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Uniformly Convex Euclidean Field Theory

Let V : R — R be a C? uniformly convex function, so for some
MA>0
My < V'(z) < My, forzeR?.

Let Q be the space of all functions ¢ : Z° — R and F the Borel
algebra generated by finite dimensional rectangles

{#() € Q: |gp(xi) — a| < r;, i=1,..,N}. Translation operators

T, X € Z9 acton Q by 74¢(2) = ¢(x + z), z € Z29. Forany d > 1 and
m > 0 there is a unique translation invariant probability measure P on
(22, F) with pdf formally given by

exp Z V(Vo(x)) + mPo H d¢(x) /normalization .

xezd xezd

For d > 3 the limiting measure m — 0 on fields ¢ : Z¢ — R exists,
and for d = 1, 2 the limiting measure m — 0 on gradients
w(-) = Vo(-) of fields ¢ : Z¢ — R exists (Funaki-Spohn 1997).



Correlation Functions

The 2 point correlation function for the field theory is the function
x — (¢(x)#(0)), x € 29, where (-) denotes expectation with respect
to the measure on (2, 7). In the Gaussian case (V quadratic) one
has

(@) (6(x)¢(0)) = Gy(x)/2withn=m?, xeZ’

where G, (-) is the fundamental solution to a constant coefficient
elliptic equation

nGy(¥) + VaumVG,(y) =6(y), yeZ?,

with @pem = V”(-)/2 = constant. More generally if f : Z9 — R and (-, -)
denotes the Euclidean inner product on L2(Z9) then

(b) log{(exp[(f,®)])} =% > )Gy — YY) -
y.y'ezd

Note that (b) implies (a) by taking f(y) = u[é(y — x) — §(¥)], ¥ € Z°,
in (b) and letting © — 0.



Homogenization of massless field theories

In the general massless m = 0 non-Gaussian case one has
(Naddaf-Spencer 1997) for C> vector fields h : Z° — R? of compact
support the limit,

Jim D MRV ) =TV Coly =y Ny /) = O
y.y'ezd

for some ap,, depending on V(-) which satisfies the uniformly elliptic
condition My < apem < Aly. The proof of this uses the
Helffer-Sjostrand formula (1994):

(Fi()=(F)) Fo(1)) = (dF1() [0 d+V* V" (V(-))V+2m?] dFa())

which expresses the 2 point correlation function as the expectation of
the solution of a PDE with random coefficients. The result follows by
adapting methods to prove homogenization of elliptic PDE with
random coefficients.



Calderon-Zygmund operators

The d x d matrix function VV*Gy(y), y € Z9, induces an integral
operator T on (?(Z4 RY) by

Th(y) = > VV*Goly —y)h(y'), he*Z°RY),
y/ezd

with norm || T||2 < 1. This follows from the Fourier space
representation for T on L?([—x, 7]9),

Th¢) = mﬁ(ﬁ), e(&)=[e" —1,..,e% —1].

Calderon-Zygmund Theorem: For 1 < p < oo, the operator T is
bounded on ¢*(29 RY) and limp_ || T||, = 1.

Weighted norm inequalities: Let w : Z¢ — R be a Muckenhoupt A,
weight. The operator T is bounded on ¢2,(29, R?) and
limw—1T|2,w = 1 (Pattakos-Volberg 2010).



Poincareé inequalities

The Poincaré inequality in its simplest form is as follows: Suppose ()
denotes expectation with respect to a measure on R”. Then for all C’
functions F : R” — R with gradient dF(-), there is a constant C such
that

var[F] = ([F() = (F)?) < C(ldF()f).

Poincaré for EFT (Brascamp-Lieb 1976): F(-) is a function of fields
¢:2% - R. Then
var[F] < (dF(-, ¢(-))[-AA +2m?] " dF (-, 6(-)) )

_ / (|dF (&, ¢()) )
(27T)d [—m,m]d )\e*(f)e(f) +2m2

de .

Proof: Follows from HS formula. Also follows from the Poincaré
inequality for functions of time dependent fields ¢(x, t) where

t — &(-, t) is the diffusion process with invariant measure given by the
EFT. Proof of Poincaré in this case follows from the Clark-Ocone
formula (Gourcy-Wu 2006).



