Strong Central Limit Theorems in PDE with random coefficients and Euclidean Field Theory

Joseph G. Conlon

University of Michigan
June 1, 2011: Gradient Random Fields workshop at BIRS
Joint work with Tom Spencer

Uniformly Convex Euclidean Field Theory

Let $V: \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a C^{2} uniformly convex function, so for some $\lambda, \Lambda>0$

$$
\lambda I_{d} \leq V^{\prime \prime}(z) \leq \Lambda I_{d}, \quad \text { for } z \in \mathbf{R}^{d}
$$

Let Ω be the space of all functions $\phi: \mathbf{Z}^{d} \rightarrow \mathbf{R}$ and \mathcal{F} the Borel algebra generated by finite dimensional rectangles $\left\{\phi(\cdot) \in \Omega:\left|\phi\left(x_{i}\right)-a_{i}\right|<r_{i}, i=1, . ., N\right\}$. Translation operators $\tau_{x}, x \in \mathbf{Z}^{d}$, act on Ω by $\tau_{x} \phi(z)=\phi(x+z), z \in \mathbf{Z}^{d}$. For any $d \geq 1$ and $m>0$ there is a unique translation invariant probability measure P on (Ω, \mathcal{F}) with pdf formally given by

$$
\exp \left[-\sum_{x \in \mathbf{Z}^{d}} V(\nabla \phi(x))+m^{2} \phi(x)^{2}\right] \prod_{x \in \mathbf{Z}^{d}} d \phi(x) / \text { normalization } .
$$

For $d \geq 3$ the limiting measure $m \rightarrow 0$ on fields $\phi: \mathbf{Z}^{d} \rightarrow \mathbf{R}$ exists, and for $d=1,2$ the limiting measure $m \rightarrow 0$ on gradients $\omega(\cdot)=\nabla \phi(\cdot)$ of fields $\phi: \mathbf{Z}^{d} \rightarrow \mathbf{R}$ exists (Funaki-Spohn 1997).

Correlation Functions

The 2 point correlation function for the field theory is the function $x \rightarrow\langle\phi(x) \phi(0)\rangle, x \in \mathbf{Z}^{d}$, where $\langle\cdot\rangle$ denotes expectation with respect to the measure on (Ω, \mathcal{F}). In the Gaussian case (V quadratic) one has

$$
\text { (a) }\langle\phi(x) \phi(0)\rangle=G_{\eta}(x) / 2 \text { with } \eta=m^{2}, \quad x \in \mathbf{Z}^{d} \text {, }
$$

where $G_{\eta}(\cdot)$ is the fundamental solution to a constant coefficient elliptic equation

$$
\eta \boldsymbol{G}_{\eta}(y)+\nabla^{*} \mathbf{a}_{\mathrm{hom}} \nabla G_{\eta}(y)=\delta(y), \quad y \in \mathbf{Z}^{d}
$$

with $\mathbf{a}_{\text {hom }}=V^{\prime \prime}(\cdot) / 2=$ constant. More generally if $f: \mathbf{Z}^{d} \rightarrow \mathbf{R}$ and (\cdot, \cdot) denotes the Euclidean inner product on $L^{2}\left(\mathbf{Z}^{d}\right)$ then

$$
\text { (b) } \log \{\langle\exp [(f, \phi)]\rangle\}=\frac{1}{4} \sum_{y, y^{\prime} \in \mathbf{Z}^{d}} f(y) G_{\eta}\left(y-y^{\prime}\right) f\left(y^{\prime}\right) .
$$

Note that (b) implies (a) by taking $f(y)=\mu[\delta(y-x)-\delta(y)], y \in \mathbf{Z}^{d}$, in (b) and letting $\mu \rightarrow 0$.

Homogenization of massless field theories

In the general massless $m=0$ non-Gaussian case one has (Naddaf-Spencer 1997) for \mathbf{C}^{∞} vector fields $h: \mathbf{Z}^{d} \rightarrow \mathbf{R}^{d}$ of compact support the limit,

$$
\lim _{R \rightarrow \infty} \frac{1}{R^{d}} \sum_{y, y^{\prime} \in \mathbf{Z}^{d}} h(y / R)\left\{\left\langle\nabla \phi(y) \nabla \phi\left(y^{\prime}\right)\right\rangle-\nabla \nabla^{*} G_{0}\left(y-y^{\prime}\right)\right\} h\left(y^{\prime} / R\right)=0
$$

