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From discrete to continuous energies

Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)

B(u) =Y fij(ui, uy)

ij
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Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)

B(u) =Y fij(ui, uy)

ij
Scaling arguments: derive

Ee(u) = f5(ui,uy)
ij

indexed on a scaled lattice (e.g., Q N eZ?)
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From discrete to continuous energies

Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)

B(u) =Y fij(ui, uy)

ij
Scaling arguments: derive

Ee(u) = f5(ui,uy)
ij

indexed on a scaled lattice (e.g., Q N eZ?)

Identification: identify w with some continuous parameter (e.g., its
piecewise-constant interpolation; a sum of Dirac deltas, etc.)
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From discrete to continuous energies

Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)
BE(u) = fij(ui,u;)
ij
Scaling arguments: derive

Ee(u) = f5(ui,uy)
ij

indexed on a scaled lattice (e.g., Q N eZ?)

Identification: identify w with some continuous parameter (e.g., its
piecewise-constant interpolation; a sum of Dirac deltas, etc.)

Effective continuous theory: described by an energy F' obtained by I'-limit as
e — 0.
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From discrete to continuous energies

Discrete system: with discrete variables u = {u;} indexed on a lattice (e.g.,
Qnzd)

Discrete energy: (e.g., pair interactions)
BE(u) = fij(ui,u;)
ij
Scaling arguments: derive

Ee(u) = f5(ui,uy)
ij

indexed on a scaled lattice (e.g., Q N eZ?)

Identification: identify w with some continuous parameter (e.g., its
piecewise-constant interpolation; a sum of Dirac deltas, etc.)

Effective continuous theory: described by an energy F' obtained by I'-limit as
e — 0.

B. I'-convergence for Beginners, OUP 2002
B. Handbook of I'-convergence (Handbook of Diff. Eqns, Elsevier, 2006)
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‘SPIN” SYSTEMS

Cubic lattice: variables parameterized on Q N Z%
Binary systems: variable taking only two values; wlog u; € {—1,1} (spins).

Nearest-neighbour (NN) interactions: the energies depend only on (u;,u;)
with |i — j| = 1.
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‘SPIN” SYSTEMS

Cubic lattice: variables parameterized on Q N Z%
Binary systems: variable taking only two values; wlog u; € {—1,1} (spins).

Nearest-neighbour (NN) interactions: the energies depend only on (u;,u;)
with |i — j| = 1.

Only two possible energies (up to affine change of variables):
E(u) = Eferr(u) = Z Ui (ferromagnetic energy)
(with two trivial minimizers u; = 1 and u; = —1)
E(u) = Eanti( Zulu] (antiferromagnetic energy)

(with two minimizers u; = +(—1)%)

al Problems with Pe



‘SPIN” SYSTEMS

Cubic lattice: variables parameterized on Q N Z%
Binary systems: variable taking only two values; wlog u; € {—1,1} (spins).

Nearest-neighbour (NN) interactions: the energies depend only on (u;,u;)
with |i — j| = 1.

Only two possible energies (up to affine change of variables):
E(u) = Eferr(u) = Z Ui (ferromagnetic energy)
(with two trivial minimizers u; = 1 and u; = —1)
E(u) = Eanti( Zulu] (antiferromagnetic energy)
(with two minimizers u; = +(—1)%)

Note: the change of variables v; = (—1)%u; is such that Eapnti(v) = Eferro(u), s0
actually we have only one energy
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BINARY SYSTEMS: Continuous limits of ferromagnetic energies

Choice of the parameter: (magnetization) u € BV (; {£1}) continuous
limit of piecewise-constant interpolations of {u;}

Surface scaling: (crystalline perimeter)

E.(u) = Z€d71(1 —ujuj) — 2/

Qnofu=1}

vl dR?=t, with vl = |vl
k
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v = normal to the interface

al Problems with Pe



BINARY SYSTEMS: “Dynamic” Continuous Theory

Continuous “flows” of the perimeter

Crystalline perimeter-driven motion of sets

I
motion by crystalline mean curvature v
(Almgren-Taylor J. Diff. Geom. 1995 in 2D) ™ L
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BINARY SYSTEMS: “Dynamic” Continuous Theory

Continuous “flows” of the perimeter

Crystalline perimeter-driven motion of sets

I
motion by crystalline mean curvature v
(Almgren-Taylor J. Diff. Geom. 1995 in 2D) ™ L
2
[v| = L

Motion is obtained by introducing a discrete time-step 7 and initial set Ag, define
a time-discrete motion by successive minimizations for fixed 7: Ay minimizes

1
mm{P(A) + oo “dist(4, Ay’

