Scaling limits for

dynamic models of Young diagrams *

Tadahisa Funaki (Univ. Tokyo)

*Partly with Makiko Sasada, Martin Sauer and Bin Xie,
“Gradient Random Fields ", BIRS (Banff), June 1st, 2011.

START



Motivation

e Scaling limits for random Young diagrams (LLN).
- 2D: Vershik '96 discussed under several types of
statistics and derived Vershik curves in the limit.
- 3D: Cerf-Kenyon '01 derived the limit surface Wulff
shape characterized by a certain variational formula
(under uniform statistics).

e Our goal is to establish the corresponding dynamic theory.

e Our model describes a motion of (decreasing) interfaces,
called SOS dynamics.
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Zero-temperature Stochastic Ising model

(taken from Caputo-Martinelli-Simenhaus-Toninelli '10)
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Plan of talk
1. Ensembles of 2D Young diagrams

2. Non-conservative systems

2.1. Static results (for grandcanonical ensembles)
LLN (Vershik curves), CLT

2.2. Dynamic results

2.2.1. Dynamics of gradient fields (WAZRP, WASEP
with stochastic reservoirs at boundary)

2.2.2. Hydrodynamic limits (LLN)

2.2.3. Non-equilibrium fluctuations (CLT, SPDESs)
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3. Conservative systems

3.1. Static results (for canonical ensembles of gradients)

3.1.1. Equivalence of ensembles under inhomogeneous
conditioning (Local equilibrium)

3.1.2. Related Young diagrams

3.2. Hydrodynamic limits
Surface diffusion: conservative dynamics (conjecture)
— Dynamics associated with canonical ensembles

4. 3D case
Honeycomb dimers dynamics
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1. Ensembles of 2D Young diagrams

Uniform (Bose)-case: Restricted Uniform (Fermi)-case:

height % : [0,00) — Z4

height difference n : N — Z_

o 1 2 3 4 5 6 7 8
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e Uniform (Bose)-case:

oo
Pn = {v; Young diagram with area n}, P = U Pn
n=0

e Restricted Uniform (Fermi)-case:

On = {Y € Pp; height difference € {0,1}}, O = U On

n=0

n(yY) =n ifyveP, (i.e. n(yp) = area of )
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e canonical ensembles:

Uniform statistics (U-case)
MI} = uniform prob. meas. on P,

Restricted uniform statistics (RU-case)
;ﬂ}% :— uniform prob. meas. on 9,

e grandcanonical ensembles (superposition of CE):

O < e<1l: parameter

U-case  u& () 1= ZUl(s)s”(W, € P
RU-case  p%(y) = ZRl(S)e”W), P € Q

OH

8(")



2. Non-conservative systems

2.1. Static results (for grandcanonical ensembles)

(a) LLN (Vershik curves)

e For N >0, choose e =e(IN) = ¢y(N),ep(N) s.t.
EFU[n($)] = N2, EFE[n(4$)] = N2,

(i.e., the averaged areas of YD = N?2). Then,

(@ 7T
5U(N)—1—N+"'> Oé—%7
I6] T
N)y=1-—"-+4... = —.
_ P : o1 _2ay/n
(cf. Hardy-Ramanujan’'s formula: #Pp 4\/§n€ )

e Scaling for Young diagrams: For ¢ € P,

PV () = 9 (Nw), >0

(i.e., the averaged areas of scaled YD =1).
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Proposition 1. (Vershik, '96, LLN under ug(N) %(N))

N (u) — Yrr(w) in prob. under us(N),

o (u) — Ywr(u) in prob. under 'ng(N),

N —o0

where

Yy (u) = 1 log (1 - e_o‘u),
o

1
Yr(u) = 3 log (1 + e_ﬁu), u > 0.
The limit shapes are called VVershik curves.

Remark 1.

2 2
(1) Similar results hold under canonical ensembles u](}f ,u% :
(2) y=ypw) e +eW=1, y=ygru) e —ebfui=1
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Vershik curves
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(b) CLT

e Known results

- Pittel, '97: U-case

- Yakubovich, '99: RU-case
Vershik-Yakubovich, '01:

U-case with constraint on heights
Beltoft-Boutillier-Enriquez, '10:

U-case in a rectangular box
Beltoft, '10: thesis

e CLT under canonical ensembles can be reduced from that
under grandcanonical ensembles by removing the effect of
fluctuations of area.

e Fluctuations
Wl (u) i= VN (" (u) — vy (u))
Wi (u) = VN (v) —vr(w), u>0
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Proposition 2. (CLT under grandcanonical ensembles)

