ANDREA BRAIDES (Università di Roma 'Tor Vergata')

Variational Problems with Percolation

Gradient Random Fields
May 31, 2011 BIRS, Banff

From discrete to continuous energies

Discrete system: with discrete variables $u=\left\{u_{i}\right\}$ indexed on a lattice (e.g., $\Omega \cap \mathbf{Z}^{d}$)
Discrete energy: (e.g., pair interactions)

$$
E(u)=\sum_{i j} f_{i j}\left(u_{i}, u_{j}\right)
$$

From discrete to continuous energies

Discrete system: with discrete variables $u=\left\{u_{i}\right\}$ indexed on a lattice (e.g., $\Omega \cap \mathbf{Z}^{d}$)
Discrete energy: (e.g., pair interactions)

$$
E(u)=\sum_{i j} f_{i j}\left(u_{i}, u_{j}\right)
$$

Scaling arguments: derive

$$
E_{\varepsilon}(u)=\sum_{i j} f_{i j}^{\varepsilon}\left(u_{i}, u_{j}\right)
$$

indexed on a scaled lattice (e.g., $\Omega \cap \varepsilon \mathbf{Z}^{d}$)

From discrete to continuous energies

Discrete system: with discrete variables $u=\left\{u_{i}\right\}$ indexed on a lattice (e.g., $\Omega \cap \mathbf{Z}^{d}$)
Discrete energy: (e.g., pair interactions)

$$
E(u)=\sum_{i j} f_{i j}\left(u_{i}, u_{j}\right)
$$

Scaling arguments: derive

$$
E_{\varepsilon}(u)=\sum_{i j} f_{i j}^{\varepsilon}\left(u_{i}, u_{j}\right)
$$

indexed on a scaled lattice (e.g., $\Omega \cap \varepsilon \mathbf{Z}^{d}$)
Identification: identify u with some continuous parameter (e.g., its piecewise-constant interpolation; a sum of Dirac deltas, etc.)

From discrete to continuous energies

Discrete system: with discrete variables $u=\left\{u_{i}\right\}$ indexed on a lattice (e.g., $\Omega \cap \mathbf{Z}^{d}$)
Discrete energy: (e.g., pair interactions)

$$
E(u)=\sum_{i j} f_{i j}\left(u_{i}, u_{j}\right)
$$

Scaling arguments: derive

$$
E_{\varepsilon}(u)=\sum_{i j} f_{i j}^{\varepsilon}\left(u_{i}, u_{j}\right)
$$

indexed on a scaled lattice (e.g., $\Omega \cap \varepsilon \mathbf{Z}^{d}$)
Identification: identify u with some continuous parameter (e.g., its piecewise-constant interpolation; a sum of Dirac deltas, etc.)
Effective continuous theory: described by an energy F obtained by Γ-limit as $\varepsilon \rightarrow 0$.

From discrete to continuous energies

Discrete system: with discrete variables $u=\left\{u_{i}\right\}$ indexed on a lattice (e.g., $\Omega \cap \mathbf{Z}^{d}$)
Discrete energy: (e.g., pair interactions)

$$
E(u)=\sum_{i j} f_{i j}\left(u_{i}, u_{j}\right)
$$

Scaling arguments: derive

$$
E_{\varepsilon}(u)=\sum_{i j} f_{i j}^{\varepsilon}\left(u_{i}, u_{j}\right)
$$

indexed on a scaled lattice (e.g., $\Omega \cap \varepsilon \mathbf{Z}^{d}$)
Identification: identify u with some continuous parameter (e.g., its piecewise-constant interpolation; a sum of Dirac deltas, etc.)
Effective continuous theory: described by an energy F obtained by Γ-limit as $\varepsilon \rightarrow 0$.
B. Γ-convergence for Beginners, OUP 2002
B. Handbook of Γ-convergence (Handbook of Diff. Eqns, Elsevier, 2006)

‘SPIN’ SYSTEMS

Cubic lattice: variables parameterized on $\Omega \cap \mathbf{Z}^{d}$
Binary systems: variable taking only two values; wlog $u_{i} \in\{-1,1\}$ (spins).
Nearest-neighbour (NN) interactions: the energies depend only on $\left(u_{i}, u_{j}\right)$ with $|i-j|=1$.

