Localization in Classical Statistical Mechanics

Nick Crawford; The Technion

June 1, 2011

BIRS

Talk Outline

- 1. Model of Interest and Basic Question
- 2. Some Background
- 3. Kac Interactions and Our Results
- 4. Proof Outline
- 5. Research In Progress

The Classical XY model

- ▶ Let $\mathcal{G} = (\mathbb{Z}^d, \mathcal{E})$ with distance $||x y||_2$ $(d \ge 2)$.
- ▶ For $x \in \mathbb{Z}^d$, $\sigma_x \in \mathbb{S}^1$, $\sigma = (\sigma_x)_{x \in \mathbb{Z}^d} \in \Omega$ Equipped with i.i.d. uniform measure $\prod_{x \in \mathbb{Z}^d} d\nu(\sigma_x)$. Define $-\mathcal{H}_L : \Omega \to \mathbb{R}$ by

$$-\mathcal{H}_L(\sigma) = \sum_{\|x-y\|_2 = 1, \, x, y \in \Lambda_L} \sigma_x \cdot \sigma_y$$

Gibbs Weight

$$\mathrm{d}\mu_L(\sigma) = Z^{-1} \mathrm{e}^{-\beta \mathcal{H}_L(\sigma)} \prod_{\mathbf{x} \in \Lambda_L} \mathrm{d}\nu(\sigma_{\mathbf{x}})$$

Averages denoted by

$$\langle \cdot \rangle$$
.

High Temperature, β small

Low Temperature, β large

Ordering in Gibbs States

▶ Given $A \subset \mathbb{Z}^d$ finite, how does

$$m_L(A) = \langle \frac{1}{|A|} \sum_{x \in A} \sigma_x \rangle_L$$

behave as A varies. Are there preferred directions?

► Technically, need **Boundary Conditions**:

$$-\mathcal{H}(\sigma|\eta) = \sum_{\|x-y\|_2 = 1, x, y \in \Lambda_L} \sigma_x \cdot \sigma_y + \sum_{\|x-y\|_2 = 1, x \in \Lambda_L, y \notin \Lambda_L} \sigma_x \cdot \eta_y \quad (1)$$

Natural choices: $\eta_x \equiv u$, $u \in \mathbb{S}^1$.

Local Fields

For $x \in \mathbb{Z}^d$, $\alpha_x(\omega)$ i.i.d. $\{\pm 1\}$ Bernoulli.

$$-\mathcal{H}^{\omega}(\sigma|\eta) = \sum_{\|x-y\|_2 = 1, x, y \in \Lambda_L} \sigma_x \cdot \sigma_y + \epsilon \sum_{x \in \Lambda_L} \alpha_x(\omega) e_2 \cdot \sigma_x + \sum_{\|x-y\|_2 = 1, x \in \Lambda_L, y \notin \Lambda_L} \sigma_x \cdot \eta_y \quad (2)$$

Gibbs State as before.

Basic Question

- ▶ Given ϵ , does this model order at β large (T low)?
- ▶ Given $A \subset \mathbb{Z}^d$ finite, how does

$$m_L(A) = \langle \frac{1}{|A|} \sum_{x \in A} \sigma_x \rangle_L$$

behave as A varies. Are there preferred directions?

Basic Question

- ▶ Given ϵ , does this model order at β large (T low)?
- ▶ Given $A \subset \mathbb{Z}^d$ finite, how does

$$m_L(A) = \langle \frac{1}{|A|} \sum_{x \in A} \sigma_x \rangle_L$$

behave as A varies. Are there preferred directions?

- ▶ Believed that ordering occurs in \hat{e}_1 direction.
- ▶ Robust: Any symmetric distribution for α_x . Even may take bias, e.g. $\mathbb{P}(\alpha_x = 1) = p$.
- Similar Phenomena should exist in any spin model with continuous spin space.

Why is this Interesting? Two Related Models:

From now on, we restrict attention to \mathbb{Z}^d , d=2.

