqrt{n}}$)

- Scaling for Young diagrams: For $\psi \in \mathcal{P}$,

$$
\tilde{\psi}^{N}(u):=\frac{1}{N} \psi(N u), \quad u>0 .
$$

(i.e., the averaged areas of scaled YD $=1$).

Proposition 1. (Vershik, '96, LLN under $\mu_{U}^{\varepsilon(N)}, \mu_{R}^{\varepsilon(N)}$)

$$
\begin{aligned}
& \tilde{\psi}^{N}(u) \underset{N \rightarrow \infty}{\longrightarrow} \psi_{U}(u) \text { in prob. under } \mu_{U}^{\varepsilon(N)} \\
& \tilde{\psi}^{N}(u) \underset{N \rightarrow \infty}{\longrightarrow} \psi_{R}(u) \text { in prob. under } \mu_{R}^{\varepsilon(N)}
\end{aligned}
$$

where

$$
\begin{aligned}
& \psi_{U}(u)=-\frac{1}{\alpha} \log \left(1-e^{-\alpha u}\right) \\
& \psi_{R}(u)=\frac{1}{\beta} \log \left(1+e^{-\beta u}\right), \quad u \geq 0
\end{aligned}
$$

The limit shapes are called Vershik curves.

Remark 1.

(1) Similar results hold under canonical ensembles $\mu_{U}^{N^{2}}, \mu_{R}^{N^{2}}$.
(2) $y=\psi_{U}(u) \Leftrightarrow e^{-\alpha u}+e^{-\alpha y}=1, \quad y=\psi_{R}(u) \Leftrightarrow e^{\beta y}-e^{-\beta u}=1$.

Vershik curves

(b) CLT

- Known results
- Pittel, '97: U-case
- Yakubovich, '99: RU-case
- Vershik-Yakubovich, '01:

U-case with constraint on heights

- Beltoft-Boutillier-Enriquez, '10:

U-case in a rectangular box

- Beltoft, '10: thesis
- CLT under canonical ensembles can be reduced from that under grandcanonical ensembles by removing the effect of fluctuations of area.
- Fluctuations

$$
\begin{aligned}
& \Psi_{U}^{N}(u):=\sqrt{N}\left(\tilde{\psi}^{N}(u)-\psi_{U}(u)\right) \\
& \Psi_{R}^{N}(u):=\sqrt{N}\left(\tilde{\psi}^{N}(u)-\psi_{R}(u)\right), \quad u \geq 0
\end{aligned}
$$

Proposition 2. (CLT under grandcanonical ensembles)

$$
\begin{aligned}
& \Psi_{U}^{N}(u) \underset{N \rightarrow \infty}{\Longrightarrow} \Psi_{U}(u) \text { weakly under } \mu_{U}^{\varepsilon(N)} \\
& \Psi_{R}^{N}(u) \underset{N \rightarrow \infty}{\Longrightarrow} \Psi_{R}(u) \text { weakly under } \mu_{R}^{\varepsilon(N)}
\end{aligned}
$$

where Ψ_{U}, Ψ_{R} are mean 0 Gaussian processes with covariance structures

$$
\begin{aligned}
C_{U}(u, v) & =\frac{1}{\alpha} \min \left\{\rho_{U}(u), \rho_{U}(v)\right\} \\
C_{R}(u, v) & =\frac{1}{\beta} \min \left\{\rho_{R}(u), \rho_{R}(v)\right\}, \quad u, v>0
\end{aligned}
$$

and $\rho_{U}=-\psi_{U}^{\prime}, \rho_{R}=-\psi_{R}^{\prime}$ are slopes of Vershik curves, respectively.
2.2. Dynamic results
2.2.1. Dynamics of gradient fields (WAZRP, WASEP with stochastic reservoirs at boundary)

- Dynamics associated with grandcanonical ensembles

- Young diagrams \Longleftrightarrow Height differences (Gradient fields)

$$
\begin{array}{ll}
\text { U-case } & \xi(k):=\psi(k-1)-\psi(k) \in \mathbb{Z}_{+}, \quad k \in \mathbb{N} \\
\text { RU-case } & \eta(k):=\psi(k-1)-\psi(k) \in\{0,1\}, \quad k \in \mathbb{N}
\end{array}
$$