for some $\mathbf{a}_{\text {hom }}$ depending on $V(\cdot)$ which satisfies the uniformly elliptic condition $\lambda I_{d} \leq \mathbf{a}_{\text {hom }} \leq \Lambda I_{d}$. The proof of this uses the Helffer-Sjöstrand formula (1994):

$$
\left\langle\left(F_{1}(\cdot)-\left\langle F_{1}\right\rangle\right) F_{2}(\cdot)\right\rangle=\left\langle d F_{1}(\cdot) \cdot\left[d^{*} d+\nabla^{*} V^{\prime \prime}(\nabla \phi(\cdot)) \nabla+2 m^{2}\right]^{-1} d F_{2}(\cdot)\right\rangle
$$

which expresses the 2 point correlation function as the expectation of the solution of a PDE with random coefficients. The result follows by adapting methods to prove homogenization of elliptic PDE with random coefficients.

Calderon-Zygmund operators

The $d \times d$ matrix function $\nabla \nabla^{*} G_{0}(y), y \in \mathbf{Z}^{d}$, induces an integral operator T on $\ell^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ by

$$
T h(y)=\sum_{y^{\prime} \in \mathbf{Z}^{d}} \nabla \nabla^{*} G_{0}\left(y-y^{\prime}\right) h\left(y^{\prime}\right), \quad h \in \ell^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right),
$$

with norm $\|T\|_{2} \leq 1$. This follows from the Fourier space representation for \hat{T} on $L^{2}\left([-\pi, \pi]^{d}\right)$,

$$
\hat{T} \hat{h}(\xi)=\frac{e(\xi) e^{*}(\xi)}{e^{*}(\xi) e(\xi)} \hat{h}(\xi), \quad e(\xi)=\left[e^{-i \xi_{1}}-1, \ldots, e^{-i \xi_{d}}-1\right] .
$$

Calderon-Zygmund Theorem: For $1<p<\infty$, the operator T is bounded on $\ell^{\rho}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ and $\lim _{p \rightarrow 2}\|T\|_{p}=1$. Weighted norm inequalities: Let $w: \mathbf{Z}^{d} \rightarrow \mathbf{R}$ be a Muckenhoupt A_{2} weight. The operator T is bounded on $\ell_{w}^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ and $\lim _{w \rightarrow 1}\|T\|_{2, w}=1$ (Pattakos-Volberg 2010).

Poincaré inequalities

The Poincare inequality in its simplest form is as follows: Suppose $\langle\cdot\rangle$ denotes expectation with respect to a measure on \mathbf{R}^{n}. Then for all C^{1} functions $F: \mathbf{R}^{n} \rightarrow \mathbf{R}$ with gradient $d F(\cdot)$, there is a constant C such that

$$
\left.\operatorname{var}[F]=\left\langle[F(\cdot)-\langle F\rangle]^{2}\right\rangle \leq\left. C\langle | d F(\cdot)\right|^{2}\right\rangle
$$

Poincaré for EFT (Brascamp-Lieb 1976): $F(\cdot)$ is a function of fields $\phi: \mathbf{Z}^{d} \rightarrow \mathbf{R}$. Then

$$
\begin{aligned}
& \operatorname{var}[F] \leq\left\langle d F(\cdot, \phi(\cdot))\left[-\lambda \Delta+2 m^{2}\right]^{-1} d F(\cdot, \phi(\cdot))\right\rangle \\
&=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} \frac{\left.\left.\langle | d \hat{F}(\xi, \phi(\cdot))\right|^{2}\right\rangle}{\lambda e^{*}(\xi) e(\xi)+2 m^{2}} d \xi
\end{aligned}
$$

Proof: Follows from HS formula. Also follows from the Poincaré inequality for functions of time dependent fields $\phi(x, t)$ where $t \rightarrow \phi(\cdot, t)$ is the diffusion process with invariant measure given by the EFT. Proof of Poincaré in this case follows from the Clark-Ocone formula (Gourcy-Wu 2006).