‘SPIN’ SYSTEMS

Cubic lattice: variables parameterized on $\Omega \cap \mathbf{Z}^{d}$
Binary systems: variable taking only two values; wlog $u_{i} \in\{-1,1\}$ (spins).
Nearest-neighbour (NN) interactions: the energies depend only on (u_{i}, u_{j}) with $|i-j|=1$.

Only two possible energies (up to affine change of variables):

$$
E(u)=E_{\mathrm{ferr}}(u)=-\sum_{\mathrm{NN}} u_{i} u_{j} \quad(\text { ferromagnetic energy })
$$

(with two trivial minimizers $u_{i} \equiv 1$ and $u_{i} \equiv-1$)

$$
E(u)=E_{\text {anti }}(u)=\sum_{\mathrm{NN}} u_{i} u_{j} \quad(\text { antiferromagnetic energy) }
$$

(with two minimizers $u_{i} \equiv \pm(-1)^{i}$)

‘SPIN’ SYSTEMS

Cubic lattice: variables parameterized on $\Omega \cap \mathbf{Z}^{d}$
Binary systems: variable taking only two values; wlog $u_{i} \in\{-1,1\}$ (spins).
Nearest-neighbour (NN) interactions: the energies depend only on (u_{i}, u_{j}) with $|i-j|=1$.

Only two possible energies (up to affine change of variables):

$$
E(u)=E_{\mathrm{ferr}}(u)=-\sum_{\mathrm{NN}} u_{i} u_{j} \quad(\text { ferromagnetic energy })
$$

(with two trivial minimizers $u_{i} \equiv 1$ and $u_{i} \equiv-1$)

$$
E(u)=E_{\text {anti }}(u)=\sum_{\mathrm{NN}} u_{i} u_{j} \quad(\text { antiferromagnetic energy) }
$$

(with two minimizers $u_{i} \equiv \pm(-1)^{i}$)
Note: the change of variables $v_{i}=(-1)^{i} u_{i}$ is such that $E_{\text {anti }}(v)=E_{\text {ferro }}(u)$, so actually we have only one energy

BINARY SYSTEMS: Continuous limits of ferromagnetic energies

Choice of the parameter: (magnetization) $u \in B V(\Omega ;\{ \pm 1\})$ continuous limit of piecewise-constant interpolations of $\left\{u_{i}\right\}$

Surface scaling: (crystalline perimeter)

$$
E_{\varepsilon}(u)=\sum \varepsilon^{d-1}\left(1-u_{i} u_{j}\right) \longrightarrow 2 \int_{\Omega \cap \partial\{u=1\}}\|\nu\| d \mathcal{H}^{d-1}, \quad \text { with } \quad\|\nu\|=\sum_{k}\left|\nu_{k}\right|
$$

$\nu=$ normal to the interface

BINARY SYSTEMS: "Dynamic" Continuous Theory

Continuous "flows" of the perimeter

Crystalline perimeter-driven motion of sets \Downarrow motion by crystalline mean curvature (Almgren-Taylor J. Diff. Geom. 1995 in 2D)

BINARY SYSTEMS: "Dynamic" Continuous Theory

Continuous "flows" of the perimeter

Crystalline perimeter-driven motion of sets \Downarrow motion by crystalline mean curvature (Almgren-Taylor J. Diff. Geom. 1995 in 2D)

Motion is obtained by introducing a discrete time-step τ and initial set A_{0}, define a time-discrete motion by successive minimizations for fixed $\tau: A_{k+1}$ minimizes

$$
\min \left\{P(A)+\frac{1}{2 \tau} " \operatorname{dist}\left(A, A_{k}\right) "\right\}
$$