Dynamics of height differences:

- U-case: $\xi_{t}(k) \in \mathbb{Z}_{+}, k \in \mathbb{N}, \quad \xi_{t}(0)=\infty$ Weakly asymmetric zero-range process with weakly asymmetric stochastic reservoir at $k=0$
- RU-case: $\eta_{t}(k) \in\{0,1\}, k \in \mathbb{N}, \quad \eta_{t}(0)=\infty$

Weakly asymmetric simple exclusion process with weakly asymmetric stochastic reservoir at $k=0$
2.2.2. Hydrodynamic limits (LLN)*

Height differences ξ_{t} or η_{t}
\Rightarrow Evolving height functions $\psi_{t}(u), u>0$
Diffusive scaling in space and time:

$$
\tilde{\psi}^{N}(t, u):=\frac{1}{N} \psi_{N^{2} t}(N u), \quad u>0
$$

[^1]Theorem 3. (U-case) If $\tilde{\psi}_{U}^{N}(0, u) \underset{N \rightarrow \infty}{\longrightarrow} \psi_{0}(u)$, then

$$
\tilde{\psi}_{U}^{N}(t, u) \underset{N \rightarrow \infty}{\longrightarrow} \psi_{U}(t, u) \text { in prob. }
$$

The limit $\psi_{U}(t, u)$ is a solution of nonlinear PDE:

$$
\begin{aligned}
& \quad \partial_{t} \psi=\left\{\psi^{\prime} /\left(1-\psi^{\prime}\right)\right\}^{\prime}+\alpha \psi^{\prime} /\left(1-\psi^{\prime}\right), \quad u>0, \\
& \psi(0, \cdot)=\psi_{0}(\cdot) \\
& \psi(t, 0+)=\infty, \psi(t, \infty)=0 \\
& \text { where } \partial_{t} \psi=\partial \psi / \partial t, \psi^{\prime}=\partial \psi / \partial u(<0) .
\end{aligned}
$$

Remark 2. Vershik curve ψ_{U} is a unique stationary sol of this PDE.

Theorem 4. (RU-case) If $\tilde{\psi}_{R}^{N}(0, u) \underset{N \rightarrow \infty}{\longrightarrow} \psi_{0}(u)$, then

$$
\tilde{\psi}_{R}^{N}(t, u) \underset{N \rightarrow \infty}{\longrightarrow} \psi_{R}(t, u) \text { in prob. }
$$

The limit $\psi_{R}(t, u)$ is a solution of nonlinear PDE:

$$
\begin{aligned}
& \partial_{t} \psi=\psi^{\prime \prime}+\beta \psi^{\prime}\left(1+\psi^{\prime}\right), \quad u>0 \\
& \psi(0, \cdot)=\psi_{0}(\cdot), \\
& \psi^{\prime}(t, 0+)=-\frac{1}{2}, \psi(t, \infty)=0
\end{aligned}
$$

Remark 3. Vershik curve ψ_{R} is a unique stationary sol of this PDE.

- The boundary condition at 0 follows from the pointwise ergodicity:

$$
\lim _{N \rightarrow \infty} P\left[\left|\frac{1}{T_{2}-T_{1}} \int_{T_{1}}^{T_{2}} \eta_{N^{2} s}(1) d s-\frac{1}{2}\right|>\delta\right]=0
$$

for every $\delta>0$ and $0 \leq T_{1}<T_{2}$.
2.2.3. Non-equilibrium fluctuations (CLT, SPDEs) *

$$
\begin{aligned}
& \Psi_{U}^{N}(t, u):=\sqrt{N}\left(\tilde{\psi}_{U}^{N}(t, u)-\psi_{U}(t, u)\right) \\
& \Psi_{R}^{N}(t, u):=\sqrt{N}\left(\tilde{\psi}_{R}^{N}(t, u)-\psi_{R}(t, u)\right)
\end{aligned}
$$