Dimension $d=2$ massless EFT

Taking $f(y)=\mu[\delta(y-x)-\delta(y)], y \in \mathbf{Z}^{d}$, we see that
$\log \left\{\left\langle e^{\mu[\phi(0)-\phi(x)]}\right\rangle\right\}=\frac{\mu^{2}}{2}\left\langle[\phi(0)-\phi(x)]^{2}\right\rangle=\mu^{2} \lim _{\eta \rightarrow 0}\left[G_{\eta}(0)-G_{\eta}(x)\right]$
in the Gaussian case, where

$$
\lim _{\eta \rightarrow 0}\left[G_{\eta}(0)-G_{\eta}(x)\right]=C \log |x|+O(1 /|x|) \quad \text { as }|x| \rightarrow \infty .
$$

In the non-Gaussian case we have the following:
Theorem 1 (Conlon-Spencer 2011): Assume $\lambda / \Lambda>1 / 2$. Then there is a constant C depending only on $V(\cdot)$ such that

$$
\left|\log \left\{\left\langle e^{\mu[\phi(0)-\phi(x)]}\right\rangle\right\}-\frac{\mu^{2}}{2}\left\langle[\phi(0)-\phi(x)]^{2}\right\rangle\right| \leq C \mu^{3}
$$

Proof: This follows from a third moment inequality i.e. on $\left\langle[\phi(0)-\phi(x)]^{3}\right\rangle_{x, \mu}$ for a non-translation invariant measure depending on x, μ. Gaussian case is trivial $C=0$.

Second moment inequalities for $d \geq 1$

Theorem 2 (Conlon-Spencer 2011): Let $G_{0}(\cdot)$ be the Green's function corresponding to the Naddaf-Spencer homogenization matrix $\mathbf{a}_{\text {hom }}$. Then there exists $\alpha>0$ depending only on $d, \lambda / \Lambda$ and C depending only on $V(\cdot)$ such that

$$
\begin{gathered}
\left|\langle\phi(x) \phi(0)\rangle-G_{0}(x) / 2\right| \leq C /[|x|+1]^{d-2+\alpha} \quad \text { for } d \geq 3 \\
\left|\langle\nabla \phi(x) \phi(0)\rangle-\nabla G_{0}(x) / 2\right| \leq C /[|x|+1]^{d-1+\alpha} \quad \text { for } d \geq 2 \\
\left|\langle\nabla \phi(x) \nabla \phi(0)\rangle-\nabla \nabla^{*} G_{0}(x) / 2\right| \leq C /[|x|+1]^{d+\alpha} \quad \text { for } d \geq 1
\end{gathered}
$$

Corollary: For $d=2$ there is the inequality

$$
\left|\left\langle[\phi(0)-\phi(x)]^{2}\right\rangle-2 \lim _{\eta \rightarrow 0}\left[G_{\eta}(0)-G_{\eta}(x)\right]\right| \leq C /[|x|+1]^{\alpha} .
$$

Proof: Write $\phi(0)-\phi(x)=(h(\cdot), \nabla \phi(\cdot))$ where $h(y) \sim C /|y|$ for $|y|$ large.

Third moment inequalities for $d \geq 1$

Theorem A: Suppose $d \geq 1$ and $\lambda / \Lambda>1 / 2$. Then there is a positive constant $C(\lambda, \Lambda)$ depending only on λ, Λ such that for any $h_{1}, h_{2}, h_{3} \in \ell^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ and $x \in \mathbf{Z}^{d}, \mu \in \mathbf{R}$,
$\left|\left\langle\prod_{j=1}^{3}\left[\left(h_{j}(\cdot), \nabla \phi(\cdot)\right)-\left\langle\left(h_{j}, \nabla \phi\right)\right\rangle_{x, \mu}\right]\right\rangle_{x, \mu}\right| \leq C(\lambda, \Lambda)\left\|h_{1}\right\|\left\|h_{2}\right\|\| \| h_{3} \| \sup _{\xi \in \mathbf{R}^{d}}\left|V^{\prime \prime \prime}(\xi)\right|$
where

$$
\langle F(\phi(\cdot))\rangle_{x, \mu}=\left\langle\mathrm{e}^{\mu[\phi(0)-\phi(x)]} F(\phi(\cdot))\right\rangle / \text { normalization } .
$$

Proof: Apply HS formula twice to obtain a representation of the third moment as the expectation of a product of three Green's functions of elliptic PDE with random coefficients. The condition $\lambda / \Lambda>1 / 2$ seems to be related to the lack of symmetry in $h_{j}(\cdot), j=1,2,3$, of this expression caused by the Laplacian $d^{*} d$ term in the HS formula.

