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Outline

• (Brief) Introduction on Ising model and Onsager’s exact solution.

• Definitions of the Eight-Vertex and Ashkin-Teller models.

• Qualitative discussion of the critical properties.

• List of rigorous results.

• Open problems.
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Ising Model

Configuration: Place +1 or −1 at each site of Λ

σ = {σx = ±1 | x ∈ Λ}

Energy: given J (positive for definiteness)

H(σ) = −J
∑
x∈Λ
j=0,1

σxσx+ej

Probability: given the inverse temperature β ≥ 0

P(σ) =
1

Z(Λ, β)
e−βH(σ) Z(Λ, β) =

∑
σ

e−βH(σ)

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Ising Model

Configuration: Place +1 or −1 at each site of Λ

σ = {σx = ±1 | x ∈ Λ}

Energy: given J (positive for definiteness)

H(σ) = −J
∑
x∈Λ
j=0,1

σxσx+ej

Probability: given the inverse temperature β ≥ 0

P(σ) =
1

Z(Λ, β)
e−βH(σ) Z(Λ, β) =

∑
σ

e−βH(σ)

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Ising Model

Configuration: Place +1 or −1 at each site of Λ

σ = {σx = ±1 | x ∈ Λ}

Energy: given J (positive for definiteness)

H(σ) = −J
∑
x∈Λ
j=0,1

σxσx+ej

Probability: given the inverse temperature β ≥ 0

P(σ) =
1

Z(Λ, β)
e−βH(σ) Z(Λ, β) =

∑
σ

e−βH(σ)

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Ising Model

Free Energy:

f (β) = − lim
Λ→∞

1

β|Λ|
lnZ(Λ, β)

Specific Heat:

C(β) =
d2

dβ2
[βf (β)]

Energy Density

G(x− y) = 〈OxOy〉 − 〈Ox〉〈Oy〉 Ox =
∑
j=0,1

σxσx+ej
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Ising Model

Onsager’s Exact Solution [1944]

• free energy

βf (β) =

∫ π

−π

dk0

2π

∫ π

−π

dk1

2π
log

[(
1− sinh 2βJ

)2
+ α(k) sinh(2βJ)

]
for α(k) = 2− cos(k0)− cos(k1)

• specific heat

C(β) ∼ C log |β − βc | βc =
1

2J
log(
√

2 + 1)

• correlations for |x− y| → ∞

G(x− y) ≤ Ce−µ(β)|x−y| if β 6= βc

G(x− y) ∼
C

|x− y|2
if β = βc
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Meaning of Onsager’s construction

Grassmann Algebra [=Fermions] ψ1, . . . , ψn such that

ψiψj = −ψjψi

for i1 < i2 < · · · < iq∫
dψj ψi1 · · ·ψipψjψip+2

· · ·ψiq = (−1)pψi1 · · ·ψipψip+2
· · ·ψiq∫

dψj [no ψj ] = 0

Grassmann Gaussian Integral Two sets of Grassmann variables, ψ1, · · · , ψn and
ψ̄1, · · · , ψ̄n ∫

dψ1dψ̄1 · · · dψndψ̄n exp
{∑

i,j

ψ̄iMijψj

}
= det(M)

Onsager’s construction [...actually Kasteleyn’s] Two sets of 2|Λ| Grassmann variables,

Z(Λ, β) = detM =

∫
DψDψ̄ exp

{ ∑
α,β=1,2

∑
i,j∈Λ

ψ̄α,iM
αβ
ij ψβ,j

}
Ising model= system of free fermions
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Eight Vertex Model

Sutherland (1970),
Fan and Wu (1970):

Draw arrows on the edges of a
two-dimensional square lattice, with the
restriction that an even number of
arrows points into every vertex.
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Eight Vertex Model

8 possible arrangements of arrows at a site.

E EE

E E

1 2

3 4

Assign four possible energies (’zero field’ case).