Dimension d = 2 massless EFT

Taking f(y) = u[s(y — x) — 6(¥)], y € 29, we see that

2
log {{ @O )} = B([6(0)~6(0)F) = 4 Im[G;(0)~Gy(x)]
in the Gaussian case, where
IimO[Gn(O) —G,(x)] = Clog|x|+O(1/|x]) as|x] — 0.
Y]—)
In the non-Gaussian case we have the following:

Theorem 1 (Conlon-Spencer 2011): Assume A/A > 1/2. Then there
is a constant C depending only on V(-) such that

log {40409 )} — £ [5(0) — o()1)| < G

Proof: This follows from a third moment inequality i.e. on
{ [¢(0) — #(x)]® )x,,, for @ non-translation invariant measure
depending on x, u. Gaussian case is trivial C = 0,



Second moment inequalities for d > 1

Theorem 2 (Conlon-Spencer 2011): Let Go(-) be the Green’s function
corresponding to the Naddaf-Spencer homogenization matrix ayop.
Then there exists o > 0 depending only on d, A\/A and C depending
only on V(-) such that

(@(x)$(0)) — Go(x)/2| < C/[Ix| + 1] ford >3,

[(Vo(x)$(0)) — VGo(x)/2| < C/[Ix| + 1]+ ford > 2,
(Vo(x)V$(0)) — VV*Go(x)/2| < C/[|x| +1]9F* ford > 1.
Corollary: For d = 2 there is the inequality

([6(0) = o(x)]?) — 2 Im1Gy(0) = Gy(X)]| < C/[Ix| +1]* .

Proof: Write ¢(0) — ¢(x) = ( h(-), V¢(-)) where h(y) ~ C/|y| for |y|
large.



Third moment inequalities for d > 1

Theorem A: Suppose d > 1 and A/A > 1/2. Then there is a positive
constant C(\, A) depending only on A, A such that for any
hi, ho, hy € /?(Z9 R9) and x € Z9, 1 € R,

3

[CTT TG V) (B, VD] dxl < C(A,/\)IlhﬂlllhzllllhsllESGUFgIV’"(E)I

(F(o() dxp = (eMe@=20 F(4(.)) )/normalization .

Proof: Apply HS formula twice to obtain a representation of the third
moment as the expectation of a product of three Green'’s functions of
elliptic PDE with random coefficients. The condition A/A > 1/2
seems to be related to the lack of symmetry in h;(-), j = 1,2,3, of this
expression caused by the Laplacian d*d term in the HS formula.



Third moment inequality for d = 2

To prove Theorem 1 we need to show that there is a constant C
depending only on V(-) such that

(©)  [([6(0) = () hxu| < C.

Hence we would like to take h;i(y) = h(y), j = 1,2,3, where

h(y) ~ 1/]y| as |y| — oo, so h(-) barely misses being in £2(29 R).
Note however that h(-) € ¢2,(29, RY) for any weight w : Z — R of the
form w(y) = w,(y) = [1 + |y|]® with @ < 0. The Calderon-Zygmund
operator T has norm || ||, < 1+ C|a|. Hence the ¢2 converging
perturbation expansion which implies Theorem A also converges in
(2, for small |o|. This implies (c).

We cannot replace £2,(Z29, R?) with w(-) close in the Muckenhoupt Ay
sense to 1 in this argument by ¢°(Z9, RY) with p > 2 close to 1, even
though h(-) € ¢°(Z29, RY) for any p > 2. The reason is that we need to
carry through a spectral decomposition of d*d and this does not work

for p # 2.



Elliptic PDE with random coefficients

(Q, F, P) a probability space and 7 : Q — Q, x € Z9, translation
operators which act ergodically on Q. Leta : Q — RY(@+1)/2 pe g
measurable mapping to symmetric d x d matrices such that

Mg < a(-) < Aly. Let u(x,n,w) be the solution to the discrete elliptic
equation

nu(x,n,w) + V*a(mw)Vu(x,n,w) = h(x), xeZ%weqQ.
Translation invariance implies (u(x,n,-) ) = >_,cz0 Gay(X —y)h(y) ,
where G, ,(X), x € Z9, is the averaged Green’s function.

Homogenization (Kozlov 1978): Let f : R — R be a CS° function and
set h(x) = e2f(ex), x € 29. Then u(x/e,£%n,w) converges with
probability 1 to a function u(x, n) which is the solution to the constant
coefficient equation

nu(x,n) + V*amVu(x,n) = f(x), x € RC.