Model 1: As above with $\epsilon = 0$:

$$-\mathcal{H}(\sigma|\eta) = \sum_{\|x-y\|_2 = 1, x, y \in \Lambda_L} \sigma_x \cdot \sigma_y + \sum_{\|x-y\|_2 = 1, x \in \Lambda_L, y \notin \Lambda_L} \sigma_x \cdot \eta_y$$
(3)

Fact: No matter the η you take,

$$m_L(A) \rightarrow 0$$
 as $L \rightarrow \infty$

ANY $\beta > 0$.

In
$$L \times L$$
 slab

$$-\inf_{\sigma}\mathcal{H}(\sigma|\uparrow_L\downarrow_R)+\inf_{\sigma}\mathcal{H}(\sigma|\uparrow_L\uparrow_R)\sim -L^2\times (1-\cos(\frac{\pi}{L}))\sim -\frac{\pi^2}{2}.$$

In $L \times L$ slab

$$-\inf_{\sigma}\mathcal{H}(\sigma|\uparrow_L\downarrow_R)+\inf_{\sigma}\mathcal{H}(\sigma|\uparrow_L\uparrow_R)\sim -L^2\times (1-\cos(\frac{\pi}{L}))\sim -\frac{\pi^2}{2}.$$

▶ Rigorous Statement known as Mermin-Wagner Theorem ['66], Dobrushin-Shlosman ['75] etc.

Theorem

In d = 2 for any short range spin system with continuous symmetry ALL Gibbs states are invariant.

▶ Model 2: $\sigma_x \in \{\pm \hat{\mathbf{e}}_2\}$ and $\nu(\sigma_x) = \frac{1}{2}\delta_{\mathbf{e}_2}(\sigma_x) + \frac{1}{2}\delta_{-\hat{\mathbf{e}}_2}(\sigma_x)$, ϵ field strength.

$$-\mathcal{H}^{\omega}(\sigma|\eta) = \sum_{\|x-y\|_2 = 1, x, y \in \Lambda_L} \sigma_x \cdot \sigma_y + \epsilon \sum_{x \in \Lambda_L} \alpha_x(\omega) e_2 \cdot \sigma_x + \sum_{\|x-y\|_2 = 1, x \in \Lambda_L, y \notin \Lambda_L} \sigma_x \cdot \eta_y \quad (4)$$

Theorem (Imry-Ma '75 Aizenman-Wehr '89)

ANY $\beta > 0$, for all η and $\epsilon > 0$,

$$\mathbb{E}_{\alpha}\left[\langle \sigma_{\mathsf{x}} \rangle_{\mathsf{L}}\right] \to 0$$

Contour Energy: $\sim L^{d-1}$

Back to our Question

▶ Intuitive picture at β large:

Back to our Question

▶ Intuitive picture at β large:

Fix ψ ; write $\theta_{\mathsf{x}} = \psi + \hat{\theta}_{\mathsf{x}}$:

$$\begin{split} &-\mathcal{H}_{\Lambda}(\theta) \\ \asymp &-\frac{1}{2} \sum_{\langle x,y \rangle \in \Lambda} [\hat{\theta}_{x} - \hat{\theta}_{y}]^{2} + \epsilon \sum_{x \in \Lambda} \frac{1}{\mathsf{deg}_{\Lambda}(x)} [\alpha_{x} - \alpha_{\Lambda}] [\cos(\psi) \hat{\theta}_{x}] + \epsilon |\Lambda| \alpha_{\Lambda} \sin(\psi) \end{split}$$

$$-\mathcal{H}(\theta) \asymp -\frac{1}{2} \sum_{\langle x, y \rangle \in \Lambda} [\hat{\theta}_x - \hat{\theta}_y]^2 + \epsilon \sum_{\chi \in \Lambda} [\alpha_\chi - \alpha_\Lambda] [\cos(\psi) \hat{\theta}_\chi] + |\Lambda| \alpha_\Lambda \sin(\psi)$$

