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(Università di Roma ‘Tor Vergata’)

Variational Problems with Percolation

Gradient Random Fields

May 31, 2011 BIRS, Banff

A.Braides: Variational Problems with Percolation



From discrete to continuous energies

Discrete system: with discrete variables u = {ui} indexed on a lattice (e.g.,
Ω ∩ Zd)

Discrete energy: (e.g., pair interactions)

E(u) =
X
ij

fij(ui, uj)

Scaling arguments: derive

Eε(u) =
X
ij

fεij(ui, uj)

indexed on a scaled lattice (e.g., Ω ∩ εZd)

Identification: identify u with some continuous parameter (e.g., its
piecewise-constant interpolation; a sum of Dirac deltas, etc.)

Effective continuous theory: described by an energy F obtained by Γ-limit as
ε→ 0.

B. Γ-convergence for Beginners, OUP 2002

B. Handbook of Γ-convergence (Handbook of Diff. Eqns, Elsevier, 2006)
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‘SPIN’ SYSTEMS

Cubic lattice: variables parameterized on Ω ∩ Zd

Binary systems: variable taking only two values; wlog ui ∈ {−1, 1} (spins).

Nearest-neighbour (NN) interactions: the energies depend only on (ui, uj)
with |i− j| = 1.

Only two possible energies (up to affine change of variables):

E(u) = Eferr(u) = −
X
NN

uiuj (ferromagnetic energy)

(with two trivial minimizers ui ≡ 1 and ui ≡ −1)

E(u) = Eanti(u) =
X
NN

uiuj (antiferromagnetic energy)

(with two minimizers ui ≡ ±(−1)i)

Note: the change of variables vi = (−1)iui is such that Eanti(v) = Eferro(u), so
actually we have only one energy
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BINARY SYSTEMS: Continuous limits of ferromagnetic energies

Choice of the parameter: (magnetization) u ∈ BV (Ω; {±1}) continuous
limit of piecewise-constant interpolations of {ui}

Surface scaling: (crystalline perimeter)

Eε(u) =
X

εd−1(1− uiuj) −→ 2

Z
Ω∩∂{u=1}

‖ν‖ dHd−1, with ‖ν‖ =
X
k

|νk|

ν

=-1 =+1

ν = normal to the interface
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BINARY SYSTEMS: “Dynamic” Continuous Theory

Continuous “flows” of the perimeter

Crystalline perimeter-driven motion of sets
⇓

motion by crystalline mean curvature
(Almgren-Taylor J. Diff. Geom. 1995 in 2D) L

V

|v| =
2

L

Motion is obtained by introducing a discrete time-step τ and initial set A0, define
a time-discrete motion by successive minimizations for fixed τ : Ak+1 minimizes

min
n
P (A) +

1

2τ
“dist(A,Ak)”

o
Define Aτ (t) = A[t/τ ] (piecewise-constant interpolation of {Ak}) and pass to the
limit as τ → 0 to get a continuous A(t) (scheme by Almgren-Taylor-Wang,

SIAM J. Control Opt. 1983)
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Motion of discrete interfaces

Fix ε, τ and A0. Then Ak+1 minimizes (here, A = {u = 1}, Pε(A) = Eε(u))

min
n
Pε(A) +

1

2τ
“distε(A,Ak)”

o
Define Aε,τ (t) = A[t/τ ] and pass to the limit as τ → 0 to get a continuous A(t).

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009)

• For τ << ε the motion A(t) is trivial (pinning):

A(t) = A0

for all (sufficiently regular) bounded initial sets A0;

• For ε << τ the sets A(t) follow motion by crystalline mean curvature.