Theorem 5. (U-case) $\Psi_{U}^{N}(t, u) \underset{N \rightarrow \infty}{\Longrightarrow} \Psi_{U}(t, u)$ weakly. The limit $\Psi_{U}(t, u)$ is a solution of SPDE:

$$
\begin{aligned}
\partial_{t} \Psi(t, u)= & \left(\frac{\psi^{\prime}(t, u)}{\left(1+\rho_{U}(t, u)\right)^{2}}\right)^{\prime}+\alpha \frac{\psi^{\prime}(t, u)}{\left(1+\rho_{U}(t, u)\right)^{2}} \\
& +\sqrt{\frac{2 \rho_{U}(t, u)}{1+\rho_{U}(t, u)}} \dot{W}(t, u)
\end{aligned}
$$

where $\rho_{U}(t, u)=-\psi_{U}^{\prime}(t, u)$ and $\dot{W}(t, u)$ is the spacetime white noise on $[0, \infty) \times \mathbb{R}_{+}$.

[^2]Theorem 6. (RU-case) $\Psi_{R}^{N}(t, u) \underset{N \rightarrow \infty}{\Longrightarrow} \Psi_{R}(t, u)$ weakly.
The limit $\Psi_{R}(t, u)$ is a solution of SPDE:

$$
\begin{aligned}
& \partial_{t} \Psi(t, u)= \Psi^{\prime \prime}(t, u)+\beta\left(1-2 \rho_{R}(t, u)\right) \psi^{\prime}(t, u) \\
& \quad+\sqrt{2 \rho_{R}(t, u)\left(1-\rho_{R}(t, u)\right)} \dot{W}(t, u), \\
& \Psi^{\prime}(t, 0+)=0,
\end{aligned}
$$

where $\rho_{R}(t, u)=-\psi_{R}^{\prime}(t, u)$.

Invariant measures of SPDEs

- U-case: Since $\rho_{U}(t, u) \underset{t \rightarrow \infty}{\longrightarrow} \rho_{U}(u):=-\psi_{U}^{\prime}(u)$, the SPDE in equilibrium has the form:

$$
\partial_{t} \Psi=-g_{U}(u) Q_{U} \Psi+\sqrt{2 g_{U}(u)} \dot{W}(t, u)
$$

where

$$
\begin{aligned}
& g_{U}(u)=\frac{\rho_{U}(u)}{1+\rho_{U}(u)} \\
& Q_{U}=-\frac{\partial}{\partial u}\left(\frac{1}{\rho_{U}(u)\left(1+\rho_{U}(u)\right)} \frac{\partial}{\partial u}\right), \quad u>0
\end{aligned}
$$

Thus the invariant measure of $\Psi_{U}(t, u)$ is $N\left(0, Q_{U}^{-1}\right)$. Since $C_{U}(u, v)$ is the Green kernel of Q_{U}^{-1} (by checking $Q_{U} C_{U}(\cdot, v)=$ $\left.\delta_{v}(\cdot)\right)$, this gives another proof of static result, Proposition 2 in U-case.

- RU-case: Since $\rho_{R}(t, u) \underset{t \rightarrow \infty}{\longrightarrow} \rho_{R}(u):=-\psi_{R}^{\prime}(u)$, the SPDE in equilibrium has the form:

$$
\partial_{t} \Psi=-g_{R}(u) Q_{R} \Psi+\sqrt{2 g_{R}(u)} \dot{W}(t, u)
$$

where

$$
\begin{aligned}
& g_{R}(u)=\rho_{R}(u)\left(1-\rho_{R}(u)\right) \\
& Q_{R}=-\frac{\partial}{\partial u}\left(\frac{1}{\rho_{R}(u)\left(1-\rho_{R}(u)\right)} \frac{\partial}{\partial u}\right) \quad \text { on } L^{2}\left(\mathbb{R}_{+}, d u\right)
\end{aligned}
$$

with Neumann condition at $u=0$. Thus the invariant measure of $\Psi_{R}(t, u)$ is $N\left(0, Q_{R}^{-1}\right)$. Since $C_{R}(u, v)$ is the Green kernel of Q_{R}^{-1} (by checking $Q_{R} C_{R}(\cdot, v)=\delta_{v}(\cdot)$ and Neumann condition at $u=0$), this gives another proof of static result, Proposition 2 in RU-case.