▶ Optimizing over $\hat{\theta}_{x}$ gives

$$\epsilon^2 \cos^2(\psi) \sum_{\langle x,y \rangle} [g_x - g_y]^2 |\Lambda| + \alpha_{\Lambda} \sin(\psi)$$

where

$$-\Delta_N \cdot g_x = \alpha_x - \alpha_\Lambda$$

Our Contribution: Kac Interactions

Let $J: \mathbb{R}^d \to [0, \infty)$, $\int J = 1$ be smooth with compact support and $J_K(u) = K^{-d}J(\frac{u}{K})$.

$$-\mathcal{H}^{\omega}(\sigma|\eta) = \frac{1}{2} \sum_{x,y \in \Lambda_L} J_K(x-y) \sigma_x \cdot \sigma_y + \epsilon \sum_{x \in \Lambda_L} \alpha_x(\omega) e_2 \cdot \sigma_x$$
$$+ \frac{1}{2} \sum_{x \in \Lambda_L, y \notin \Lambda_L} J_K(x-y) \sigma_x \cdot \eta_y \quad (6)$$

Our Contribution: Kac Interactions

Let $J: \mathbb{R}^d \to [0, \infty)$, $\int J = 1$ be smooth with compact support and $J_K(u) = K^{-d}J(\frac{u}{K})$.

$$-\mathcal{H}^{\omega}(\sigma|\eta) = \frac{1}{2} \sum_{x,y \in \Lambda_L} J_K(x-y) \sigma_x \cdot \sigma_y + \epsilon \sum_{x \in \Lambda_L} \alpha_x(\omega) e_2 \cdot \sigma_x + \frac{1}{2} \sum_{x \in \Lambda_L, y \notin \Lambda_L} J_K(x-y) \sigma_x \cdot \eta_y$$
 (6)

Boundary Condition Choice: $\eta_x \equiv e_1$.

Our Contribution: Kac Interactions

Let $J: \mathbb{R}^d \to [0, \infty)$, $\int J = 1$ be smooth with compact support and $J_K(u) = K^{-d}J(\frac{u}{K})$.

$$-\mathcal{H}^{\omega}(\sigma|\eta) = \frac{1}{2} \sum_{x,y \in \Lambda_L} J_K(x-y) \sigma_x \cdot \sigma_y + \epsilon \sum_{x \in \Lambda_L} \alpha_x(\omega) e_2 \cdot \sigma_x + \frac{1}{2} \sum_{x \in \Lambda_L, y \notin \Lambda_L} J_K(x-y) \sigma_x \cdot \eta_y \quad (6)$$

Boundary Condition Choice: $\eta_x \equiv e_1$.

Block Averages:

$$M_z = K^{-d(1+\delta)} \sum_{x \in B_{\nu 1+\delta}} \sigma_x.$$

Theorem (Main Theorem)

Let $d \geq 2$ be fixed. For ϵ, ξ small and $\beta > \beta(\epsilon, \xi)$, $K \geq K(\epsilon)$,

$$\|\langle M_z \rangle_L^{\omega, \to} - \rho(\beta, \epsilon) e_1 \|_2 \le \xi$$

as $L \to \infty$ except for $z \in \mathcal{D}^{\omega} \subset \mathbb{Z}^d$ – ω a.s.

Theorem (Main Theorem)

Let $d \geq 2$ be fixed. For ϵ, ξ small and $\beta > \beta(\epsilon, \xi)$, $K \geq K(\epsilon)$,

$$\|\langle M_z \rangle_L^{\omega, \to} - \rho(\beta, \epsilon) e_1 \|_2 \le \xi$$

as $L \to \infty$ except for $z \in \mathcal{D}^{\omega} \subset \mathbb{Z}^d - \omega$ a.s.