Rate of Convergence in Homogenization

Can show (Yurinskii 1986) that
(d) | u(x/e, e, ) ) — u(x,n)| < Ce® for some o depending on \/A

provided the operators 7 : Q — Q, x € Z9, have strong mixing
properties, for example if variables a(7y-), x € Z%, independent. If
(2, F, P)is an EFT can use (Naddaf-Spencer 1998) the Poincaré
inequality to prove (d). This method has been recently extended to
the i.i.d. case yielding optimal « (Gloria-Otto 2009). Observe from

(u(x/e,en,-)) = /SZd 279G, 2, (X ; z) f(z) dz ,

that (d) follows from the inequality

_ Ce® Yy
(e) |62 dGa,szn(X/E)_Gahomm(x)‘ = W TV n/NIX] XE€Zd.

Note that it is sufficient to establish (e) for e = 1 uniformly as n — 0.



Averaged Green’s function inequalities for d > 1

Theorem 3 (Conlon-Spencer 2011): Let a : R — RY(@+1)/2 pe 3 C!
function on R? with values in the space of symmetric d x d matrices
which satisfies Ay < a(-) < Aly and ||Da(-)||s < oo, and set

a(w) = a(Ve(-)) = a(Ve(0)). Then there exists v,y > 0 depending
only on d, A\/A and C depending only on a(-) such that

|Ga,(X) — Gay i (X) e WX ford >3,

< =
= e

|V Ga,y(X) = V Gayp.n( e WNX - for d > 2

9

= e
C

< <z

S e

Proof: Use a representation for the Fourier transform
Ga,y(€), & € [-m,7]9, of Ga,(-) from (Conlon-Naddaf 2000) plus
show functions related to Ga ,,(+) are in certain LP([—,7]%) spaces.

|VV Ga,(X) — VV Gayp n(X) e WINX L ford > 1,



Elliptic PDE on the probability space

For a function ¢ : Q — C define the ¢ derivative of ¢(-) in the j
direction J; ¢ by

Ojct(w) = € (rew) — (W), e = [016, . Dae] -
Let b(-) € L2(Q,CY) and ®(¢, n,w) the solution to the PDE
n®(&,n,w) + 0za(w)Ie (¢, n,w) = d¢b(w).
Then [|0:P(&,n, )| < [[b(:)||/A which implies
|PO:®(&,m,-)|| < [|bB(-)||/A where P : L2(Q,€Y%) — L2(Q,C) is the

projection orthogonal to the constant function. Hence if g(-) € LP(Z9)
there is an inequality

() 1P Y gx)acd(&.n. )l < Gpllgllp

xezd

which holds for p = 1 with C; = 1/A.



Naddaf-Spencer argument

Let (Q, F, P) be a massless EFT. Then Poincaré for EFT implies

1P g(x)0e(,n, 7)1 ,AZH(M 3 90000 n ) 2

xezd X zd

where w(-) = V¢(+). Translation invariance implies that

Z e Z gOOF(mw()) 1P = Y lgi)H(x = z,w()|?

zezd

for some function H : 29 x Q — C. When F(-) = 9:®(&, 7, -) then
H(y,w) = V,G(y,w(-) where G(y,w) is the Green’s function for an
elliptic PDE in y with coefficients which depend on w. Hence (Meyers
1963) the uniform ellipticity and Calderon-Zygmund imply that for all
g close to 2 there is a constant C independent of w such that
V,G(y,w) € L9(29 and ||V, G(-,w)||q < C. Young’s inequality then
implies for g < 2 that (f) holds with p = 2q/(3g — 2) > 1.



Correlation and averaged Green’s functions

Let (2, F, P) be a massless EFT. Then (Giacomin-Olla-Spohn 2001)

(6(x)5(0) ) = /0 7 Galx. 1) dt,

where Ga(x, t) is the averaged Green’s function for the parabolic PDE

ou(x, t,w)
ot

where w = Vo(x, 1), x € 29t € R, and a(w) = V"(V(0,0)).
Theorem 4 (Conlon-Spencer): Let a : R — R4(4+1)/2 pg g C!
function on R? with values in the space of symmetric d x d matrices
which satisfies My < a(-) < Aly and || Da(+)||« < oo, and set

a(w) =a(Ve(-)) = a(Ve(0,0)). Then there exists «, v > 0 depending
only on d, A\/A and C depending only on a(-) such that for d > 3,

+ V*a(ry,w)Vu(x, t,w) = 0, u(x,0,w)= h(x),

c _ X2
Galx. D~ Car (.| < sy @@ | -vmin { el 775 ]



Parabolic PDE on the probability space

For a function ¢ : Q — C define the derivative of ¢(-) in the time
direction 0 by
O(w) = lim[i(r0,1) = (w))/t .