Total Energy
H(ω) = E1n1(ω) + E2n2(ω) + E3n3(ω) + E4n4(ω)
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Ashkin-Teller Model

Ashkin and Teller (1943)

Place a label A,B,C or D to each site
of two-dimensional square lattice.

D A B A

C B A B

D A C C

D A B B
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Ashkin-Teller Model

10 possible non oriented arrangements of labels at an edge.

A A

B B

E1

C C

D D A D

E2

B C

A C

E3

B D A B

E4

C D

Assign four different energies (case E2 = E3 = E4 6= E1 is ’4 States Potts Model’)

Total Energy
H(ω) = E1n1(ω) + E2n2(ω) + E3n3(ω) + E4n4(ω)
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8V and AT

In both models

H(ω) = E1n1(ω) + E2n2(ω) + E3n3(ω) + E4n4(ω)

Probability of a configuration ω, given inverse temperature, β ≥ 0,

P(ω) =
1

Z
e−βH(ω) Z =

∑
ω

e−βH(ω)

• Without loss of generality, assume E1 + E2 + E3 + E4 = 0
i.e. the independent parameters are 3.

• 8V and AT belong to a bigger class, the double Ising Models:
(more intuitive qualitative analysis)
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Double Ising Model

Wu (1971),
Kadanoff and Wegner (1971)
Fan (1972)

A configuration (σ, σ′) is the product of
two configurations of spins
σ = {σx = ±1}x∈Λ and
σ′ = {σ′x = ±1}x∈Λ.
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Double Ising Models

The energy of (σ, σ′) is function of J, J′ and J4

H(σ, σ′) = −J
∑
x∈Λ
j=0,1

σxσx+ej − J′
∑
x∈Λ
j=0,1

σ′xσ
′
x+ej
− J4V (σ, σ′)

where V quartic in σ and σ′:

V (σ, σ′) =
∑
x∈Λ
j=0,1

∑
x′∈Λ
j′=0,1

vj−j′ (x− x′)σxσx+ej σ
′
x′σ
′
x′+ej′

for vj (x) a lattice function such that |vj (x)| ≤ ce−κ|x|.

Probability of a configuration (σ, σ′)

P(σ, σ′) =
1

Z
e−βH(σ,σ′) Z =

∑
σ,σ′

e−βH(σ,σ′)
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Double Ising Models

The 8V and AT models are equivalent to a doubled Ising model if:

E1 = −J − J′ − J4 E2 = J + J′ − J4

E3 = J − J′ + J4 E4 = −J + J′ + J4

8V : V (σ, σ′) =
∑
x∈Λ
j=0,1

σx+e0σx+j(e0+e1)σ
′
x+e1

σ′x+j(e0+e1)

AT : V (σ, σ′) =
∑
x∈Λ
j=0,1

σxσx+ej σ
′
xσ
′
x+ej

8V AT
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Double Ising Models

Free energy

f (β) = − lim
Λ→∞

1

β|Λ|
lnZ(Λ, β)

Specific Heat:

C(β) =
d2

dβ2
[βf (β)]

Energy Density - Crossover

Gε(x− y) = 〈Oεx Oεy 〉 − 〈Oεx 〉〈Oεy 〉

where

O+
x =

∑
j=0,1

σxσx+ej +
∑
j=0,1

σ′xσ
′
x+ej

O−x =
∑
j=0,1

σxσx+ej −
∑
j=0,1

σ′xσ
′
x+ej
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Double Ising Models

Typical case: µ(β) > 0

|Gε(x− y)| ≤ Ce−µ(β)|x−y| , |C(β)| <∞

(inverse) critical temperature βc s.t. µ(βc ) = 0, then:

• algebraic decay of correlations

Gε(x− y) ∼
C

1 + |x− y|2xε
, |C(β)| =∞

and x+ and x− are the energy and crossover critical exponents

• µ(β) ∼ C |β − βc |ν and ν > 0 is the correlation-length critical exponent

• C(β) ∼ C |β − βc |−α and α > 0 is the specific heat critical exponent

Finally we have four critical exponents:

x+ x− ν α

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Double Ising Models

Typical case: µ(β) > 0

|Gε(x− y)| ≤ Ce−µ(β)|x−y| , |C(β)| <∞

(inverse) critical temperature βc s.t. µ(βc ) = 0, then:

• algebraic decay of correlations

Gε(x− y) ∼
C

1 + |x− y|2xε
, |C(β)| =∞

and x+ and x− are the energy and crossover critical exponents

• µ(β) ∼ C |β − βc |ν and ν > 0 is the correlation-length critical exponent

• C(β) ∼ C |β − βc |−α and α > 0 is the specific heat critical exponent

Finally we have four critical exponents:

x+ x− ν α

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Double Ising Models

Typical case: µ(β) > 0

|Gε(x− y)| ≤ Ce−µ(β)|x−y| , |C(β)| <∞

(inverse) critical temperature βc s.t. µ(βc ) = 0, then:

• algebraic decay of correlations

Gε(x− y) ∼
C

1 + |x− y|2xε
, |C(β)| =∞

and x+ and x− are the energy and crossover critical exponents

• µ(β) ∼ C |β − βc |ν and ν > 0 is the correlation-length critical exponent

• C(β) ∼ C |β − βc |−α and α > 0 is the specific heat critical exponent

Finally we have four critical exponents:

x+ x− ν α

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Double Ising Models

Typical case: µ(β) > 0

|Gε(x− y)| ≤ Ce−µ(β)|x−y| , |C(β)| <∞

(inverse) critical temperature βc s.t. µ(βc ) = 0, then:

• algebraic decay of correlations

Gε(x− y) ∼
C

1 + |x− y|2xε
, |C(β)| =∞

and x+ and x− are the energy and crossover critical exponents

• µ(β) ∼ C |β − βc |ν and ν > 0 is the correlation-length critical exponent

• C(β) ∼ C |β − βc |−α and α > 0 is the specific heat critical exponent

Finally we have four critical exponents:

x+ x− ν α

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Double Ising Models

Typical case: µ(β) > 0

|Gε(x− y)| ≤ Ce−µ(β)|x−y| , |C(β)| <∞

(inverse) critical temperature βc s.t. µ(βc ) = 0, then:

• algebraic decay of correlations

Gε(x− y) ∼
C

1 + |x− y|2xε
, |C(β)| =∞

and x+ and x− are the energy and crossover critical exponents

• µ(β) ∼ C |β − βc |ν and ν > 0 is the correlation-length critical exponent

• C(β) ∼ C |β − βc |−α and α > 0 is the specific heat critical exponent

Finally we have four critical exponents:

x+ x− ν α
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Qualitative Discussion

Assume for definiteness J, J′ > 0

H(σ, σ′) = −J
∑
x∈Λ
j=0,1

σxσx+ej − J′
∑
x∈Λ
j=0,1

σ′xσ
′
x+ej

• for J 6= J′, J4 = 0: two critical temperatures,

βc =
1

2J
ln(
√

2 + 1) β′c =
1

2J′
ln(
√

2 + 1)

critical exponents
x+ = x− = 1
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H(σ, σ′) = −J
∑
x∈Λ
j=0,1

σxσx+ej − J′
∑
x∈Λ
j=0,1

σ′xσ
′
x+ej
− J4V (σ, σ′)

• for J 6= J′, J4 = 0: two critical temperatures,

βc =
1

2J
ln(
√

2 + 1) β′c =
1

2J′
ln(
√

2 + 1)

critical exponents
x+ = x− = 1

• for 0 < |J4| << |J − J′|: two critical temperatures, for λ = J4/J and λ′ = J4/J′

βc =
1

2J
ln(
√

2 + 1) + O(λ, λ′) β′c =
1

2J′
ln(
√

2 + 1) + O(λ, λ′)

critical exponents
x+ = x− = 1

[universality]
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Qualitative Discussion

Assume for definiteness J > 0

H(σ, σ′) = −J
∑
x∈Λ
j=0,1

σxσx+ej − J
∑
x∈Λ
j=0,1

σ′xσ
′
x+ej
− J4V (σ, σ′)