There is $\gamma > 0$ so that

$$|\mathcal{D}^{\omega} \cap \Lambda_L| \leq e^{-\epsilon^{-\gamma}} L^d$$

for all $L \geq L(\omega)$.

Theorem (Main Theorem)

Let $d \geq 2$ be fixed. For ϵ, ξ small and $\beta > \beta(\epsilon, \xi)$, $K \geq K(\epsilon)$,

$$\|\langle M_z \rangle_L^{\omega, \to} - \rho(\beta, \epsilon) e_1 \|_2 \le \xi$$

as $L \to \infty$ except for $z \in \mathcal{D}^{\omega} \subset \mathbb{Z}^d - \omega$ a.s.

There is $\gamma > 0$ so that

$$|\mathcal{D}^{\omega} \cap \Lambda_L| \leq e^{-\epsilon^{-\gamma}} L^d$$

for all $L \geq L(\omega)$.

$$\rho(\beta, \epsilon) \to \sqrt{1 - \epsilon^2} \text{ as } \beta \to \infty.$$

Proof Outline

- ▶ Mean Field Analysis $\leadsto -\phi$.
- Coarse Graining and Large Deviation Estimates for Magnetization Profiles.
- Randomness and Contour Identification.
- Peierls Contour Counting Estimates.

▶ For $\delta > 0$, let $k_{\leq} = K^{1-\delta}$. All $x \in B_{k_{\leq}}$ feel similar interaction.

- ▶ For $\delta > 0$, let $k_{<} = K^{1-\delta}$. All $x \in B_{k_{<}}$ feel similar interaction.
- Motivates study of Complete Graph type model:

$$\frac{1}{2}K^{-d(1-\delta)}\sum_{x,y\in B_{k_{<}}}\sigma_{x}\cdot\sigma_{y}+\epsilon\sum_{x\in B_{k_{<}}}\alpha_{x}e_{2}\cdot\sigma_{x}$$

- ▶ For $\delta > 0$, let $k_{\leq} = K^{1-\delta}$. All $x \in B_{k_{\leq}}$ feel similar interaction.
- Motivates study of Complete Graph type model:

$$\begin{split} &\frac{1}{2} \mathcal{K}^{-d(1-\delta)} \sum_{x,y \in B_{k_{<}}} \sigma_{x} \cdot \sigma_{y} + \epsilon \sum_{x \in B_{k_{<}}} \alpha_{x} e_{2} \cdot \sigma_{x} \\ &= \frac{1}{2} \sum_{x,y \in B_{k_{<}}} \sigma_{x} \cdot \sigma_{y} + \epsilon \sum_{x \in B_{k_{<}}^{+}} \hat{\mathbf{e}}_{2} \cdot \sigma_{x} - \epsilon \sum_{x \in B_{k_{<}}^{-}} \mathbf{e}_{2} \cdot \sigma_{x} \end{split}$$

- ▶ For $\delta > 0$, let $k_{<} = K^{1-\delta}$. All $x \in B_{k_{<}}$ feel similar interaction.
- Motivates study of Complete Graph type model:

$$\begin{split} &\frac{1}{2} K^{-d(1-\delta)} \sum_{x,y \in B_{k_{<}}} \sigma_{x} \cdot \sigma_{y} + \epsilon \sum_{x \in B_{k_{<}}} \alpha_{x} e_{2} \cdot \sigma_{x} \\ &= \frac{1}{2} \sum_{x,y \in B_{k_{<}}} \sigma_{x} \cdot \sigma_{y} + \epsilon \sum_{x \in B_{k_{<}}^{+}} \hat{\mathbf{e}}_{2} \cdot \sigma_{x} - \epsilon \sum_{x \in B_{k_{<}}^{-}} e_{2} \cdot \sigma_{x} \end{split}$$

► Typically $\frac{|B_{k<}^{\pm}|}{|B_{k<}|} = \frac{1}{2} + O(|B_{k<}|^{-\frac{1}{2}})$