• At the critical scale τ = αε we have
‘quantized’ cristalline motion

L
V

|v| =
1

α

j 2α

L

k
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Discreteness effects at the critical scale

(i) (critical pinning side-length) If all L > 2α then the motion is trivial:
A(t) = A0;

(ii) (partial pinning and non strict inclusion principle; e.g for rectangles) If
L1 < 2α and L2 > 2α only one side is (initially) pinned

First case: complete pinning
If L1, L2 > 4

α then the rectangle does not move:
the change in energy obtained by removing a stripe of ‘atoms’ is
−2ε + 1

2τ ε2L1α > 0

Second case: partial pinning If L2 > 4
α and L1 < 4

α with
4

αL1
"∈ N then the shorter sides move inwards. The length of the

longer side decreases with velocity

L̇2 = −2α
[ 4
αL1

]
(until L2 = 4

α )

L1

L2(t)

(iii) (quantized velocity)
2α/L(t) 6∈ N ⇒ velocity integer multiple of 1/α;

(iv) (non-uniqueness)
2α/L(t) ∈ N ⇒ velocity not uniquely determined ⇒ non-uniqueness

(v) (non-convex pinned sets)
(vi) (pinning after initial motion)

Motion of general sets is obtained by localization through the
use of barriers.
Large sets get pinned

barriers

4/!

pinned final state

local barrier vanishing in finite time

Smalls sets shrink to a point
barriers

4/!

pinned final state

local barrier vanishing in finite time

2α
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COMMENTS I/General lattices: ferromagnetic interactions

With the due changes the process can be repeated on more general periodic
lattices (e.g. triangular, exagonal, FCC, BCC, etc.); even though we do not have
in general a duality between ferro- and anti-ferromagnetic energies (frustration).
For ferromagnetic energies we still have the same continuous parameter
u ∈ BV (Ω; {±1}). The form of the surface tension changes accordingly.

Techniques must be refined to take care of a-periodic lattices (e.g. Penrose
tilings or quasicrystals)

(B-Solci M3AS 2011)
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COMMENTS II/Long-range interactions: ferromagnetic systems

We may have more complex interactions:

−
X
i,j

σijuiuj

Conditions of the type
• (uniform minimal states) σij ≥ 0
• (coerciveness conditions) σij ≥ c > 0 for |i− j| = 1
• (decay conditions)

P
j σij ≤ C < +∞ for all i

guarantee that (up to subsequences) the continuous parameter is still
u ∈ BV (Ω; {±1}) andX

ij

εd−1σij(1− uiuj) −→
Z

Ω∩∂{u=1}
ϕ(x, ν) dHd−1

i.e., the limit is still a (possibly inhomogeneous) interfacial energy.

The integrand ϕ is determined by a family of discrete (non-local) minimal-surface
problems. In the 2D case and if only nearest-neighbours are considered (σij = 0 if
|i− j| > 1) equivalently it is given by an asymptotic distance on the lattice Z2

(where the distance between the nodes i and j is σij) (B-Piatnitsky 2010)
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COMMENTS III/ Other continuous parameters

When not only nearest neighbours are taken into account we do not have a
correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM

2006)

E(u) = c1
X
NN

uiuj + c2
X
NNN

ukul ui ∈ {±1}

(NNN = next-to-nearest neighbours)

For suitable positive c1 and c2 the ground states are 2-periodic

(representation in the unit cell)

The correct order parameter is the orientation v ∈ {±e1,±e2} of the ground
state.
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Surface-scaling limit

F (v) =

Z
S(v)

ψ(v+ − v−, ν) dH1

S(v) = discontinuity lines; ν = normal to S(v)
ψ given by an optimal-profile problem

Microscopic picture of a limit state with finite energy
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Ferromagnetic-anti-ferromagnetic spin systems
We can consider e.g. two-dimensional systems with NN, NNN, NNNN (next-to-
next-...) interactions, ui ∈ {±1} and

E(u) =
X
NN

uiuj − c1
X
NNN

uiuj + c2
X

NNNN

uiuj

For suitable c1 and c2 again we have a non-trivial 4-periodic ground state

= +1
=  -1
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but also...

and also....