3. Conservative systems

3.1. Static results (for canonical ensembles of gradients)
3.1.1. Equivalence of ensembles under inhomogeneous conditioning (Local equilibrium)

- $\eta=\left(\eta_{k}\right)_{k \in \mathbb{Z}} \in\{0,1\}^{\mathbb{Z}}$: particle configuration on \mathbb{Z}

$$
K_{\Lambda_{\ell}}(\eta):=\sum_{k \in \Lambda_{\ell}} \eta_{k}, \quad M_{\Lambda_{\ell}}(\eta):=\sum_{k \in \Lambda_{\ell}} k \eta_{k} .
$$

$$
\wedge_{\ell}=\{-\ell, \cdots, \ell\}
$$

- Canonical ensemble $=$ uniform probability measures $\nu_{\Lambda_{\ell}, K, M}$ on $\Sigma_{\Lambda_{\ell}, K, M}=\left\{\eta \in\{0,1\}^{\wedge_{\ell}} ; K_{\wedge_{\ell}}(\eta)=K, M_{\wedge_{\ell}}(\eta)=M\right\}$
- Grandcanonical ensemble $=$ Bernoulli measures ν_{α} on $\{0,1\}^{\mathbb{Z}}$ with mean $\alpha, \alpha \in(0,1)$

Theorem 7. $K=K_{\ell}, M=M_{\ell}, k_{j}=k_{\ell, j}, 1 \leq j \leq p$, s.t.

$$
\begin{aligned}
& \lim _{\ell \rightarrow \infty} \frac{K}{2 \ell+1}=\rho \in(0,1) \\
& \lim _{\ell \rightarrow \infty} \frac{M}{(2 \ell+1)^{2}}=m \in\left(-\frac{1}{2} \rho(1-\rho), \frac{1}{2} \rho(1-\rho)\right), \\
& \lim _{\ell \rightarrow \infty} \frac{k_{j}}{\ell}=x_{j} \in(-1,1), \quad\left(\left\{x_{j}\right\} \text { are distinct }\right)
\end{aligned}
$$

Then, for ${ }^{\forall} f_{j}, 1 \leq j \leq p$ local functions,

$$
\lim _{\ell \rightarrow \infty} E_{\nu_{\ell}, K, M}\left[\prod_{j=1}^{p} \tau_{k_{j}} f_{j}\right]=\prod_{j=1}^{p} E_{\nu_{\beta\left(x_{j}\right)}}\left[f_{j}\right],
$$

where τ_{k} are shifts by k and

$$
\beta(x) \equiv \beta(x ; a, b)=\frac{e^{b x} a}{e^{b x} a+(1-a)},
$$

with $a \in(0,1)$ and $b \in \mathbb{R}$ determined from ρ and m by

$$
\begin{equation*}
\frac{1}{2} \int_{-1}^{1} \beta(x ; a, b) d x=\rho, \quad \frac{1}{4} \int_{-1}^{1} x \beta(x ; a, b) d x=m . \tag{1}
\end{equation*}
$$

Remark 4. (i) (Local equilibrium) Theorem 1 implies:

$$
\lim _{\ell \rightarrow \infty, \frac{k}{\ell} \rightarrow x} \nu_{\Lambda_{\ell}, K, M} \circ \tau_{k}^{-1}=\nu_{\beta(x)}
$$

and asymptotic independence for distinct x.
(ii) The relation (1) defines a diffeomorphism:
$(a, b) \in(0,1) \times \mathbb{R} \mapsto(\rho, m) \in D=\left\{0<\rho<1,|m|<\frac{1}{2} \rho(1-\rho)\right\}$

This part is due to arXiv:1103.5823

Proof - If $\beta(\cdot)=\beta(\cdot ; a, b)$ for some a, b, then

$$
\nu_{\beta(\cdot)}^{\wedge_{\ell}}\left(\cdot \mid \Sigma_{\Lambda_{\ell}, K, M}\right)=\nu_{\Lambda_{\ell}, K, M}(\cdot)
$$

where $\nu_{\beta(\cdot)}^{\Lambda_{\ell}}=$ distri. of indep. $\left\{\eta_{k}\right\}_{k \in \Lambda_{\ell}}$ s.t. $E\left[\eta_{k}\right]=\beta(k / \ell)$.