▶ Random variables of interest:

$$M^{\pm} = \frac{1}{|B_{k<}^{\pm}|} \sum_{x \in B_{k<}^{\pm}} \sigma_x$$

▶ Large Deviation Principle for (M^+, M^-)

$$\langle \mathbf{1}_{\{M^{\pm}\sim m^{\pm}\}}
angle \sim e^{-eta|B_{k_{<}}|(\phi(m^{+},m^{-})-\inf\phi)}.$$

$$\phi(m^{+}, m^{-}) = -\frac{1}{8} \|m^{+} + m^{-}\|_{2}^{2} - \frac{\epsilon}{2} \hat{\mathbf{e}}_{2} \cdot (m^{+} - m^{-}) - \frac{1}{2\beta} (S(m^{+}) + S(m^{-}))$$
(7)

and

$$S(m) = \inf_{h \in \mathbb{R}^2} (\log \int_{\mathbb{S}^1} d\nu(\sigma) e^{\sigma \cdot h} - m \cdot h)$$

The Limits of this Method

Want to bring LDP

$$\langle \mathbf{1}_{\{M^{\pm}\sim m^{\pm}\}}
angle \sim e^{-eta|B_{k_{<}}|(\phi(m^{+},m^{-})-\inf\phi)}.$$

to \mathbb{Z}^d .

Optimizers of $\phi(m^+, m^-)$ characterized by $\frac{m^+ + m^-}{2}$.

$$\langle {\bf 1}_{\{M^\pm {\rm not \; in \; R \; }\}} \rangle \sim e^{-c\beta |B_{k_<}|\epsilon^2}.$$

$$\langle {f 1}_{\{M^\pm {
m not \ in \ R \ }\}}
angle \sim e^{-c eta |B_{k_<}|\epsilon^2}.$$

Recall $\frac{|B_{k_<}^{\pm}|}{|B_{k_<}|}=\frac{1}{2}+O(|B_{k_<}|^{-\frac{1}{2}})$ so Local Field Term has uncertainty of

$$\beta \epsilon |B_{k}|^{\frac{1}{2}}$$
.

$$\langle {f 1}_{\{M^\pm {
m not \ in \ R}\ \}}
angle \sim e^{-c eta |B_{k_<}|\epsilon^2}.$$

Recall $\frac{|B_{k_<}^{\pm}|}{|B_{k_<}|}=\frac{1}{2}+O(|B_{k_<}|^{-\frac{1}{2}})$ so Local Field Term has uncertainty of

$$\beta \epsilon |B_{k_{<}}|^{\frac{1}{2}}.$$

Leads to correction:

$$\langle \mathbf{1}_{\{\mathit{M}^{\pm} \mathsf{not in R}\;\}} \rangle \sim \mathsf{e}^{-c\beta |B_{k_{<}}| \epsilon^2 + \mathit{O}(\beta \epsilon |B_{k_{<}}|^{\frac{1}{2}})}.$$

$$\langle \mathbf{1}_{\{\mathit{M}^{\pm} \mathrm{not\ in\ R}\ \}}
angle \sim e^{-c \beta |B_{k_{<}}| \epsilon^{2}}.$$

Recall $\frac{|B_{k_<}^{\pm}|}{|B_{k_<}|}=\frac{1}{2}+O(|B_{k_<}|^{-\frac{1}{2}})$ so Local Field Term has uncertainty of

$$\beta \epsilon |B_{k}|^{\frac{1}{2}}$$
.

Leads to correction:

$$\langle \mathbf{1}_{\{\mathit{M}^{\pm} \mathsf{not in R}\;\}} \rangle \sim \mathsf{e}^{-c\beta |B_{k_{<}}| \epsilon^2 + \mathit{O}(\beta \epsilon |B_{k_{<}}|^{\frac{1}{2}})}.$$

To suppress this need

$$|B_{k<}| >> \epsilon^{-2}$$