• for J = J′, J4 = 0: one critical temperature,

βc =
1

2J
ln(
√

2 + 1)

critical exponents
x+ = x− = 1

• for 0 < |J4| << J: one critical temperature, for λ = J4/J

βc =
1

2J
ln(
√

2 + 1) + O(λ)

critical exponents

x+ = 1 + X+(λ) x− = 1 + X−(λ)

[non-universality]
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Qualitative Discussion

For |J′ − J| → 0,
|β1,c − β2,c | ∼ |J − J′|xT

A 5◦ index, the transition index xT . Then we have 5 critical exponents:

x+(λ) x−(λ) ν(λ) α(λ) xT (λ)
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Qualitative Discussion

Motivation:

• When critical indexes are model-independent, they can be compared with
experiments.

u. class ν νth α αth

Rb2C0F4 Ising .99±.04 1 0(log)
K2C0F4 Ising .97±.04 1 0(log)

4He/graphite Potts-3 .36±.03 .33...
H2/graphite Potts-3 .36±.05 .33...
H/Ni (111) Potts-4 .68±.07 .66...

PVA SAW .79±.01 .75
PMMA θ-SAW .56±.01 .57...

3-MP-NE 3D Ising .625±.003 .630±.002
SF6 3D Ising .11±.03 .110±.003
4He 3D XY .6702±.0002 .669±.001

• In 8V and AT critical exponents are model-dependent: still a weak form of
universality is retained: some universal formulas have been conjectured for these
nonuniversal indexes.
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Universal formulas

Kadanoff and Wegner (1971)
Luther and Peschel (1975)

dν = 2− α ν =
1

2− x+

Widom scaling relations: valid at criticality for any model in any dimension < 4;
they don’t characterize classes of models
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Universal formulas

Kadanoff (1977)

x+ x− = 1

Extended scaling relation: characterize models with scaling limit given by Thirring
Model
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Thirring model

Thirring model (Thirring 1955) is a toy model of interacting, 2-dimensional, fermion,
quantum field theory. The Action is∫

dx ψ̄x 6∂ψx + λ

∫
dx (ψ̄xψx)2

for

ψx = (ψ1,x, ψ2,x) ψ̄x =

(
ψ̄1,x

ψ̄2,x

)
6∂ = 2× 2matrix

From the formal explicit solution of the Thirring model (Klaiber 1967, Hagen 1967)

xTh+ =
1− λ

4π

1 + λ
4π

xTh− =
1 + λ

4π

1− λ
4π

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Thirring model

Thirring model (Thirring 1955) is a toy model of interacting, 2-dimensional, fermion,
quantum field theory. The Action is∫

dx ψ̄x 6∂ψx + λ

∫
dx (ψ̄xψx)2

for

ψx = (ψ1,x, ψ2,x) ψ̄x =

(
ψ̄1,x

ψ̄2,x

)
6∂ = 2× 2matrix

From the formal explicit solution of the Thirring model (Klaiber 1967, Hagen 1967)

xTh+ =
1− λ

4π

1 + λ
4π

xTh− =
1 + λ

4π

1− λ
4π

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Rigorous Results

Pierluigi Falco Interacting Fermions Approach to 2D Critical Models



Rigorous results: Exact Solutions

Lieb (1967), Sutherland (1967)

• f (β), βc and α for 6V.
By-product: f (βc ) and α for AT

Baxter (1971)

• f (β), βc and α for 8V

• interfacial-tension critical index.

Johnson, Krinsky and McCoy (1972)

• ν (which does satisfy 2ν = 2− α)

No exact solution for x+, x−, xT ; no exact solution for other Double Ising models.
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Rigorous results: RG

Spencer, Pinson and Spencer (2000)

Ising model with finite range (even) perturbation:

H(σ) = −J
∑
x∈Λ
j=0,1

σxσx+ej − J4V (σ)

If ε = J4/J

• x+ = 1 for ε small enough.