- ($p=1$ for simplicity) From the above observation, $E_{\nu_{\wedge_{\ell}, K, M}}\left[\tau_{k} f\right]-E_{\nu_{\beta(x)}}[f]$

$$
=\sum_{\xi \in\{0,1\}^{\ulcorner+k}}\left\{f(\xi)-E_{\nu_{\beta(x)}}[f]\right\} \frac{\nu_{\beta(\cdot ; a, b)}^{\wedge_{\ell}}\left(\left.\eta\right|_{\ulcorner+k}=\xi, K_{\Lambda_{\ell}}(\eta)=K, M_{\Lambda_{\ell}}(\eta)=M\right)}{\nu_{\beta(\cdot ; a, b)}^{\wedge_{\ell}}\left(K_{\Lambda_{\ell}}(\eta)=K, M_{\wedge_{\ell}}(\eta)=M\right)},
$$

for all local function f with support $\Gamma \Subset \mathbb{Z}$.

- We show the local limit theorem for $\left(K_{\Lambda_{\ell}}(\eta), M_{\Lambda_{\ell}}(\eta)\right)$ un$\operatorname{der} \nu_{\beta(\cdot)}^{\wedge_{\ell}}$. The sum of independent r.v.'s $M_{\Lambda_{\ell}}=\sum_{k \in \Lambda_{\ell}} k \eta_{k}$ has a growing weight k, and therefore $\left\{k \eta_{k}\right\}_{k}$ doesn't satisfy "good" moment conditions required for the classical local limit theorem (cf. [Petrov]).

3.1.2. Related Young diagrams

- Young diagrams in RU-case (i.e. height difference $\in\{0,1\}$) height $=K$, side length $=2 \ell+1$, area $=A$
$\psi^{\ell}(u), u \in[-\ell-1, \ell]$: height function of Young diagram
- Corresponding particle picture:
$\eta_{k}:=\psi^{\ell}(k-1)-\psi^{\ell}(k)$: height difference, $\quad \eta=\left(\eta_{k}\right)_{k \in \Lambda_{\ell}}$

$$
\begin{aligned}
& K=K_{\wedge_{\ell}}(\eta): \text { height at } u=-\ell-1 \\
& A=\sum_{k \in \Lambda_{\ell}}(k+\ell+1) \eta_{k}=(\ell+1) K_{\wedge_{\ell}}(\eta)+M_{\wedge_{\ell}}(\eta)
\end{aligned}
$$

- Scaling: $\quad \tilde{\psi}^{\ell}(x):=\frac{1}{\ell} \psi^{\ell}(\ell x), \quad x \in[-1,1]$

Corollary 8. Under the same conditions as Theorem 1,

$$
\lim _{\ell \rightarrow \infty} \nu_{\Lambda_{\ell}, K, M}\left(\sup _{x \in[-1,1]}\left|\tilde{\psi}^{\ell}(x)-\psi(x)\right|>\delta\right)=0, \delta>0
$$

where $\psi(x)=\int_{x}^{1} \beta(y) d y, x \in[-1,1]$.
The limit ψ has a slope $\psi^{\prime}(x)=-\beta(x)$ and satisfies

$$
\begin{aligned}
& \qquad \begin{array}{l}
\psi(-1)=2 \rho, \quad \psi(1)=0, \quad \int_{-1}^{1} \psi(x) d x=2 \rho+4 m, \\
\psi^{\prime \prime}+c \psi^{\prime}\left(1+\psi^{\prime}\right)=0, \quad\left(-\psi^{\prime}: \text { stationary sol of viscous Burgers' eq }\right) \\
\text { with } c=-b(c=\pi / \sqrt{12} \text { for Vershik curve })
\end{array}
\end{aligned}
$$

- Beltoft-Boutillier-Enriquez ('10): U-case, Grandcanonical ensembles, in a rectangular box
3.2. Hydrodynamic limits
- Surface diffusion: conservative dynamics (conjecture)
- Dynamics associated with the RU-canonical ensembles:

- Dynamics associated with the RU-canonical ensembles:
- The dynamics preserve the area of YD, i.e., creation and annihilation of unit squares take place simultaneously.
- Or, a unit square moves on the surface of YD until it finds another stable position keeping height differences $\in\{0,1\}$.
- The jump rate of a square falling down a stair with length r and its reversed transition is $c_{r}^{F}>0$.
- The jump rate of a square sliding over a flat piece of length r and its reversed transition is $c_{r}^{G}>0$.
- We consider the associated particle system on a torus. $\eta(k) \in\{0,1\}, \quad k \in \mathbb{T}_{N}=\mathbb{Z} / N \mathbb{Z}$
- Scaling $\left(t \mapsto N^{4} t\right)$:

$$
\xi_{t}^{N}(d u)=\frac{1}{N} \sum_{k \in \mathbb{N}} \eta_{N^{4} t}(k) \delta_{k / N}(d u), \quad u \in \mathbb{T}=[0,1] .
$$

- Expected result: $\xi_{t}^{N}(d u) \rightarrow \rho(t, u) d u$

Cahn-Hilliard type nonlinear PDE:

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}=-\frac{\partial^{2}}{\partial u^{2}}\left\{D(\rho) \frac{\partial^{2} \rho}{\partial u^{2}}\right\}, \quad u \in \mathbb{T} \\
D(\rho)=\frac{1}{\rho(1-\rho)} \inf _{g: \operatorname{tame}} \frac{1}{4} \sum_{r=1}^{\infty}\left\langle c_{(0, r)}\left\{\pi^{(0, r)}\left(\Gamma_{g}+\frac{1}{2} \sum_{k} k^{2} \eta(k)\right)\right\}^{2}\right. \\
\left.+c_{(-r, 0)}\left\{\pi^{(-r, 0)}\left(\Gamma_{g}+\frac{1}{2} \sum_{k} k^{2} \eta(k)\right)\right\}^{2}\right\rangle_{\rho}, \quad \Gamma_{g}=\sum_{k} \tau_{k} g \\
c_{(0, \pm r)}: \text { jump rates determined by } c_{r}^{F}, c_{r}^{G} \\
\pi^{(0, \pm r)}: \text { transition operators }
\end{gathered}
$$

- Laplacian replacement (Fluctuation-dissipation relation) for the current:

$$
W=-D(\rho)\left(\eta_{1}-2 \eta_{0}+\eta_{-1}\right)+L^{\exists} F
$$

where

$$
\begin{aligned}
& W=\sum_{r=1}^{\infty}(r+1) W_{r} \\
& \begin{aligned}
W_{r}= & c_{r}^{F} \\
& \left(1_{\{\text {outward jump }\}}-1_{\{\text {inward jump }\}}\right) \\
& \quad+c_{r}^{G}\left(1_{\{\text {outward jump }\}}-1_{\{\text {inward jump }\}}\right)
\end{aligned}
\end{aligned}
$$

4．3D case

Limit shapes of scaled surfaces of 3D Young diagrams under uniform ensemble are studied by Cerf－Kenyon＇01
limit surface

taken from Cerf－Kenyon

Under the projection to the plane $\{x+y+z=0\}$, 3D Young diagrams can be transformed into lozenge tiling or dimer configurations on a honeycomb lattice.

Honeycomb lattice G_{∞}

Dual lattice (triangular lattice)

Torus $H_{N}=G_{\infty} / N \mathbb{Z}^{2}$

Dynamics of dimers on H_{N}

$H_{N}^{*}:$ dual lattice of H_{N} (triangular lattice)
$i \in H_{N}^{*}$ represents a hexagon
$H_{N}^{B}=\left\{\right.$ all undirected bonds of $\left.H_{N}\right\}$
$\mathcal{X}_{N}=\left\{\eta: H_{N}^{B} \rightarrow\{0,1\}\right.$, dimer covers of $\left.H_{N}\right\}$
\quad i.e., $\left\{b=\{u, v\} \in H_{N}^{B} ; \eta_{b}=1\right\}$ covers H_{N} disjointly.