Define $A^{\tau}(t)=A_{[t / \tau]}$ (piecewise-constant interpolation of $\left\{A_{k}\right\}$) and pass to the limit as $\tau \rightarrow 0$ to get a continuous $A(t)$ (scheme by Almgren-Taylor-Wang, SIAM J. Control Opt. 1983)

Motion of discrete interfaces

Fix ε, τ and A_{0}. Then A_{k+1} minimizes (here, $\left.A=\{u=1\}, P_{\varepsilon}(A)=E_{\varepsilon}(u)\right)$

$$
\min \left\{P_{\varepsilon}(A)+\frac{1}{2 \tau}{ }^{\prime} \operatorname{dist}_{\varepsilon}\left(A, A_{k}\right) "\right\}
$$

Define $A^{\varepsilon, \tau}(t)=A_{[t / \tau]}$ and pass to the limit as $\tau \rightarrow 0$ to get a continuous $A(t)$.

Motion of discrete interfaces

Fix ε, τ and A_{0}. Then A_{k+1} minimizes (here, $\left.A=\{u=1\}, P_{\varepsilon}(A)=E_{\varepsilon}(u)\right)$

$$
\min \left\{P_{\varepsilon}(A)+\frac{1}{2 \tau}{ }^{\prime} \operatorname{dist}_{\varepsilon}\left(A, A_{k}\right) "\right\}
$$

Define $A^{\varepsilon, \tau}(t)=A_{[t / \tau]}$ and pass to the limit as $\tau \rightarrow 0$ to get a continuous $A(t)$.
Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009)

- For $\tau \ll \varepsilon$ the motion $A(t)$ is trivial (pinning):

$$
A(t)=A_{0}
$$

for all (sufficiently regular) bounded initial sets A_{0};

- For $\varepsilon \ll \tau$ the sets $A(t)$ follow motion by crystalline mean curvature.

Motion of discrete interfaces

Fix ε, τ and A_{0}. Then A_{k+1} minimizes (here, $\left.A=\{u=1\}, P_{\varepsilon}(A)=E_{\varepsilon}(u)\right)$

$$
\min \left\{P_{\varepsilon}(A)+\frac{1}{2 \tau} " \operatorname{dist}_{\varepsilon}\left(A, A_{k}\right) "\right\}
$$

Define $A^{\varepsilon, \tau}(t)=A_{[t / \tau]}$ and pass to the limit as $\tau \rightarrow 0$ to get a continuous $A(t)$.

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009)

- For $\tau \ll \varepsilon$ the motion $A(t)$ is trivial (pinning):

$$
A(t)=A_{0}
$$

for all (sufficiently regular) bounded initial sets A_{0};

- For $\varepsilon \ll \tau$ the sets $A(t)$ follow motion by crystalline mean curvature.
- At the critical scale $\tau=\alpha \varepsilon$ we have 'quantized' cristalline motion

Discreteness effects at the critical scale

(i) (critical pinning side-length) If all $L>2 \alpha$ then the motion is trivial: $A(t)=A_{0}$;
(ii) (partial pinning and non strict inclusion principle; e.g for rectangles) If $L_{1}<2 \alpha$ and $L_{2}>2 \alpha$ only one side is (initially) pinned

(iii) (quantized velocity)
$2 \alpha / L(t) \notin \mathbb{N} \Rightarrow$ velocity integer multiple of $1 / \alpha$;
(iv) (non-uniqueness)
$2 \alpha / L(t) \in \mathbb{N} \Rightarrow$ velocity not uniquely determined \Rightarrow non-uniqueness
(v) (non-convex pinned sets)
(vi) (pinning after initial motion)