Wi (u) == Wy (u) weakly under 'ng(N),

N —o00
W (u) = W p(u) weakly under /f(N),
where Wi, W p are mean O Gaussian processes with co-

variance structures

Cy(a, ) = = min{pus (), pur ()},

@wm0=%mmwﬂwmmwh )

and py = —y;, pr = —' are slopes of Vershik curves,
respectively.
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2.2. Dynamic results

2.2.1. Dynamics of gradient fields (WAZRP, WASEP with
stochastic reservoirs at boundary)

e Dynamics associated with grandcanonical ensembles

Y

e Young diagrams <= Height differences (Gradient fields)

U-case E(k) =yp(k—-1)—yY(k)eZy, keN
RU-case n(k) . =¢(k—1) — (k) € {0,1}, keN
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Dynamics of height differences:

o U-case: & (k) €Zy, ke N, &(0) =o0
Weakly asymmetric zero-range process with weakly asym-
metric stochastic reservoir at £k =0

e RU-case: mi(k) € {0,1}, ke N, m(0) =00
Weakly asymmetric simple exclusion process with weakly
asymmetric stochastic reservoir at £k =20

2.2.2. Hydrodynamic limits (LLN) *

Height differences & or nt
= Evolving height functions ¥¢(u),u > 0

Diffusive scaling in space and time:

PNt 0) 1= <2, (Nu), w0,

*jointly with Makiko Sasada CMP'10
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Theorem 3. (U-case) If iy (0,u) o Yo(w), then
— 00

&g(tw) — Yy (t,u) in prob.

N—o0
The limit ¥y (t,u) is a solution of nonlinear PDE:
o = {¢'/(1 =)}y + o’/ (1 =), u>0,
¥(0,-) = ¢o(-),
Y(t,0+) = oo, ¥(t,00) =0,
where Opp = ) /Ot ' = O /Ou (< 0).

Remark 2. Vershik curve r; is a unique stationary sol of
this PDE.
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Theorem 4. (RU-case) If ) (0,u) e Yvo(w), then
— 00

&%(t,u) N Yr(t,u) in prob.

— 00

The limit ¥r(t,u) is a solution of nonlinear PDE:

op ="+ By (1+v"), wu>0,
¥(0,-) = ¢o(-),

V'(t,0+) = —%, W(t,00) = 0.

Remark 3. Vershik curve ¢ is a unique stationary sol of this PDE.

e T he boundary condition at O follows from the pointwise ergodicity:

lim P > 90| =0,

N —o0

1 1> (1)d 1
T2—T1/T1 IN2s 7o

for every 6 >0 and 0 < Ty < 1T5.

OH
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2.2.3. Non-equilibrium fluctuations (CLT, SPDEs) *

Wit u) i= VN (9 (8 u) — Pyt u))
WR(t,u) ;= VN (PR (t,u) — wr(t,uw))

Theorem 5. (U-case) WH (¢, u) = Wi (t,u) weakly.
— 0O
The limit W (t,u) is a solution of SPDE:

W/ (¢, u) )/ 1o W/ (¢, u)
(1 + ppy(t,u))? (1 + py(t,u))?

2pp(t,u) .
" \/1 Fouttw’

where py(t,u) = —yp(t,u) and W(t,u) is the space-
time white noise on [0,00) x R.

oWV (t,u) = (

*jointly with Makiko Sasada, Martin Sauer and Bin Xie, '11
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Theorem 6. (RU-case) W (t,u) = W p(t,u) weakly.
— OO
The limit W(t,u) is a solution of SPDE:

oW (t,u) = W' (t,u) + B(1 — 2pp(t, )W (t, u)

+ V2pr(t,u) (1 — pr(t, w))W(t,u),
W/(t,04+) = 0,

where pp(t,u) = —zp}%(t,u).
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Invariant measures of SPDEs

e U-case: Since py(t,u) P py(u) := —¢;(u), the SPDE
— 00
in equilibrium has the form:

OV = —gy(u) QuW + 29y (wW)W (¢, u)

where
g0 (u) = py(u)
1+ py(u)’
o 1 0
Qv = du (PU(U)(l + py(u)) 3U> vzl

Thus the invariant measure of Wy (t,u) is N(O,Q(_Jl). Since

Cy(u,v) is the Green kernel of Q(_fl (by checking QuyCy(-,v) =
5v»(+)), this gives another proof of static result, Proposition
2 in U-case.
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e RU-case: Since pp(t,u) P pr(u) ;= —¢p(u), the SPDE
— 00
in equilibrium has the form:

OV = —gr(u) QrV 4+ v29r(u)W (t,u)

where

gr(u) = pr(uw)(1 — pr(u)),

0 1 0 5
Qr=— ( ) on L“(R4,du),
ou \pr(u)(1 — pr(w)) du +
with Neumann condition at v« = 0. Thus the invariant

measure of Wp(t,u) is N(O,Q;%l). Since Cp(u,v) is the

Green kernel of Q];l (by checking QrCgr(:,v) = dy(-) and
Neumann condition at uw = 0), this gives another proof of
static result, Proposition 2 in RU-case.
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3. Conservative systems
3.1. Static results (for canonical ensembles of gradients)

3.1.1. Equivalence of ensembles under inhomogeneous con-
ditioning (Local equilibrium)

o n = (np)rez € {0,1}%: particle configuration on Z
Kp,(m) =Y mp  Mp,(n) =) kny.
ke keNy
Np={—¢ -0}
e Canonical ensemble = uniform probability measures va, i pr
on T, k,m = {n€{0,1}"; Kp,(n) = K, Mp,(n) = M}

e (Grandcanonical ensemble = Bernoulli measures v, OnN
{0, 1}% with mean «,a € (0,1)

e Y S W —" — =5 K=4M=4
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Theorem 7. K = Ky, M = My, kj = ky;,1 <j<p, s.l.

lim =pec (0,1),
Moy = re@D
M 1 1

lim = — Zp(1 = p),=p(1 —
PN YIS (=5p(1 =p), 5p(1 = p)),

k..
im 2L =gz, € (-1,1), ({z;} are distinct) -4 0
l—oo £ by

Then, for Vf;,1 < j < p local functions,

p p
£||m EV/\g,K,M[H Tkjfj] = H EVB(m-) [fj]?
— 00 j=1 j:1 J

where 1. are shifts by k and

ebq

= ya,b) = :
5(a) = Bsia,h) = i
with a € (0,1) and b € R determined from p and m by
1 1
(1) 1/ B(x;a,b)dx = p, l/ xB(x; a,b)dr = m.
2J)_1 4 1
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Remark 4. (i) (Local equilibrium) Theorem 1 implies:

. 1
|Imk V/\g,K,MOTk _Vﬁ($)7
l—00,7—x

and asymptotic independence for distinct x.

(ii) The relation (1) defines a diffeomorphism:

(a,b) € (0, 1)xR — (p,m) € D = {o <p<Llm| < o1 —p>}

This part is due to arXiv:1103.5823
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Proof e If 3(-) = B3(+;a,b) for some a,b, then

A
Vﬁ(g.)('|z/\g,K,M) = va,Kk,M (),
where Vé\(E.) = distri. of indep. {ni}ren, s-t. Eln] = B(k/L).

e (p =1 for simplicity) From the above observation,
EV/\K,K,M [ka] - El/ﬁ(m) [f]

= Y {f©) — By ) 5( ab)(ﬂ|r+k = & Kp,(n) = K, Mp,(n)
- Y6 (=)

=M)

¢e{0,1}1 +k 5( b) (K/\g(n) = K, Mp,(n) = M)
for all local function f with support I' € Z.

e We show the local limit theorem for (K, (1), Ma,(n)) un-

der ué\(ﬁ_). The sum of independent r.v.'s Mp, = ZkE/\g kny,

has a growing weight k, and therefore {kn;}, doesn’'t satisfy
“good” moment conditions required for the classical local
limit theorem (cf. [Petrov]). []
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3.1.2. Related Young diagrams

e Young diagrams in RU-case (i.e. height difference € {0,1})
height = K, side length =2¢/+4+ 1, area = A

Vi(u),u € [0 — 1,4]: height function of Young diagram

e Corresponding particle picture:
e = t(k — 1) — ¢*(k): height difference, 1= (ng)ken,

K = Kp,(n): height at u = —£ -1
A =2 ren b+ 04+ 1D)n = L+ 1)Kp,(n) + Ma, (1)

-ip——3
o

LR IITLIL LI 7Y 11277
- - A £

|<— 2 5 —
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e Scaling: ¥t (z) = %M(&U}, x € [—1,1]

Corollary 8. Under the same conditions as Theorem 1,

lim vp, xar | Sup W(a:) —w(x)‘ >l =0, 5§>0
{—00 ze[—1,1]

where (x) = [} B(y)dy, = € [-1,1].
The limit ¢ has a slope ¥/(z) = —B(z) and satisfies
1

w1 =2p, ww=0 | (U(@)de =20+ 4m,

Tﬁ” + C?,b/(l —+ w/) = O, (—wl . stationary sol of viscous Burgers' eq)
with ¢ = —b (¢ = w/+/12 for Vershik curve).
¢
/,
N ,

e Beltoft-Boutillier-Enriquez ('10) : U-case, Grandcanonical ensembles,
in @ rectangular box

/

2§

X
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3.2. Hydrodynamic limits

e Surface diffusion: conservative dynamics (conjecture)

e Dynamics associated with the RU-canonical ensembles:

A F
s/ .
» : V/f,\»
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e Dynamics associated with the RU-canonical ensembles:
The dynamics preserve the area of YD, i.e., creation
and annihilation of unit squares take place simultaneously.
Or, a unit square moves on the surface of YD until it
finds another stable position keeping height differences
€ {0,1}.
The jump rate of a square falling down a stair with
length = and its reversed transition is ¢/’ > 0.