(counting translations 16 different ground states)
and a description for the surface-scaling Γ-limit combining the two previous
examples
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RANDOM PROBLEMS

Let d = 2. Introduce a random variable depending on an ergodic stationary
discrete random process on the bonds of Z2. The simplest energy depends on its
realizations ω:

Eωε (u) = −
X
NN

σωijuiuj

• if 0 < c1 ≤ σωij ≤ c2 < +∞ then a.s.

X
NN

εσωij(1− uiuj) −→
Z

Ω∩∂{u=1}
ϕ(ν) dH1

ϕ can be interpreted as a least-distance formula:

ϕ(ν) = lim
T→+∞

1

T
inf

nX
i

σωki,ki+1
: {ki} path between 0 and Tν⊥

o
• ϕ exists and a.s. is independent of ω

• we can substitute 0 and Tν⊥ with arbitrary x and x+ Tν⊥ (x = O(T ))

• oscillations of the minimal path from the segment [x, x+ Tν⊥] are small.
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A Percolation Result for “Rigid spins” / Damage

Rigid spin systems. We may consider ω a realization of an i.i.d. random
variable in Z2, and the corresponding energy (surface scaling)

Eωε (u) =
X
NN

εσωij(1− uiuj) with σωij =

(
1 with probability p

+∞ with probability 1− p

(with the convention ∞ · 0 = 0)

Deterministic counterpart: the case p > 1/2 corresponds to well-separated
‘discrete rigid inclusions’; i.e., where we have the constraint ui = uj .

Percolation Theorem (B-Piatnitski 2008)

In the surface scaling, the Γ-limit Fp of Eωε is a.s.

(1) Fp(u) = +∞ if u 6= 1 or u 6= −1 identically, for p < 1/2

(2) Fp(u) =

Z
Ω∩∂{u=1}

ϕp(ν) dH1 for p > 1/2 (u ∈ BV (Ω; {±1}))

The limit is deterministic and ϕp(ν) is given by an asymptotic distance on the
‘weak cluster’ for p > 1/2.

NOTE: this is the limit case when σωij =

(
1 with probability p

T with probability 1− p
for

T → +∞
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A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider ω a realization of an
i.i.d. random variable in Z2, and the corresponding energy

Eω(u) = −
X
NN

σωijuiuj with σωij =

(
1 with probability p

0 with probability 1− p

Deterministic counterpart: discrete ‘perforated domain’; the case p > 1/2
corresponds to well-separated ‘holes’; i.e., where σij = 0.

Percolation Theorem (B-Piatnitski 2010)

In the surface scaling, the Γ-limit Fp of Eωε is a.s.

(1) Fp(u) = 0 on all u ∈ L1(Ω; [−1, 1]) for p ≤ 1/2

(2) Fp(u) =

Z
Ω∩∂{u=1}

ϕp(ν) dH1 for p > 1/2

The limit is deterministic and ϕp(ν) is given by a first-passage percolation formula
for p > 1/2.

NOTE: the parameter u ∈ BV (Ω; {±1}) is the “dominant phase” (no control if
σij = 0)
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Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

Eω(u) = −
X
NN

σωijuiuj with σωij =

(
1 with probability p

−1 with probability 1− p

Deterministic ‘toy’ problem (for the case p ∼ 0): discrete ‘perforated
domain’ with well-separated ‘holes’ where σij = −1 (B-Piatnitski 2010). In this
case

• need stronger separation conditions between the perforations
• the surface scaling is more complex and not explicit

• the Γ-limit may be still described by an interfacial energy

Z
Ω∩∂{u=1}

ϕ(ν) dH1

but ϕ is not given by a least-distance formula
(=⇒ probabilistic approach beyond percolation theory)

Note: when 0 < p < 1 it is not even clear what should be the correct
parameter in the limit.

Question: How does p influence the geometry (and number) of ground states?
What happens when p→ 1/2?
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