COMMENTS I/General lattices: ferromagnetic interactions

With the due changes the process can be repeated on more general periodic lattices (e.g. triangular, exagonal, FCC, BCC, etc.); even though we do not have in general a duality between ferro- and anti-ferromagnetic energies (frustration). For ferromagnetic energies we still have the same continuous parameter $u \in B V(\Omega ;\{ \pm 1\})$. The form of the surface tension changes accordingly.
Techniques must be refined to take care of a-periodic lattices (e.g. Penrose tilings or quasicrystals)

(B-Solci $\mathrm{M}^{3} \mathrm{AS}$ 2011)

COMMENTS II/Long-range interactions: ferromagnetic systems

We may have more complex interactions:

$$
-\sum_{i, j} \sigma_{i j} u_{i} u_{j}
$$

Conditions of the type

- (uniform minimal states) $\sigma_{i j} \geq 0$
- (coerciveness conditions) $\sigma_{i j} \geq c>0$ for $|i-j|=1$
- (decay conditions) $\sum_{j} \sigma_{i j} \leq C<+\infty$ for all i guarantee that (up to subsequences) the continuous parameter is still $u \in B V(\Omega ;\{ \pm 1\})$ and

$$
\sum_{i j} \varepsilon^{d-1} \sigma_{i j}\left(1-u_{i} u_{j}\right) \longrightarrow \int_{\Omega \cap \partial\{u=1\}} \varphi(x, \nu) d \mathcal{H}^{d-1}
$$

i.e., the limit is still a (possibly inhomogeneous) interfacial energy.

The integrand φ is determined by a family of discrete (non-local) minimal-surface problems. In the $2 D$ case and if only nearest-neighbours are considered ($\sigma_{i j}=0$ if $|i-j|>1$) equivalently it is given by an asymptotic distance on the lattice \mathbb{Z}^{2} (where the distance between the nodes i and j is $\sigma_{i j}$) (B-Piatnitsky 2010)

COMMENTS III/ Other continuous parameters

When not only nearest neighbours are taken into account we do not have a correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM 2006)

$$
E(u)=c_{1} \sum_{\mathrm{NN}} u_{i} u_{j}+c_{2} \sum_{\text {NNN }} u_{k} u_{l} \quad u_{i} \in\{ \pm 1\}
$$

(NNN $=$ next-to-nearest neighbours)

COMMENTS III/ Other continuous parameters

When not only nearest neighbours are taken into account we do not have a correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM 2006)

$$
E(u)=c_{1} \sum_{\text {NN }} u_{i} u_{j}+c_{2} \sum_{\text {NNN }} u_{k} u_{l} \quad u_{i} \in\{ \pm 1\}
$$

(NNN $=$ next-to-nearest neighbours)
For suitable positive c_{1} and c_{2} the ground states are 2 -periodic

(representation in the unit cell)
The correct order parameter is the orientation $v \in\left\{ \pm e_{1}, \pm e_{2}\right\}$ of the ground state.

Surface-scaling limit

$$
F(v)=\int_{S(v)} \psi\left(v^{+}-v^{-}, \nu\right) d \mathcal{H}^{1}
$$

$S(v)=$ discontinuity lines; $\nu=$ normal to $S(v)$ ψ given by an optimal-profile problem

Microscopic picture of a limit state with finite energy

Ferromagnetic-anti-ferromagnetic spin systems

We can consider e.g. two-dimensional systems with NN, NNN, NNNN (next-to-next-...) interactions, $u_{i} \in\{ \pm 1\}$ and

$$
E(u)=\sum_{\text {NN }} u_{i} u_{j}-c_{1} \sum_{\text {NNN }} u_{i} u_{j}+c_{2} \sum_{\text {NNNN }} u_{i} u_{j}
$$

Ferromagnetic-anti-ferromagnetic spin systems
We can consider e.g. two-dimensional systems with NN, NNN, NNNN (next-to-next-...) interactions, $u_{i} \in\{ \pm 1\}$ and

$$
E(u)=\sum_{\text {NN }} u_{i} u_{j}-c_{1} \sum_{\text {NNN }} u_{i} u_{j}+c_{2} \sum_{\text {NNNN }} u_{i} u_{j}
$$

For suitable c_{1} and c_{2} again we have a non-trivial 4-periodic ground state

but also...

and also....