Third moment inequality for $d=2$

To prove Theorem 1 we need to show that there is a constant C depending only on $V(\cdot)$ such that

$$
\text { (c) }\left|\left\langle[\phi(0)-\phi(x)]^{3}\right\rangle_{x, \mu}\right| \leq C \text {. }
$$

Hence we would like to take $h_{j}(y)=h(y), j=1,2,3$, where $h(y) \sim 1 /|y|$ as $|y| \rightarrow \infty$, so $h(\cdot)$ barely misses being in $\ell^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$. Note however that $h(\cdot) \in \ell_{w}^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ for any weight $w: \mathbf{Z}^{d} \rightarrow \mathbf{R}$ of the form $w(y)=w_{\alpha}(y)=[1+|y|]^{\alpha}$ with $\alpha<0$. The Calderon-Zygmund operator T has norm $\|T\|_{w_{\alpha}} \leq 1+C|\alpha|$. Hence the ℓ^{2} converging perturbation expansion which implies Theorem A also converges in $\ell_{w_{\alpha}}^{2}$ for small $|\alpha|$. This implies (c).

We cannot replace $\ell_{w}^{2}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ with $w(\cdot)$ close in the Muckenhoupt A_{2} sense to 1 in this argument by $\ell^{p}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ with $p>2$ close to 1 , even though $h(\cdot) \in \ell^{p}\left(\mathbf{Z}^{d}, \mathbf{R}^{d}\right)$ for any $p>2$. The reason is that we need to carry through a spectral decomposition of $d^{*} d$ and this does not work for $p \neq 2$.

Elliptic PDE with random coefficients

(Ω, \mathcal{F}, P) a probability space and $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbf{Z}^{d}$, translation operators which act ergodically on Ω. Let $\mathbf{a}: \Omega \rightarrow \mathbf{R}^{d(d+1) / 2}$ be a measurable mapping to symmetric $d \times d$ matrices such that $\lambda I_{d} \leq \mathbf{a}(\cdot) \leq \Lambda I_{d}$. Let $u(x, \eta, \omega)$ be the solution to the discrete elliptic equation

$$
\eta u(x, \eta, \omega)+\nabla^{*} \mathbf{a}\left(\tau_{x} \omega\right) \nabla u(x, \eta, \omega)=h(x), \quad x \in \mathbf{Z}^{d}, \omega \in \Omega .
$$

Translation invariance implies $\langle u(x, \eta, \cdot)\rangle=\sum_{y \in \mathbf{Z}^{d}} G_{\mathbf{a}, \eta}(x-y) h(y)$, where $G_{\mathbf{a}, \eta}(x), x \in \mathbf{Z}^{d}$, is the averaged Green's function.

Homogenization (Kozlov 1978): Let $f: \mathbf{R}^{d} \rightarrow \mathbf{R}$ be a C_{c}^{∞} function and set $h(x)=\varepsilon^{2} f(\varepsilon x), x \in \mathbf{Z}^{d}$. Then $u\left(x / \varepsilon, \varepsilon^{2} \eta, \omega\right)$ converges with probability 1 to a function $u(x, \eta)$ which is the solution to the constant coefficient equation

$$
\eta u(x, \eta)+\nabla^{*} \mathbf{a}_{\mathrm{hom}} \nabla u(x, \eta)=f(x), \quad x \in \mathbf{R}^{d} .
$$

Rate of Convergence in Homogenization

Can show (Yurinskii 1986) that
(d) $\left|\left\langle u\left(x / \varepsilon, \varepsilon^{2} \eta, \cdot\right)\right\rangle-u(x, \eta)\right| \leq C \varepsilon^{\alpha}$ for some α depending on λ / Λ,
provided the operators $\tau_{x}: \Omega \rightarrow \Omega, x \in \mathbf{Z}^{d}$, have strong mixing properties, for example if variables $\mathbf{a}\left(\tau_{x} \cdot\right), x \in \mathbf{Z}^{d}$, independent. If (Ω, \mathcal{F}, P) is an EFT can use (Naddaf-Spencer 1998) the Poincaré inequality to prove (d). This method has been recently extended to the i.i.d. case yielding optimal α (Gloria-Otto 2009). Observe from

$$
\left\langle u\left(x / \varepsilon, \varepsilon^{2} \eta, \cdot\right)\right\rangle=\int_{\varepsilon \mathbf{Z}^{d}} \varepsilon^{2-d} G_{\mathbf{a}, \varepsilon^{2} \eta}\left(\frac{x-z}{\varepsilon}\right) f(z) d z
$$

that (d) follows from the inequality

$$
\text { (e) }\left|\varepsilon^{2-d} G_{\mathbf{a}, \varepsilon^{2} \eta}(x / \varepsilon)-G_{\mathbf{a}_{\text {hom }, \eta}}(x)\right| \leq \frac{C \varepsilon^{\alpha}}{[|x|+\varepsilon]^{d-2+\alpha}} e^{-\gamma \sqrt{\eta / \Lambda|x|}}, x \in \varepsilon \mathbf{Z}^{d}
$$

Note that it is sufficient to establish (e) for $\varepsilon=1$ uniformly as $\eta \rightarrow 0$.