Let b(-) € L2(Q,C) and ®(¢, n,w) the solution to the PDE
OP(&,n,w) + (&, n,w) + 9fa(w)0:d(§,n,w) = Ib(w).
Then as in the elliptic case ||[Po: P (&, n, )| < |[b(-)||/A. Hence if
g(-,-) € LP(Z9 x R) there is an inequality
9 1P, /Rdf g(x, 1) (& m, )l < Collgllp »
xezd

which holds for p = 1 with C; = 1/\. To prove Theorem 4 we need to
prove (g) for some p > 1. To do this we use the Poincaré inequality
on the space of time dependent fields ¢(x, t), x € Z9,t € R.



The Malliavin Calculus

Let W(t), t € R, be the white noise Gaussian process, so if
B(t), t > 0, is Brownian motion then

= /Ot W(s) ds

Let (Q, Fr, P) be the probability space generated by B(t), 0 <t < T.
Then L2(Q, Fr, P) is unitarily equivalent to the space of functions

¢ : L2([0, T]) — R with a Gaussian measure on L2([0, T]). Let [, -] be
the standard inner product on L2([0, T]). The equivalence is:

Y(-) € L3([0, T]) corresponds to (1) — W(t), 0 <t<T.

Measure on L2([0, T]): If ¢, j = 1,2,.. is an orthonormal basis for
L2([0, T]) then the variables ¢ — [¢, ;] are i.i.d. standard normal.
For h € L2(]0, T]) define the directional derivative Dpé(v)(-)) by

Dpe(4(-)) = ImIE(w () +eh()) = E(()I/e = [DE(()). Al -

Hence D¢(v(+)) is a function in L2([0, T]) which we write as

Dig((-)), 0<t<T.



The Clark-Ocone Formula (1984)

For ¢ : L2(]0, T]) — R then

)
CO: £()—(€) = /0 oi()B(t) where o¢(-) = E[DE()|F] -

CO implies Poincaré inequality since

T T
varf] = E l/o or(")? dl‘] <E VO (D) df] :

CO implies HS formula: Let ¢(t), t > 0, be the solution to the SDE

1
do(t) = —5V'(¢(t))at +dB(t) ,  $(0) = 0.

The stochastic process ¢(-) has invariant measure exp[— V(¢)] so the

distribution of ¢(T) converges as T — oo to exp[— V(¢)].



First Variation Equation

For h € L2([0, T]) then Dpe(t) is the solution to the first variation
equation

S 1Dmol0] = —3 V' (SO)DAIO] + (1) . Dyo(0) =

Hence Dpp(T / h(t) exp [—/ V"(4(s)) ds} dt, andso
Dip(T) = exp [—2[ V" (4(s)) ds} forO0<t<T, Di(T)=0fort>T.

Now for a C' function F : R — R use £(¢(-)) = F(¢(T)), observing
that D:£(4(-)) = F'(¢(T))Dip(T). Then CO plus Feynman-Kac
formula imply HS on letting T — oc.



Poincareé inequalities (Gourcy-Wu 2006)

Assume £((+)) is a function of ¢(t), 0 < t < T. Then we can define
two kinds of derivatives of £(¢(+)):

(a)The Malliavin derivative D¢(+) since £() is a function of white noise.
(b) The field derivative d¢(¢(-)) which measures the infinitesimal
change in &(¢(+)) with respect to variations of the field ¢(-). Thus

dn€(¢()) = lim[e((-) +eh(-)) = £(@())l/e = [de(()), h] -
The chain rule implies that (a) and (b) are related by
DiE(6 / AL (6()) Dro(s

If V'(-) > X > 0then

D)) < / s (6()) e =972 o



Poincaré inequality for fields

We have that

varfe(6()] < E[ / (D (6())]2 dt]

2
< E[ / { / s ()| MI=s)/2 ds} dt] :
0 0

and so we obtain the Poincaré field inequality

/ e (G( ) dt] .

The inequality (h) can be derived using HS in the case when &£(¢(-))
has the form

(h) var[g(o(1))] <

£(6() / g(D)be(t)
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