(counting translations 16 different ground states)
and a description for the surface-scaling Γ-limit combining the two previous examples

RANDOM PROBLEMS

Let $d=2$. Introduce a random variable depending on an ergodic stationary discrete random process on the bonds of \mathbf{Z}^{2}. The simplest energy depends on its realizations ω :

$$
E_{\varepsilon}^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j}
$$

RANDOM PROBLEMS

Let $d=2$. Introduce a random variable depending on an ergodic stationary discrete random process on the bonds of \mathbf{Z}^{2}. The simplest energy depends on its realizations ω :

$$
E_{\varepsilon}^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j}
$$

- if $0<c_{1} \leq \sigma_{i j}^{\omega} \leq c_{2}<+\infty$ then a.s.

$$
\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \longrightarrow \int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}
$$

RANDOM PROBLEMS

Let $d=2$. Introduce a random variable depending on an ergodic stationary discrete random process on the bonds of \mathbf{Z}^{2}. The simplest energy depends on its realizations ω :

$$
E_{\varepsilon}^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j}
$$

- if $0<c_{1} \leq \sigma_{i j}^{\omega} \leq c_{2}<+\infty$ then a.s.

$$
\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \longrightarrow \int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}
$$

φ can be interpreted as a least-distance formula:

$$
\varphi(\nu)=\lim _{T \rightarrow+\infty} \frac{1}{T} \inf \left\{\sum_{i} \sigma_{k_{i}, k_{i+1}}^{\omega}:\left\{k_{i}\right\} \text { path between } 0 \text { and } T \nu^{\perp}\right\}
$$

RANDOM PROBLEMS

Let $d=2$. Introduce a random variable depending on an ergodic stationary discrete random process on the bonds of \mathbf{Z}^{2}. The simplest energy depends on its realizations ω :

$$
E_{\varepsilon}^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j}
$$

- if $0<c_{1} \leq \sigma_{i j}^{\omega} \leq c_{2}<+\infty$ then a.s.

$$
\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \longrightarrow \int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}
$$

φ can be interpreted as a least-distance formula:

$$
\varphi(\nu)=\lim _{T \rightarrow+\infty} \frac{1}{T} \inf \left\{\sum_{i} \sigma_{k_{i}, k_{i+1}}^{\omega}:\left\{k_{i}\right\} \text { path between } 0 \text { and } T \nu^{\perp}\right\}
$$

- φ exists and a.s. is independent of ω

RANDOM PROBLEMS

Let $d=2$. Introduce a random variable depending on an ergodic stationary discrete random process on the bonds of \mathbf{Z}^{2}. The simplest energy depends on its realizations ω :

$$
E_{\varepsilon}^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j}
$$

- if $0<c_{1} \leq \sigma_{i j}^{\omega} \leq c_{2}<+\infty$ then a.s.

$$
\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \longrightarrow \int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}
$$

φ can be interpreted as a least-distance formula:

$$
\varphi(\nu)=\lim _{T \rightarrow+\infty} \frac{1}{T} \inf \left\{\sum_{i} \sigma_{k_{i}, k_{i+1}}^{\omega}:\left\{k_{i}\right\} \text { path between } 0 \text { and } T \nu^{\perp}\right\}
$$

- φ exists and a.s. is independent of ω
- we can substitute 0 and $T \nu^{\perp}$ with arbitrary x and $x+T \nu^{\perp}(x=O(T))$

RANDOM PROBLEMS

Let $d=2$. Introduce a random variable depending on an ergodic stationary discrete random process on the bonds of \mathbf{Z}^{2}. The simplest energy depends on its realizations ω :

$$
E_{\varepsilon}^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j}
$$

- if $0<c_{1} \leq \sigma_{i j}^{\omega} \leq c_{2}<+\infty$ then a.s.