Averaged Green's function inequalities for $d \geq 1$

Theorem 3 (Conlon-Spencer 2011): Let $\tilde{\mathbf{a}}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d(d+1) / 2}$ be a C^{1} function on \mathbf{R}^{d} with values in the space of symmetric $d \times d$ matrices which satisfies $\lambda I_{d} \leq \tilde{\mathbf{a}}(\cdot) \leq \Lambda I_{d}$ and $\|D \tilde{\mathbf{a}}(\cdot)\|_{\infty}<\infty$, and set $\mathbf{a}(\omega)=\mathbf{a}(\nabla \phi(\cdot))=\tilde{\mathbf{a}}(\nabla \phi(0))$. Then there exists $\alpha, \gamma>0$ depending only on $d, \lambda / \Lambda$ and C depending only on $\tilde{a}(\cdot)$ such that

$$
\begin{gathered}
\left|G_{\mathbf{a}, \eta}(x)-G_{\mathbf{a}_{\text {hom }}, \eta}(x)\right| \leq \frac{C}{[|x|+1]^{d-2+\alpha}} e^{-\gamma \sqrt{\eta / \Lambda}|x|}, \quad \text { for } d \geq 3 \\
\left|\nabla G_{\mathbf{a}, \eta}(x)-\nabla G_{\mathbf{a}_{\mathrm{hom}}, \eta}(x)\right| \leq \frac{C}{[|x|+1]^{d-1+\alpha}} e^{-\gamma \sqrt{\eta / \Lambda|x|}}, \quad \text { for } d \geq 2 \\
\left|\nabla \nabla G_{\mathbf{a}, \eta}(x)-\nabla \nabla G_{\mathbf{a}_{\mathrm{hom}}, \eta}(x)\right| \leq \frac{C}{[|x|+1]^{d+\alpha}} e^{-\gamma \sqrt{\eta / \Lambda|x|}}, \quad \text { for } d \geq 1
\end{gathered}
$$

Proof: Use a representation for the Fourier transform $\hat{G}_{\mathbf{a}, \eta}(\xi), \xi \in[-\pi, \pi]^{d}$, of $G_{\mathbf{a}, \eta}(\cdot)$ from (Conlon-Naddaf 2000) plus show functions related to $\hat{G}_{\mathbf{a}, \eta}(\cdot)$ are in certain $L^{p}\left([-\pi, \pi]^{d}\right)$ spaces.

Elliptic PDE on the probability space

For a function $\psi: \Omega \rightarrow \mathbf{C}$ define the ξ derivative of $\psi(\cdot)$ in the j direction $\partial_{j, \xi}$ by

$$
\partial_{j, \xi} \psi(\omega)=e^{-i \xi_{j}} \psi\left(\tau_{\mathbf{e}_{j}} \omega\right)-\psi(\omega), \quad \partial_{\xi}=\left[\partial_{1, \xi}, \ldots, \partial_{d, \xi}\right] .
$$

Let $\mathbf{b}(\cdot) \in L^{2}\left(\Omega, \mathbf{C}^{d}\right)$ and $\Phi(\xi, \eta, \omega)$ the solution to the PDE

$$
\eta \Phi(\xi, \eta, \omega)+\partial_{\xi}^{*} \mathbf{a}(\omega) \partial_{\xi} \Phi(\xi, \eta, \omega)=\partial_{\xi}^{*} \mathbf{b}(\omega)
$$

Then $\left\|\partial_{\xi} \Phi(\xi, \eta, \cdot)\right\| \leq\|\mathbf{b}(\cdot)\| / \lambda$ which implies $\left\|P \partial_{\xi} \Phi(\xi, \eta, \cdot)\right\| \leq\|\mathbf{b}(\cdot)\| / \lambda$ where $P: L^{2}\left(\Omega, \mathbf{C}^{d}\right) \rightarrow L^{2}\left(\Omega, \mathbf{C}^{d}\right)$ is the projection orthogonal to the constant function. Hence if $g(\cdot) \in L^{p}\left(\mathbf{Z}^{d}\right)$ there is an inequality

$$
\text { (f) } \quad\left\|P \sum_{x \in \mathbf{Z}^{d}} g(x) \partial_{\xi} \Phi\left(\xi, \eta, \tau_{x} \cdot\right)\right\| \leq C_{p}\|g\|_{p}
$$

which holds for $p=1$ with $C_{1}=1 / \lambda$.

