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» the general setting: Anderson localization, random
matrices and sigma models

» a toy model for quantum diffusion
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Disordered conductors

Anderson localization: disorder-induced localization of
conducting electrons

the model

» quantum system — lattice field model
» Hamiltonian H = H*: matrix on A = cube in Z¢

> ¢ eigenvector of H: 3 ..\ 9> =1 — |¥j]* o prob. of
finding the electron at lattice point j

then:

> |1j|? =~ const Vj = extended state (conductor)

> |j|* # 0 only near j = jo = localized state (insulator)
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The problem

study statistical properties of large matrices with random
distributed elements:

H*=H, H;;i,j € ACZ P(H) probability distribution

limit |[A| — oo

> eigenvalues A1, ... \\
» correlation functions
> largest eigenvalue...
> eigenvectors iy
» localized: ¥, = (0,1,0,...,0)

» extended: ¥, = \/ﬁ(l,l, o1
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Models for quantum diffusion:

a) Random Schrédinger
B A discrete Laplacian on A,
Hy=—A+AV, Vij = 6;;V; iid. random var.,j € A

A = strenght of the disorder

2+ AV -1 o 00 -~ 0 -1
-1 24AVe =1 0 O
0 -1
Hy =
0
-1 0 0 -1 24+ AVy
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Limit cases

» A=0: H=—A (extended states)

» A >>1: H ~ \V diagonal matrix (localized states)

General case: A — Z9, )\ fixed

» d=1— VA > 0 localization (proved)
» d=2— VA > 0 localization (proved for large disorder)

B A large  localized (proved)
>d=3- { A small extended (conjecture)

very hard problem!
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2) Random band matrix: H* = H, H;; i,j € A C 74

» H;; ind. gaussian rand. var. with (H;;) =0
» (|H;j|%) = Jij with 0 < J;; < e—li=il/W

0
H= W
0
band width = W
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Limit cases

» W = |A|: GUE (extended states)
» W = 0: diagonal disorder (localized states) = W ~ 7!

General case: |A| — oo, W fixed
expect same behavior as RS with W ~ \~!:
» d=1—V W >0 localization (“proved”)

» d=2— VY W >0 localization

W small localized

>d=3- { W large extended

d = 3 — rigorous estimates for the density of states
(necessary but not enough)

a bit easier (more average) but still a hard problem!
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Criteria for quantum diffusion
Green’s Function: GE(E; r,y)=(H - E+ic) Y z,y) E€Re>0
= IGe(Es2,y)*)u = [ dH P(H) |Ge(E;2,y)?

1. |z —y[>>1

> (|Ge(Bsz,y) ) m < mee_lw_y‘/é = localized

> (|G(B;z,y) [P > CO"‘T; = extended

[z—y

2. x =y, elAl =1
> (|Ge(B;z,2)|*) > Comt = localized

> (|G (E;2,7)|?)y < const = extended



The general setting A toy model for quantum diffusion

Technique: supersymmetric approach

1. change of representation — new expression where saddle
analysis is possible

2. rigorous saddle analysis

» integral along the saddle (symmetries, convexity bounds)
» fluctuations around the saddle (cluster expansion, small
probability)
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1. Change of representation

algebraic operations involving ordinary (bosonic) and
anticommuting (fermionic) variables

SUSY
<|G6(E§xay)‘2>]{ - fdﬂ({Qj})O(QraQy)
H;; — Q; = 4 x 4 supermatrix
|A|? variables —  4]A] variables
H;; independent var. — Q; strongly correlated

less variables

1. advant : .. .
advaiitages { saddle analysis is possible

integrate out fermionic variables
2. problems: ¢ complex measure (no probability estimates)

saddle manifold non compact
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2. Saddle analysis: analytic tools

new integration variables

» slow modes along the saddle manifold — non linear
sigma model (NLSM)