Method of the proof:

– Functional integral representation of the Ising model

Z(Λ, β) =

∫
DψDψ̄ exp

{∑
ψ̄Mψ + λ

∑
(ψ̄∂ψ)2

}
λ ∼ J4/J

– Renormalization group approach for computing x+.
based on RG approach for fermion system Feldman, Knörrer, Trubowitz, (1998)
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Rigorous results: RG

Mastropietro (2004)

Double Ising: for J′ = J and J4/J small enough

• convergent power series for βc (J4/J)

• convergent power series for ν(J4/J) and x+(J4/J).

Giuliani and Mastropietro (2005)

Double Ising: for J 6= J′ and J4/J, J4/J′ small enough

• convergent power series for βc (J4/J, J4/J′) and β′c (J4/J, J4/J′)

• convergent power series for xT (J4/J) [First time the index xT was introduced]

based on RG approach for system with ’vanishing beta function’ Benfatto, Gallavotti, Procacci, Scoppola (1994);

review of last three results in the book Mastropietro 2006

Above power series are convergent but no explicit formulas: not useful for extended
scaling formula.
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Rigorous results

Benfatto, Falco, Mastropietro (2007), (2009)

Thirring model for |λ| small enough:

• Existence of the theory (in the sense of the Osterwalder-Schrader)

• Proof of Hagen and Klaiber’s formula for correlations.

There was already an axiomatic proof of the existence of the interacting theory: not good for scaling limit

Benfatto, Falco, Mastropietro (2009)

Double Ising model: for J4/J small enough

• proof of the universal formulas

2ν = 2− α ν =
1

2− x+
x+ x− = 1

• a new scaling relation for the index xT

xT =
2− x+

2− x−

Similar results for the XYZ quantum chain
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Idea of the proof: RG approach

Multi-scale decomposition:

Z =

∫
dP(ψ) eλV (ψ) = E

[
eλV (ψ)

]
= lim

h→−∞
Eh ◦ Eh+1 · · ·E−1 ◦ E0

[
eλV (ψh+···+ψ−1+ψ0)

]
where ψh, . . . , ψ−1, ψ0 are i.r.v. and

Ej [ψj,xψj,y] = Γj (x− y) with |∂mΓj (x)| ≤ γmjCecγ
j |x|

Define

eλ−1V (ϕ)+R−1(ϕ) = E0

[
eλV (ϕ+ψ0)

]
eλ−2V (ϕ)+R−2(ϕ) = E−1

[
eλ−1V (ϕ+ψ−1)+R−1(ϕ+ψ−1)

]
· · ·

eλjV (ϕ)+Rj (ϕ) = Ej+1

[
eλj+1V (ϕ+ψj+1)+Rj+1(ϕ+ψj+1)

]
· · ·

In correspondence there is a sequence of effective couplings

λh, λh+1, . . . , λ−1, λ
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Scaling limit and RG

The flow of the effective coupling λj is

0-5-10-15...

lattice model

The crucial fact is that, given λ = J4/J, it is possible to choose λTh such that

λ−∞ = λTh−∞

Therefore
xε(λ) = xThε (λTh) ε = ±
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Non-universality

The connection with experiments is the following:

• Threshold in J4/J for the Kadanoff law: no numerical simulation (but there are
simulations of other exponents...)

• Connection with real laboratory experiments [Se/Ni (100)]? No experimental
verification of Kadanoff law.
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Conclusions and Open Problems

model lattice scaling limit

Ising free fermions free fermions

Ising + n.n.n. interacting fermions free fermions

8V, AT, XYZ interacting fermions Thirring

in preparation:

(1 + 1)D Hubbard interacting fermions SU(2) Thirring

Open problems:

• Interacting dimers / 6V Model
numerical simulations in Alet, Ikhlef, Jacobsen, Misguich, Pasquier (2006)

• Four Coupled Ising / Two Coupled 8V

• q−States Potts / Completely Packed Loop /...

• Spin-Spin Correlation in Ising / Other Kadanoff Formula
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