Naddaf-Spencer argument

Let (Ω, \mathcal{F}, P) be a massless EFT. Then Poincaré for EFT implies

$$
\left\|P \sum_{x \in \mathbf{Z}^{d}} g(x) \partial_{\xi} \Phi\left(\xi, \eta, \tau_{x} \cdot\right)\right\|^{2} \leq \frac{1}{\lambda} \sum_{z \in \mathbf{Z}^{d}}\left\|\frac{\partial}{\partial \omega(z)} \sum_{x \in \mathbf{Z}^{d}} g(x) \partial_{\xi} \Phi\left(\xi, \eta, \tau_{x} \cdot\right)\right\|^{2}
$$

where $\omega(\cdot)=\nabla \phi(\cdot)$. Translation invariance implies that

$$
\sum_{z \in \mathbf{Z}^{d}}\left\|\frac{\partial}{\partial \omega(z)} \sum_{x \in \mathbf{Z}^{d}} g(x) F\left(\tau_{x} \omega(\cdot)\right)\right\|^{2}=\sum_{z \in \mathbf{Z}^{d}} \| g(x) H\left(x-z, \omega(\cdot) \|^{2}\right.
$$

for some function $H: \mathbf{Z}^{d} \times \Omega \rightarrow \mathbf{C}$. When $F(\cdot)=\partial_{\xi} \Phi(\xi, \eta, \cdot)$ then $H(y, \omega)=\nabla_{y} G(y, \omega(\cdot)$ where $G(y, \omega)$ is the Green's function for an elliptic PDE in y with coefficients which depend on ω. Hence (Meyers 1963) the uniform ellipticity and Calderon-Zygmund imply that for all q close to 2 there is a constant C independent of ω such that $\nabla_{y} G(y, \omega) \in L^{q}\left(\mathbf{Z}^{d}\right)$ and $\left\|\nabla_{y} G(\cdot, \omega)\right\|_{q} \leq C$. Young's inequality then implies for $q<2$ that (f) holds with $p=2 q /(3 q-2)>1$.

Correlation and averaged Green's functions

Let (Ω, \mathcal{F}, P) be a massless EFT. Then (Giacomin-Olla-Spohn 2001)

$$
\langle\phi(x) \phi(0)\rangle=\int_{0}^{\infty} G_{\mathbf{a}}(x, t) d t
$$

where $G_{\mathbf{a}}(x, t)$ is the averaged Green's function for the parabolic PDE

$$
\frac{\partial u(x, t, \omega)}{\partial t}+\nabla^{*} \mathbf{a}\left(\tau_{x, t} \omega\right) \nabla u(x, t, \omega)=0, \quad u(x, 0, \omega)=h(x),
$$

where $\omega=\nabla \phi(x, t), x \in \mathbf{Z}^{d}, t \in \mathbf{R}$, and $\mathbf{a}(\omega)=V^{\prime \prime}(\nabla \phi(0,0))$. Theorem 4 (Conlon-Spencer): Let $\tilde{\mathbf{a}}: \mathbf{R}^{d} \rightarrow \mathbf{R}^{d(d+1) / 2}$ be a C^{1} function on \mathbf{R}^{d} with values in the space of symmetric $d \times d$ matrices which satisfies $\lambda I_{d} \leq \tilde{\mathbf{a}}(\cdot) \leq \Lambda I_{d}$ and $\|D \tilde{\mathbf{a}}(\cdot)\|_{\infty}<\infty$, and set $\mathbf{a}(\omega)=\mathbf{a}(\nabla \phi(\cdot))=\tilde{\mathbf{a}}(\nabla \phi(0,0))$. Then there exists $\alpha, \gamma>0$ depending only on $d, \lambda / \Lambda$ and C depending only on $\tilde{\mathbf{a}}(\cdot)$ such that for $d \geq 3$,

$$
\left|G_{\mathbf{a}}(x, t)-G_{\mathbf{a}_{\text {hom }}}(x, t)\right| \leq \frac{C}{[\Lambda t+1]^{(d+1+\alpha) / 2}} \exp \left[-\gamma \min \left\{|x|, \frac{|x|^{2}}{\Lambda t+1}\right\}\right]
$$