The jump rate of a square sliding over a flat piece of
length r and its reversed transition is ¢& > 0.

e \We consider the associated particle system on a torus.
n(k) € {0,1}, keTy=7Z/NZ

O} 29(1)



e Scaling (t — N4t)'

& (du) = Z e (K)o n(du), weT=]0,1].
kEN

e Expected result: &V (du) — p(t,u)du
Cahn-Hilliard type nonlinear PDE:

Op _ 32 32
= D(p)—= T

oo

1 1 1
D - E (0,r) | _§ : 2 2
(0) = p(1 —p)gltgfmeél 1<C(O’T){W (Mg 2 < kon(k))}

_ 1
+ e oyfmTO (Mg + 52k2n<k>>}2>p, Fg=> T4y
k
c(0.4r) 1 JUMPp rates determined by ¢/, ¢

7(0:%E7) - transition operators
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e Laplacian replacement (Fluctuation-dissipation relation)
for the current:

W = —D(p)(n1 — 200 +n_1) + L°F
where

W=)> (r+1W,;

r=1
Wy =l (1 ump} — L{inward jump} )
r r {outward jump} {inward jump}

G
+ ¢ (1{outward jump} — 1{inward jump})
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4. 3D case

Limit shapes of scaled surfaces of 3D Young diagrams
under uniform ensemble are studied by Cerf-Kenyon '01

limit surface

taken from Cerf-Kenyon
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Under the projection to the plane {x +y + z = 0}, 3D
Young diagrams can be transformed into lozenge tiling or
dimer configurations on a honeycomb lattice.

OH 33(")



OH

Honeycomb lattice G«

Dual lattice
(triangular lattice)
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Torus Hy = Goo/NZ?

n
.
"4 . a
v .
r +*
.

picture of H3
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Dynamics of dimers on Hys

H7y;: dual lattice of Hy (triangular lattice)
1 € Hj‘v represents a hexagon
HE = {all undirected bonds of Hy}
Xy = {n: HY — {0,1}, dimer covers of Hy}
i.e., {b={u,v} € Hy;n, = 1} covers Hy disjointly.

Generator of simple dimer process on Hpy
f : XN — R
LE) = [Lpmay + Lpmny| {FOD = £},

i€ HYy,
where n; = restriction of n on the hexagon i, n* is obtained
from n by replacing n;: A < B.
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Remark. If we consider on G, for the grandcanonical
ensemble uf; to be invariant, the rate of B — A (creation)
is ¢ while the rate of A — B (annihilation) is 1 as in 2D

Case.
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Hydrodynamic limit
H: continuum torus of lozenge, n:: L-process on X}y .
Macroscopic empirical distribution of §-bonds (6 = 3 or ~)

1
N do) =5 Y. mby, (dn), @ =(vgay) € H,
be HE:5—type

&N (dz) = 9N (o2, dz).
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Expected result: gf’N — g;f and the limit is the solution
of

0g 0 092
a—tt — 87 Z D5152(§tﬁ)§g)ax— )
0 | 61,60€{B7} o1
where
1
Ds, s5,(s,t) = inf (co{mola1 > igmimp
10 2X5,6, 9€C0,a1+ax=1 ZL: BTlbg

+az) WY TiMby, — T},

X51,52 (87 t) — Z<T]b51 1 nb52—|—i5€ﬁ+i7€y>7

1

and (-) = (:)st: Gibbs measures (Kenyon, Okounkov, Sheffield
'06).
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The correlation function decays slowly (quadratically):
<77651 1 77b52-|—i565-|—72767>
= {15, Mo, +igegtiyey) = (s, ) (Mbs,)
const
|(ig,iy)[%
In particular, xy does not converge absolutely. However,
CLT is shown by Kenyon '08, Boutillier '07 as Naddaf-

Spencer '97 did for Vg-interface model (Recall C2-property
of the surface tension is not known for V¢-interface model).
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End of slides. Click [END] to finish the presentation.
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