$$
\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \longrightarrow \int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}
$$

φ can be interpreted as a least-distance formula:

$$
\varphi(\nu)=\lim _{T \rightarrow+\infty} \frac{1}{T} \inf \left\{\sum_{i} \sigma_{k_{i}, k_{i+1}}^{\omega}:\left\{k_{i}\right\} \text { path between } 0 \text { and } T \nu^{\perp}\right\}
$$

- φ exists and a.s. is independent of ω
- we can substitute 0 and $T \nu^{\perp}$ with arbitrary x and $x+T \nu^{\perp}(x=O(T))$
- oscillations of the minimal path from the segment $\left[x, x+T \nu^{\perp}\right]$ are small.

A Percolation Result for "Rigid spins" / Damage

Rigid spin systems. We may consider ω a realization of an i.i.d. random variable in \mathbb{Z}^{2}, and the corresponding energy (surface scaling)

$$
E_{\varepsilon}^{\omega}(u)=\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \quad \text { with } \quad \sigma_{i j}^{\omega}= \begin{cases}1 & \text { with probability } p \\ +\infty & \text { with probability } 1-p\end{cases}
$$

(with the convention $\infty \cdot 0=0$)

A Percolation Result for "Rigid spins" / Damage

Rigid spin systems. We may consider ω a realization of an i.i.d. random variable in \mathbb{Z}^{2}, and the corresponding energy (surface scaling)

$$
E_{\varepsilon}^{\omega}(u)=\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \quad \text { with } \quad \sigma_{i j}^{\omega}= \begin{cases}1 & \text { with probability } p \\ +\infty & \text { with probability } 1-p\end{cases}
$$

(with the convention $\infty \cdot 0=0$)
Deterministic counterpart: the case $p>1 / 2$ corresponds to well-separated 'discrete rigid inclusions'; i.e., where we have the constraint $u_{i}=u_{j}$.

A Percolation Result for "Rigid spins" / Damage

Rigid spin systems. We may consider ω a realization of an i.i.d. random variable in \mathbb{Z}^{2}, and the corresponding energy (surface scaling)

$$
E_{\varepsilon}^{\omega}(u)=\sum_{\mathrm{NN}} \varepsilon \sigma_{i j}^{\omega}\left(1-u_{i} u_{j}\right) \quad \text { with } \quad \sigma_{i j}^{\omega}= \begin{cases}1 & \text { with probability } p \\ +\infty & \text { with probability } 1-p\end{cases}
$$

(with the convention $\infty \cdot 0=0$)
Deterministic counterpart: the case $p>1 / 2$ corresponds to well-separated 'discrete rigid inclusions'; i.e., where we have the constraint $u_{i}=u_{j}$.

Percolation Theorem (B-Piatnitski 2008)

In the surface scaling, the Γ-limit F_{p} of E_{ε}^{ω} is a.s.
(1) $F_{p}(u)=+\infty$ if $u \neq 1$ or $u \neq-1$ identically, for $p<1 / 2$
(2) $F_{p}(u)=\int_{\Omega \cap \partial\{u=1\}} \varphi_{p}(\nu) d \mathcal{H}^{1}$ for $p>1 / 2 \quad(u \in B V(\Omega ;\{ \pm 1\}))$

The limit is deterministic and $\varphi_{p}(\nu)$ is given by an asymptotic distance on the 'weak cluster' for $p>1 / 2$.

NOTE: this is the limit case when $\sigma_{i j}^{\omega}=\left\{\begin{array}{ll}1 & \text { with probability } p \\ T & \text { with probability } 1-p\end{array}\right.$ for $T \rightarrow+\infty$

A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider ω a realization of an i.i.d. random variable in \mathbb{Z}^{2}, and the corresponding energy

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider ω a realization of an i.i.d. random variable in \mathbb{Z}^{2}, and the corresponding energy

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Deterministic counterpart: discrete 'perforated domain'; the case $p>1 / 2$ corresponds to well-separated 'holes'; i.e., where $\sigma_{i j}=0$.