Parabolic PDE on the probability space

For a function $\psi: \Omega \rightarrow \mathbf{C}$ define the derivative of $\psi(\cdot)$ in the time direction ∂ by

$$
\partial \psi(\omega)=\lim _{t \rightarrow 0}\left[\psi\left(\tau_{0, t} \omega\right)-\psi(\omega)\right] / t .
$$

Let $\mathbf{b}(\cdot) \in L^{2}\left(\Omega, \mathbf{C}^{d}\right)$ and $\Phi(\xi, \eta, \omega)$ the solution to the PDE

$$
\partial \Phi(\xi, \eta, \omega)+\eta \Phi(\xi, \eta, \omega)+\partial_{\xi}^{*} \mathbf{a}(\omega) \partial_{\xi} \Phi(\xi, \eta, \omega)=\partial_{\xi}^{*} \mathbf{b}(\omega) .
$$

Then as in the elliptic case $\left\|P \partial_{\xi} \Phi(\xi, \eta, \cdot)\right\| \leq\|\mathbf{b}(\cdot)\| / \lambda$. Hence if $g(\cdot, \cdot) \in L^{p}\left(\mathbf{Z}^{d} \times \mathbf{R}\right)$ there is an inequality

$$
\text { (g) }\left\|P \sum_{x \in \mathbf{Z}^{d}} \int_{\mathbf{R}} d t g(x, t) \partial_{\xi} \Phi\left(\xi, \eta, \tau_{x, t}\right)\right\| \leq C_{p}\|g\|_{p}
$$

which holds for $p=1$ with $C_{1}=1 / \lambda$. To prove Theorem 4 we need to prove (g) for some $p>1$. To do this we use the Poincaré inequality on the space of time dependent fields $\phi(x, t), x \in \mathbf{Z}^{d}, t \in \mathbf{R}$.

The Malliavin Calculus

Let $W(t), t \in \mathbf{R}$, be the white noise Gaussian process, so if $B(t), t \geq 0$, is Brownian motion then

$$
B(t)=\int_{0}^{t} W(s) d s
$$

Let $\left(\Omega, \mathcal{F}_{T}, P\right)$ be the probability space generated by $B(t), 0 \leq t \leq T$. Then $L^{2}\left(\Omega, \mathcal{F}_{T}, P\right)$ is unitarily equivalent to the space of functions $\xi: L^{2}([0, T]) \rightarrow \mathbf{R}$ with a Gaussian measure on $L^{2}([0, T])$. Let $[\cdot, \cdot]$ be the standard inner product on $L^{2}([0, T])$. The equivalence is:

$$
\psi(\cdot) \in L^{2}([0, T]) \quad \text { corresponds to } \psi(t) \leftrightarrow W(t), 0 \leq t \leq T .
$$

Measure on $L^{2}([0, T])$: If $\psi_{j}, j=1,2, .$. is an orthonormal basis for $L^{2}([0, T])$ then the variables $\psi \rightarrow\left[\psi, \psi_{j}\right]$ are i.i.d. standard normal. For $h \in L^{2}([0, T])$ define the directional derivative $D_{h} \xi(\psi(\cdot))$ by

$$
D_{h} \xi(\psi(\cdot))=\lim _{\varepsilon \rightarrow 0}[\xi(\psi(\cdot)+\varepsilon h(\cdot))-\xi(\psi(\cdot))] / \varepsilon=[D \xi(\psi(\cdot)), h] .
$$

Hence $D \xi(\psi(\cdot))$ is a function in $L^{2}([0, T])$ which we write as $D_{t} \xi(\psi(\cdot)), 0 \leq t \leq T$.

The Clark-Ocone Formula (1984)

For $\xi: L^{2}([0, T]) \rightarrow \mathbf{R}$ then

$$
\mathrm{CO}: \xi(\cdot)-\langle\xi\rangle=\int_{0}^{T} \sigma_{t}(\cdot) d B(t) \quad \text { where } \sigma_{t}(\cdot)=E\left[D_{t} \xi(\cdot) \mid \mathcal{F}_{t}\right]
$$

CO implies Poincaré inequality since

$$
\operatorname{var}[\xi]=E\left[\int_{0}^{T} \sigma_{t}(\cdot)^{2} d t\right] \leq E\left[\int_{0}^{T}\left[D_{t} \xi(\cdot)\right]^{2} d t\right]
$$

CO implies HS formula: Let $\phi(t), t \geq 0$, be the solution to the SDE

$$
d \phi(t)=-\frac{1}{2} V^{\prime}(\phi(t)) d t+d B(t), \quad \phi(0)=0
$$

The stochastic process $\phi(\cdot)$ has invariant measure $\exp [-V(\phi)]$ so the distribution of $\phi(T)$ converges as $T \rightarrow \infty$ to $\exp [-V(\phi)]$.