Define A7 (t) = Ap;/-) (piecewise-constant interpolation of {Ax}) and pass to the
limit as 7 — 0 to get a continuous A(t) (scheme by Almgren-Taylor-Wang,
SIAM J. Control Opt. 1983)
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Motion of discrete interfaces

Fix e, 7 and Ag. Then Ay minimizes (here, A = {u =1}, P-(A) = Ec-(u))
. 1.
mln{PE(A) + — “dist. (A, Ag)”
27

Define A®7(t) = A[;/-) and pass to the limit as 7 — 0 to get a continuous A(t).
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Motion of discrete interfaces

Fix e, 7 and Ag. Then Ay minimizes (here, A = {u =1}, P-(A) = Ec-(u))
1
min{PE(A) + 5o “diste(A, Ag)”
T
Define A®7(t) = A[;/-) and pass to the limit as 7 — 0 to get a continuous A(t).

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009)
e For 7 << € the motion A(t) is trivial (pinning):

A(t) = Ap

for all (sufficiently regular) bounded initial sets Ag;

e For ¢ << 7 the sets A(t) follow motion by crystalline mean curvature.
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Motion of discrete interfaces

Fix e, 7 and Ag. Then Ay minimizes (here, A = {u =1}, P-(A) = Ec-(u))
1
min{PE(A) + 5o “diste(A, Ag)”
T
Define A®7(t) = A[;/-) and pass to the limit as 7 — 0 to get a continuous A(t).

Pinning/depinning transition: (B-Gelli-Novaga ARMA 2009)
e For 7 << € the motion A(t) is trivial (pinning):

A(t) = Ao
for all (sufficiently regular) bounded initial sets Ag;

e For ¢ << 7 the sets A(t) follow motion by crystalline mean curvature.

e At the critical scale 7 = ae we have
‘quantized’ cristalline motion
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Discreteness effects at the critical scale

(i) (critical pinning side-length) If all L > 2« then the motion is trivial:
A(t) = Ao;

(ii) (partial pinning and non strict inclusion principle; e.g for rectangles) If
L1 < 2 and La > 2a only one side is (initially) pinned

La(t)

(iii) (quantized velocity)
2a/L(t) ¢ N = velocity integer multiple of 1/«;

(iv) (non-uniqueness)
2a/L(t) € N = velocity not uniquely determined = non-uniqueness

(v) (non-convex pinned sets)
(vi) (pinning after initial motion)

N > - 2
\

barriers pinned final state
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COMMENTS I/General lattices: ferromagnetic interactions

With the due changes the process can be repeated on more general periodic
lattices (e.g. triangular, exagonal, FCC, BCC, etc.); even though we do not have
in general a duality between ferro- and anti-ferromagnetic energies (frustration).
For ferromagnetic energies we still have the same continuous parameter

u € BV(Q;{£1}). The form of the surface tension changes accordingly.

Techniques must be refined to take care of a-periodic lattices (e.g. Penrose
tilings or quasicrystals)

(B-Solci M®AS 2011)

al Problems with Pe



COMMENTS II/Long-range interactions: ferromagnetic systems

We may have more complex interactions:
i,j

Conditions of the type

o (uniform minimal states) o;; > 0

o (coerciveness conditions) o;; > ¢ > 0 for |[i —j| =1

¢ (decay conditions) 3, 0i; < C < oo for all ¢

guarantee that (up to subsequences) the continuous parameter is still
u € BV (Q;{£1}) and

> ol —uiuy) — (x,v)dH*
i QNo{u=1}

i.e., the limit is still a (possibly inhomogeneous) interfacial energy.

The integrand ¢ is determined by a family of discrete (non-local) minimal-surface
problems. In the 2D case and if only nearest-neighbours are considered (o;; = 0 if
|¢ — j| > 1) equivalently it is given by an asymptotic distance on the lattice 72

(where the distance between the nodes ¢ and j is ;) (B-Piatnitsky 2010)
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COMMENTS III/ Other continuous parameters

When not only nearest neighbours are taken into account we do not have a
correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM
2006)

E(u)=c1 E’Miuj +co Z U U u; € {£1}
NN NNN

(NNN = next-to-nearest neighbours)
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COMMENTS III/ Other continuous parameters

When not only nearest neighbours are taken into account we do not have a
correspondence between ferromagnetic and anti-ferromagnetic energies.

