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The Classical XY model

» Let G = (Z9, &) with distance ||x — y||2 (d > 2).

» ForxeZq o, St o= (0x)xezd € Q
Equipped with i.i.d. uniform measure [[, ., dv(ox).
Define —H; : Q2 — R by

—H(o) = Z Ox - Oy
x=ylla=1, x,y€AL
> Gibbs Weight
dur(o) = 2 te M) TT du(oy)

xENL

» Averages denoted by
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Low Temperature, [ large



Ordering in Gibbs States

» Given A C Z9 finite, how does
1
m(A) = <W > oL
xXEA

behave as A varies. Are there preferred directions?

» Technically, need Boundary Conditions:

_H(UW): Z Ox 0y

HXﬁ}/”Z:l’X:yeAL

+ Z ox-ny (1)

[Ix—=ylla=1,xeAL,y¢AL

Natural choices: 7, = u, wu e Sh



Local Fields
For x € Z9, ax(w) i.i.d. {1} Bernoulli.

—H%(o|n) = Z Ox 0y +€ Z ax(w)ey - ox

Ix=yll2=1,x,y€A, xENL

+ Z ox -1y (2)

||X_Y||2:17X€AL7y¢AL

Gibbs State as before.
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Basic Question

» Given ¢, does this model order at 3 large (T low)?
» Given A C Z9 finite, how does

mi(A) = <|Af’ > o

x€A

behave as A varies. Are there preferred directions?



Basic Question

» Given ¢, does this model order at 3 large (T low)?
» Given A C Z9 finite, how does

behave as A varies. Are there preferred directions?

> Believed that ordering occurs in €; direction.

» Robust: Any symmetric distribution for ax. Even may take
bias, e.g. P(ax=1)=p .

» Similar Phenomena should exist in any spin model with
continuous spin space.



Why is this Interesting? Two Related Models:

» From now on, we restrict attention to Zd, d=2.

Model 1: As above with e = 0:

_H(U|77) = Z Ox'Oy+ Z Ox My
[x=yll2=1,x,y€A, Ix=yll2=1,x€AL,y ¢
(3)
» Fact: No matter the n you take,
my(A) = 0as L — o0

ANY 3 > 0.
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In L x L slab

2

—inf H(o| 101R) +inf H(0] T1R) ~ —L2 x (1 = cos(T)) ~ — -
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Cost:jo7 for d =2
A A
L92 for d > 3
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» Rigorous Statement known as Mermin-Wagner Theorem ['66],
Dobrushin-Shlosman ['75] etc.

Theorem
In d = 2 for any short range spin system with continuous
symmetry ALL Gibbs states are invariant.



> Model 2: o, € {£&} and v(0x) = 16e,(0x) + 26_4,(0x),
€ field strength.

—H%(o|n) = Z Ox -0y +€ Z ax(w)es - ox

[Ix—=y|l2=1,x,yeNAL xENL

+ Z ox -1y (4)

Ix=ylla=1,xEAL,y ¢
Theorem (Imry-Ma '75  Aizenman-Wehr ’89)
ANY 3 > 0, for all n and € > 0,

Eq [(ox)1] = 0
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Contour Energy: ~ 971



Contour Energy: ~ 971

| Local Field Energy Difference:
d
2¢ Y en, x ~ eNLL2



Back to our Question
> Intuitive picture at § large:
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Back to our Question

> Intuitive picture at § large:
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ix 1, write 0, = ¢ + Oy:

(O
— Ha(0)

1 A 1 , _
e Z>EA[0X—9A2+6XGZA deg gy [ onlleos(u)ud relAjan sin()

(5



—= Z [6x—6,1°+€ > _[on—an]cos(th)0x]+|A|n sin(1))

< 7y EA xeEN

» Optimizing over 0, gives

€2 cos?(v)) Z [gx — &/]°IN| + ansin(v)
(%)

where
_AN'gX:ax_a/\



Our Contribution: Kac Interactions

Let J: RY — [0,00), [ J =1 be smooth with compact support
and Ji(u) = K~9J(£).

—H*(o|n) =

I\)M—ﬂ

Z Jk(x — y)ox - ay—l—eZaX(w)ez-ax
yen

xENL

£ Ik yoeen, (6)
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XENLYENL

Boundary Condition Choice: 1, = e;.



Our Contribution: Kac Interactions

Let J: RY — [0,00), [ J =1 be smooth with compact support
and Ji(u) = K~9J(£).

—H*(o|n) =

I\)M—A

Z Jk(x — y)ox - ay—l—eZaX(w)ez-ax
yen

xENL

£ Ik yoeen, (6)

XENLYENL

Boundary Condition Choice: 1, = e;.

Block Averages:

MZ d(1+6 Z Ox.

x€By1ts



Theorem (Main Theorem)
Let d > 2 be fixed. For ¢,& small and 3 > [(e,§), K > K(e),

KMz)]™ = p(B,e)erll2 < €

as L — oo except forz € DY C Z9 - w a.s.
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Theorem (Main Theorem)
Let d > 2 be fixed. For ¢,& small and 3 > [(e,§), K > K(e),

KMz)]™ = p(B,e)erll2 < €

as L — oo except forz € DY C Z9 - w a.s.

There is v > 0 so that
DY N AL <e L9

for all L > L(w).

p(B,€) > V1—¢€as 3 — oo.



Proof Outline

v

Mean Field Analysis ~~ —¢.

v

Coarse Graining and Large Deviation Estimates for
Magnetization Profiles.

Randomness and Contour ldentification.

v

v

Peierls Contour Counting Estimates.



Mean Field Theory

» For 6 >0, let ke = K170 All x € By_ feel similar interaction.
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Mean Field Theory

» For 6 >0, let ke = K170 All x € By_ feel similar interaction.

» Motivates study of Complete Graph type model:

%K*d(lf‘s) Z Ox 0y +€ Z Qx€ - Ox

x,yGBk< XEBk<

:% Z Ux'Uy+€Zé2'Ux_€Ze2'UX

m -~
X,y€Bx_ x€B;_ x€B,_

: B |
> Typically

1
Bl = 3+ O(|Bi|72)




» Random variables of interest:
1 1
M = T5E Z Ox
1Bl —L
xEBk<
» Large Deviation Principle for (M, M™)

(Lmzm=y) ~ e BB |(¢(m™,m™)—inf ¢)

Sm*,m) = Sl +m [~ Sea - (m )
1 _
~ 55(S(m) +S(m7) (1)
and

S(m) = hi€r1H£2(log /Sl dv(c)e® — m- h)



The Limits of this Method

Want to bring LDP

<1{MiNmi}> ~ eiﬁ‘Bk< |(¢(m+,m_)7inf (;5)

to Z¢.

. + _ . ++ -
Optimizers of ¢(m™, m™) characterized by ™.
m™4m” Plane |m| =1

NS

q
q




Best we can hope for:

(L M*notin R }) ~ e~ PIBic |,



Best we can hope for:

(L M*notin R }) ~ e~ PIBic |,

Recall } : 2 + O(\Bk<|7%) so Local Field Term has

uncertamty of
1
6€|Bk< ‘ 2.



Best we can hope for:

(L M*notin R }) ~ e~ PIBic |,
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1
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Best we can hope for:

(L M*notin R }) ~ e~ PIBic |,

Recall } : 2 + O(\Bk<|7%) so Local Field Term has

uncertamty of
1
6€| Bk< ‘ 2,
Leads to correction:

<1{Minot in R }> ~ e_cﬁlBk<‘€2+o(ﬁE‘Bk<|%).

To suppress this need

|By_| >> €2