» fast modes away from the saddle manifold

fast modes

slow modes

P

saddle manifold

NLSM is believed to contain the low energy physics
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non linear sigma model

dp(Q) — dpsed¥e(Q) = [[1;ep dQj 6(Q2 — Id)] e FVQ =M@
features

» saddle is non compact
> 10 mass: €=ﬁ—>0a8 |A] — o0

» internal symmetries (from SUSY structure)

main problem: obtain the correct € behavior
hard to exploit the symmetries — try something “easier”
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A nice SUSY model for quantum diffusion

vector model (no matrices), Zirnbauer (1991) — expected to
have same features of exact SUSY NLSM model for random
band matrix

main advantages

» after integrating out anticommuting variables measure is
positive

» symmetries are simpler to exploit

= good candidate to develop techniques to treat quantum
diffusion
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The model
same symmetric group as for the NLSM:

> supermatrix Q); — supervector v; = (z;, Y5, 2,&5,1j),

x,y,z € R, &, n grassmann variables

(v,0") = =z + a2’ +yy' + &' — €

» saddle constraint: (Q;)? = Id — (vj,v;) = —1

:>Zj = \/1+x?+y]2+2§j77j
» kinetic term: F(VQ) — (Vv, Vo)

» mass: M(Q) — z—1
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Change of coord. + integrating out the Grassman var.

du(v) — du(t) = Hdt e7t] e B det'2[M5(t)] t;jeR,jeA

» B(t) = B > (cosh(t; —ty)—1) + € (cosh t; — 1),

<j,j'> JEA
e>0= “mass”, >0

» M5(t) >0 positive quadratic form:

ZszA ijfi = B Z ; 2 elitty —1—52 fj2 el >0

ijeA <j,j’> jEA
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The observable:

current-current correlation —

— -l _ oyt
O=D,, =e*M, e

Main result: phase transition in d = 3

> (3 large: <D;y1 > ~ (—ﬁA—i—e);yl 1

o~ 1
lz—y|

“ as a quadratic form ”

— extended states
» (3 small: < D;yl > < %e‘mmm_y' pointwise

— localized states
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large [
Main result (M.D. T. Spencer, M. Zirnbauer)
If 6 >> 1 and d = 3 the t field does not fluctuate:

( (coshty —t,)™ ) <2 Va,y € A

for0 <m< 51/ 8 uniformly in the volume A and e.

Proof:

» bound on nn fluctuations |x — y| = 1: Ward identites

» conditional bound on large scale fluctuations: Ward
identites

» unconditional bound on large scale fluctuations: previous
bounds plus induction on scales (’simple’ renormalization

group)
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m
—_ ny

g

)

)

Ward identities
< cosh™(t, — ty) (1 -

SUSY = 1 =
where 0 < Cyy = el [(§, — &) ML(t) (6, — dy)]
if C;y <1 for all ¢t configurations then
m
1— =
g

1

S 1o

(cosh™(ty —t,) ) <

1= <coshm(tz —ty) <1 — ZLCZ@J > > ( cosh™(ty —ty) ) <
5

=
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> if |x —y| =1 Cyy < 1 for all ¢ configurations:
1
<

= (cosh™(ty —ty) ) T m
7

> if [z — y| > 1 no uniform bound on C,!:
> Cyy < 1if lower scale fluctuations are bounded:
1

<

= ( Xaycosh™(t; —ty) ) T m
B

conditioning must respect SUSY!

» unconditional bound: induction on scales
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£ small

Main result ( M.D., T. Spencer)
If B << 1 then for any dimension d > 1

< D! > < L e=mle=ul for all z,y unif. in A and £

Yy 3

Proof

a. reduce the problem to integral along a path 7., connecting

x toy
Y

|

X

b. the integral along v is 1d and can be computed “almost”
explicitely. The sum over paths is controlled by § small.
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Conclusions

advantages of the SUSY technique

» Ward identities + induction on scales allow to obtain
bounds (no multiscale analysis or cluster expansion):
“easy” renormalization group

» method gives information both in the extended states and
localized states region

open problems

» generalize this technique to the band matrix model (the
fermionic term is more complicated, the measure is no
longer real)
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