1) Anti-ferromagnetic spin systems in 2D (B-Alicandro-Cicalese NHM
2006)

E(u)=c1 E’Miuj +co Z U U u; € {£1}
NN NNN

(NNN = next-to-nearest neighbours)
For suitable positive ¢1 and ca the ground states are 2-periodic

PG

(representation in the unit cell)

The correct order parameter is the orientation v € {£ej,+ea2} of the ground
state.
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Surface-scaling limit
F(v) = / Pt —v™,v)dH?
S(v)

S(v) = discontinuity lines; v = normal to S(v)
1 given by an optimal-profile problem

Microscopic picture of a limit state with finite energy
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Ferromagnetic-anti-ferromagnetic spin systems
We can consider e.g. two-dimensional systems with NN; NNN, NNNN (next-to-
next-...) interactions, u; € {£1} and

E(u) = Zuiuj —c1 Z Uiu; + C2 Z Ui U
NN

NNN NNNN




Ferromagnetic-anti-ferromagnetic spin systems
We can consider e.g. two-dimensional systems with NN; NNN, NNNN (next-to-
next-...) interactions, u; € {£1} and

E(u) = E ujuj — c1 E Ujuj + 2 E Ui
NN NNN NNNN

For suitable ¢; and c2 again we have a non-trivial 4-periodic ground state
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but also...

ON N NeNeN N NoNoN N Ne
[ N NONON N NONCN N NONG)
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oNoN N NONON N NONON N J
oN N NONON N NONON N Ne
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and also....
o N NoNON N NONON N NO)
ONON N NONON N NONON N )
[ NONON N NONON N NONON )
[ N NeNON N NONON N NONG)
Ceeo00CeeOOee O
cNoN N NoNON N NONON N J
[ NoNeN N NOoNON N NONON J
[ N NeNoN N NONON N NeN6)

(counting translations 16 different ground states)
and a description for the surface-scaling I'-limit combining the two previous
examples
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RANDOM PROBLEMS

Let d = 2. Introduce a random variable depending on an ergodic stationary
discrete random process on the bonds of Z2. The simplest energy depends on its

realizations w:
w _ W ar
EZ(u) = - E 05 Willy
NN
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RANDOM PROBLEMS

Let d = 2. Introduce a random variable depending on an ergodic stationary
discrete random process on the bonds of Z2. The simplest energy depends on its

realizations w:
Ef(u) == ofjuu;
NN
e if 0 <y SU;‘; < c2 < +oo then a.s.

Zeai}(l —ujuj) — o(v) dH?
NN QNo{u=1}
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RANDOM PROBLEMS

Let d = 2. Introduce a random variable depending on an ergodic stationary
discrete random process on the bonds of Z2. The simplest energy depends on its

realizations w:
Ef(u) == ofjuu;
NN
e if 0 <y SU;‘; < c2 < +oo then a.s.

Zeai}(l —ujuj) — o(v) dH?
NN QNo{u=1}

o can be interpreted as a least-distance formula:

. 1. 1
p(v) = TEIEOO T 1nf{zi: O’]:Ji’ki+l : {k;} path between 0 and Tv }
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RANDOM PROBLEMS

Let d = 2. Introduce a random variable depending on an ergodic stationary
discrete random process on the bonds of Z2. The simplest energy depends on its

realizations w:
Ef(u) == ofjuu;
NN
e if 0 <y SU;‘; < c2 < +oo then a.s.
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®  exists and a.s. is independent of w
e we can substitute 0 and Tv' with arbitrary = and = + Tv+ (z = O(T))
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RANDOM PROBLEMS

Let d = 2. Introduce a random variable depending on an ergodic stationary
discrete random process on the bonds of Z2. The simplest energy depends on its

realizations w:
Ef(u) == ofjuu;
NN
e if 0 <y SU;‘; < c2 < +oo then a.s.

Zeai}(l —ujuj) — o(v) dH?
NN QNo{u=1}

o can be interpreted as a least-distance formula:

1
o(v) = TETOO T inf{zi: Ok kiys © {Ki} path between 0 and Tl/l}
®  exists and a.s. is independent of w

e we can substitute 0 and Tv' with arbitrary = and = + Tv+ (z = O(T))

e oscillations of the minimal path from the segment [z, 2 + Tv1] are small.
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A Percolation Result for “Rigid spins” / Damage

Rigid spin systems. We may consider w a realization of an i.i.d. random
variable in Z2, and the corresponding energy (surface scaling)

1 with probability p
400 with probability 1 —p

E(u) =Y eofi(1—uu;) with of =
NN

(with the convention oo -0 = 0)
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A Percolation Result for “Rigid spins” / Damage

Rigid spin systems. We may consider w a realization of an i.i.d. random
variable in Z2, and the corresponding energy (surface scaling)

1 ith probabilit
B (u) = > eoi(1 —upuy) with of) = WML Probabiity b
o™ J 7 +o0o  with probability 1 —p

(with the convention oo -0 = 0)
Deterministic counterpart: the case p > 1/2 corresponds to well-separated
‘discrete rigid inclusions’; i.e., where we have the constraint u; = u;.
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A Percolation Result for “Rigid spins” / Damage

Rigid spin systems. We may consider w a realization of an i.i.d. random
variable in Z2, and the corresponding energy (surface scaling)

1 ith probabilit
E¢(u) = eoti(1 —ugu;) with of = { Wit Probabtity p
NN

400 with probability 1 —p

(with the convention oo -0 = 0)
Deterministic counterpart: the case p > 1/2 corresponds to well-separated
‘discrete rigid inclusions’; i.e., where we have the constraint u; = u;.