A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider ω a realization of an i.i.d. random variable in \mathbb{Z}^{2}, and the corresponding energy

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}= \begin{cases}1 & \text { with probability } p \\ 0 & \text { with probability } 1-p\end{cases}
$$

Deterministic counterpart: discrete 'perforated domain'; the case $p>1 / 2$ corresponds to well-separated 'holes'; i.e., where $\sigma_{i j}=0$.

Percolation Theorem (B-Piatnitski 2010)

In the surface scaling, the Γ-limit F_{p} of E_{ε}^{ω} is a.s.
(1) $F_{p}(u)=0$ on all $u \in L^{1}(\Omega ;[-1,1])$ for $p \leq 1 / 2$
(2) $F_{p}(u)=\int_{\Omega \cap \partial\{u=1\}} \varphi_{p}(\nu) d \mathcal{H}^{1}$ for $p>1 / 2$

The limit is deterministic and $\varphi_{p}(\nu)$ is given by a first-passage percolation formula for $p>1 / 2$.

NOTE: the parameter $u \in B V(\Omega ;\{ \pm 1\})$ is the "dominant phase" (no control if $\sigma_{i j}=0$)

Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}=\left\{\begin{aligned}
1 & \text { with probability } p \\
-1 & \text { with probability } 1-p
\end{aligned}\right.
$$

Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}=\left\{\begin{aligned}
1 & \text { with probability } p \\
-1 & \text { with probability } 1-p
\end{aligned}\right.
$$

Deterministic 'toy' problem (for the case $p \sim 0$): discrete 'perforated domain' with well-separated 'holes' where $\sigma_{i j}=-1$ (B-Piatnitski 2010). In this case

- need stronger separation conditions between the perforations
- the surface scaling is more complex and not explicit
- the Γ-limit may be still described by an interfacial energy $\int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}$ but φ is not given by a least-distance formula
(\Longrightarrow probabilistic approach beyond percolation theory)

Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}=\left\{\begin{aligned}
1 & \text { with probability } p \\
-1 & \text { with probability } 1-p
\end{aligned}\right.
$$

Deterministic 'toy' problem (for the case $p \sim 0$): discrete 'perforated domain' with well-separated 'holes' where $\sigma_{i j}=-1$ (B-Piatnitski 2010). In this case

- need stronger separation conditions between the perforations
- the surface scaling is more complex and not explicit
- the Γ-limit may be still described by an interfacial energy $\int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}$ but φ is not given by a least-distance formula
(\Longrightarrow probabilistic approach beyond percolation theory)
Note: when $0<p<1$ it is not even clear what should be the correct parameter in the limit.

Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

$$
E^{\omega}(u)=-\sum_{\mathrm{NN}} \sigma_{i j}^{\omega} u_{i} u_{j} \quad \text { with } \quad \sigma_{i j}^{\omega}=\left\{\begin{aligned}
1 & \text { with probability } p \\
-1 & \text { with probability } 1-p
\end{aligned}\right.
$$

Deterministic 'toy' problem (for the case $p \sim 0$): discrete 'perforated domain' with well-separated 'holes' where $\sigma_{i j}=-1$ (B-Piatnitski 2010). In this case

- need stronger separation conditions between the perforations
- the surface scaling is more complex and not explicit
- the Γ-limit may be still described by an interfacial energy $\int_{\Omega \cap \partial\{u=1\}} \varphi(\nu) d \mathcal{H}^{1}$ but φ is not given by a least-distance formula
(\Longrightarrow probabilistic approach beyond percolation theory)
Note: when $0<p<1$ it is not even clear what should be the correct parameter in the limit.
Question: How does p influence the geometry (and number) of ground states? What happens when $p \rightarrow 1 / 2$?