Generator of simple dimer process on H_{N}

$$
f: \mathcal{X}_{N} \rightarrow \mathbb{R}
$$

$$
L f(\eta)=\sum_{i \in H_{N}^{*}}\left[1_{\left\{\eta_{i}=A\right\}}+1_{\left\{\eta_{i}=B\right\}}\right]\left\{f\left(\eta^{i}\right)-f(\eta)\right\},
$$

where $\eta_{i}=$ restriction of η on the hexagon i, η^{i} is obtained from η by replacing $\eta_{i}: A \leftrightarrow B$.

Remark. If we consider on G_{∞}, for the grandcanonical ensemble μ_{U}^{ε} to be invariant, the rate of $\mathrm{B} \rightarrow \mathrm{A}$ (creation) is ε while the rate of $A \rightarrow B$ (annihilation) is 1 as in 2D case.

Hydrodynamic limit
H : continuum torus of lozenge, η_{t} : L-process on \mathcal{X}_{N}. Macroscopic empirical distribution of δ-bonds ($\delta=\beta$ or γ)

$$
\begin{aligned}
\xi^{\delta, N}(\eta, d x) & =\frac{1}{N^{2}} \sum_{b \in H_{N}^{B}: \delta-\text { type }} \eta_{b} \delta_{\frac{1}{N} x_{b}}(d x), \quad x=\left(x_{\beta}, x_{\gamma}\right) \in H, \\
\xi_{t}^{\delta, N}(d x) & =\xi^{\delta, N}\left(\eta_{N^{2} t}, d x\right) .
\end{aligned}
$$

Expected result: $\xi_{t}^{\delta, N} \rightarrow \xi_{t}^{\delta}$ and the limit is the solution of

$$
\frac{\partial \xi_{t}^{\delta}}{\partial t}=\frac{\partial}{\partial x_{\delta}}\left\{\sum_{\delta_{1}, \delta_{2} \in\{\beta, \gamma\}} D_{\delta_{1} \delta_{2}}\left(\xi_{t}^{\beta}, \xi_{t}^{\gamma}\right) \frac{\partial \xi^{\delta_{2}}}{\partial x_{\delta_{1}}}\right\},
$$

where

$$
\begin{aligned}
& D_{\delta_{1} \delta_{2}}(s, t)=\frac{1}{2 \chi_{\delta_{1} \delta_{2}}} \inf _{g \in \mathcal{C}_{0}, a_{1}+a_{2}=1}\left\langlec _ { 0 } \left\{\pi _ { 0 } \left(a_{1} \sum_{i} i_{\beta} \tau_{i} \eta_{b_{\beta}}\right.\right.\right. \\
& \\
& \left.\left.\left.\quad+a_{2} \sum_{i} i_{\gamma} \tau_{i} \eta_{b_{\gamma}}-\Gamma_{g}\right)\right\}^{2}\right\rangle,
\end{aligned}
$$

and $\langle\cdot\rangle=\langle\cdot\rangle_{s, t}$: Gibbs measures (Kenyon, Okounkov, Sheffield '06).

The correlation function decays slowly (quadratically):

$$
\begin{aligned}
& \left\langle\eta_{b_{\delta_{1}}} ; \eta_{b_{\delta_{2}}}+i_{\beta} e_{\beta}+i_{\gamma} e_{\gamma}\right\rangle \\
& \quad \equiv\left\langle\eta_{b_{\delta_{1}}} \eta_{b_{\delta_{2}}}+i_{\beta} e_{\beta}+i_{\gamma} e_{\gamma}\right\rangle-\left\langle\eta_{b_{\delta_{1}}}\right\rangle\left\langle\eta_{b_{\delta_{2}}}\right\rangle \\
& \quad \sim \frac{\text { const }}{\left|\left(i_{\beta}, i_{\gamma}\right)\right|^{2}} .
\end{aligned}
$$

In particular, χ does not converge absolutely. However, CLT is shown by Kenyon '08, Boutillier '07 as NaddafSpencer ' 97 did for $\nabla \phi$-interface model (Recall C^{2}-property of the surface tension is not known for $\nabla \phi$-interface model).

[^0]: *Partly with Makiko Sasada, Martin Sauer and Bin Xie, "Gradient Random Fields", BIRS (Banff), June 1st, 2011.

[^1]: *jointly with Makiko Sasada CMP'10

[^2]: *jointly with Makiko Sasada, Martin Sauer and Bin Xie, '11