First Variation Equation

For $h \in L^{2}([0, T])$ then $D_{h} \phi(t)$ is the solution to the first variation equation

$$
\frac{d}{d t}\left[D_{h} \phi(t)\right]=-\frac{1}{2} V^{\prime \prime}(\phi(t))\left[D_{h} \phi(t)\right]+h(t), \quad D_{h} \phi(0)=0 .
$$

Hence $D_{h} \phi(T)=\int_{0}^{T} h(t) \exp \left[-\frac{1}{2} \int_{t}^{T} V^{\prime \prime}(\phi(s)) d s\right] d t, \quad$ and so
$D_{t} \phi(T)=\exp \left[-\frac{1}{2} \int_{t}^{T} V^{\prime \prime}(\phi(s)) d s\right]$ for $0 \leq t \leq T, \quad D_{t} \phi(T)=0$ for $t>T$.
Now for a C^{1} function $F: \mathbf{R} \rightarrow \mathbf{R}$ use $\xi(\phi(\cdot))=F(\phi(T))$, observing that $D_{t} \xi(\phi(\cdot))=F^{\prime}(\phi(T)) D_{t} \phi(T)$. Then CO plus Feynman-Kac formula imply HS on letting $T \rightarrow \infty$.

Poincaré inequalities (Gourcy-Wu 2006)

Assume $\xi(\phi(\cdot))$ is a function of $\phi(t), 0 \leq t \leq T$. Then we can define two kinds of derivatives of $\xi(\phi(\cdot))$:
(a) The Malliavin derivative $D \xi(\cdot)$ since $\xi(\cdot)$ is a function of white noise.
(b) The field derivative $d \xi(\phi(\cdot))$ which measures the infinitesimal change in $\xi(\phi(\cdot))$ with respect to variations of the field $\phi(\cdot)$. Thus

$$
d_{h} \xi(\phi(\cdot))=\lim _{\varepsilon \rightarrow 0}[\xi(\phi(\cdot)+\varepsilon h(\cdot))-\xi(\phi(\cdot))] / \varepsilon=[d \xi(\phi(\cdot)), h] .
$$

The chain rule implies that (a) and (b) are related by

$$
D_{t} \xi(\phi(\cdot))=\int_{0}^{t} d_{s} \xi(\phi(\cdot)) D_{t} \phi(s) d s
$$

If $V^{\prime \prime}(\cdot) \geq \lambda>0$ then

$$
\left|D_{t} \xi(\phi(\cdot))\right| \leq \int_{0}^{t}\left|d_{s} \xi(\phi(\cdot))\right| e^{-\lambda(t-s) / 2} d s
$$

Poincaré inequality for fields

We have that

$$
\begin{aligned}
\operatorname{var}[\xi(\phi(\cdot))] \leq E & {\left[\int_{0}^{T}\left[D_{t} \xi(\phi(\cdot))\right]^{2} d t\right] } \\
& \leq E\left[\int_{0}^{T}\left\{\int_{0}^{t}\left|d_{s} \xi(\phi(\cdot))\right| e^{-\lambda(t-s) / 2} d s\right\}^{2} d t\right]
\end{aligned}
$$

and so we obtain the Poincaré field inequality

$$
\text { (h) } \quad \operatorname{var}[\xi(\phi(\cdot))] \leq \frac{4}{\lambda^{2}} E\left[\int_{0}^{T}\left[d_{t} \xi(\phi(\cdot))\right]^{2} d t\right]
$$

The inequality (h) can be derived using HS in the case when $\xi(\phi(\cdot))$ has the form

$$
\xi(\phi(\cdot))=\int_{0}^{\infty} g(t) b(\phi(t)) d t
$$

REFERENCES

Conlon-Spencer 2011:
(a) A strong central limit theorem for a class of random surfaces, http://arxiv.org/abs/1105.2814
(b) Strong convergence to the homogenized limit of elliptic equations with random coefficients, http://arxiv.org/abs/1101.4914

Thank you!