Percolation Theorem (B-Piatnitski 2008)

In the surface scaling, the I'-limit F}, of EY is a.s.
(1) Fp(u) = +o0 if u # 1 or u # —1 identically, for p < 1/2

(2) Fp(u) = / ep (V) dH! for p > 1/2 (u € BV(9;{£1}))
Qno{u=1}

The limit is deterministic and ¢, (v) is given by an asymptotic distance on the

‘weak cluster’ for p > 1/2.

NOTE: this is the limit case when cr;"j = for

1 with probability p
T  with probability 1 —p

T — 400

al Problems with Pe



A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider w a realization of an
i.i.d. random variable in Z2, and the corresponding energy

1 with probability p

E“(u) = — oruiu; with o} =
(u) % AR “ {0 with probability 1 — p
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A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider w a realization of an
i.i.d. random variable in Z2, and the corresponding energy

1 with probability p

E“(u) = — oruiu; with o} =
(u) % AR “ {0 with probability 1 — p

Deterministic counterpart: discrete ‘perforated domain’; the case p > 1/2
corresponds to well-separated ‘holes’; i.e., where o;; = 0.
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A Percolation Result for Dilute Spin Systems

Non-coercive spin systems. We may consider w a realization of an
i.i.d. random variable in Z2, and the corresponding energy

1 ith babilit;
E¥(u) ==Y ofuu;  with of = with probability p
NN 0  with probability 1 —p

Deterministic counterpart: discrete ‘perforated domain’; the case p > 1/2
corresponds to well-separated ‘holes’; i.e., where o;; = 0.

Percolation Theorem (B-Piatnits

In the surface scaling, the I'-limit F}, of EY is a.s.
(1) Fp(u) =0 on all uw € L' (92;[—1,1]) for p < 1/2
(2) Fp(u) = / op(v) dHY for p> 1/2
QNo{u=1}
The limit is deterministic and ¢, (v) is given by a first-passage percolation formula
for p > 1/2.

NOTE: the parameter u € BV (Q; {£1}) is the “dominant phase” (no control if
oij =0)
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Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

1 ith babilit,
E“(u) = — ZU%Uiuj with cffj = { With probabrity p
NN

—1  with probability 1 —p

1al Problems with Pe



Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

1  with probability p
—1  with probability 1 —p

E“(u) = — E T with o3 =
NN

Deterministic ‘toy’ problem (for the case p ~ 0): discrete ‘perforated
domain’ with well-separated ‘holes’ where ¢;; = —1 (B-Piatnitski 2010). In this
case

e need stronger separation conditions between the perforations

e the surface scaling is more complex and not explicit

e the [-limit may be still described by an interfacial energy / o) dH?!
QNo{u=1}

but ¢ is not given by a least-distance formula

(= probabilistic approach beyond percolation theory)
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Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when
1 ith babilit
BY(u) = -3 ofuu;  with of = W Propan iy P
TS —1  with probability 1 —p

Deterministic ‘toy’ problem (for the case p ~ 0): discrete ‘perforated
domain’ with well-separated ‘holes’ where ¢;; = —1 (B-Piatnitski 2010). In this
case

e need stronger separation conditions between the perforations
e the surface scaling is more complex and not explicit

e the [-limit may be still described by an interfacial energy / o) dH?!
QNo{u=1}

but ¢ is not given by a least-distance formula

(= probabilistic approach beyond percolation theory)

Note: when 0 < p < 1 it is not even clear what should be the correct
parameter in the limit.
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Interactions with changing sign

Ferromagnetic/antiferromagnetic interactions: an open problem is when

1 ith babilit;
E“(u) = — Zo‘%uiuj with 0’,:; = WT prooa “ v
<~ —1  with probability 1 —p

Deterministic ‘toy’ problem (for the case p ~ 0): discrete ‘perforated
domain’ with well-separated ‘holes’ where ¢;; = —1 (B-Piatnitski 2010). In this
case

e need stronger separation conditions between the perforations

e the surface scaling is more complex and not explicit

e the [-limit may be still described by an interfacial energy / o) dH?!
QNo{u=1}

but ¢ is not given by a least-distance formula

(= probabilistic approach beyond percolation theory)

Note: when 0 < p < 1 it is not even clear what should be the correct
parameter in the limit.

Question: How does p influence the geometry (and number) of ground states?
What happens when p — 1/27
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