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LECTURE 4. POINTS AVOIDED BY RANDOM WALK

The fourth and final lecture of this minicourse is devoted to the proof of Theorem 1.7
describing the scaling limit of the set of points avoided by the simple random walk. For
reasons explained then, we will work with the time parametrization by the local time at
the boundary vertex.

4.1 Setting the scales.

Let us start by explaining the formula for the normalizing sequence t pKNuN•1 from (1.33).
Working for a moment in the general setting of a Markov chain on V Y t$u, recall the
definition (1.31) of the local time Lt parametrized by the local time at $. We then have:

Lemma 4.1 For each x P V and all t • 0,

P$
�

Lt(x) = 0
�
= e

´ t
GV (x,x) (4.1)

Proof. Let x P V. Observe that, by the (a.s.-unique) time s when `s($) = t, the chain
accumulated a Poisson(p($)t) number of excursions into V. The probability that such
an excursion visits x is P$(Hx † pH$), which by a Poisson thinning argument means that
the total number of excursions that visit x by the time when the time at $ equals p($)t
has the law of

Poisson
⇣

p($)P$(Hx † pH$)t
⌘

(4.2)

If Lt(x) = 0, no such excursion visited x and so

P$
�

Lt(x) = 0
�
= e´p($)P$(Hx† pH$)t (4.3)

We now observe that, by (2.32–2.33), the exponent equals t/GV(x, x). ⇤
For V := DN we have GDN (x, x) = g log N +O(1) for x sufficiently far away from the

boundary and so (for t = O((log N)2)),

P$
�Dx P DN : Lt(x) = 0

� § E$

✓ ÿ

xPDN

1tLt(x)=0u

◆
— |DN|e´ t

g log N (4.4)

Setting t := 2gq(log N)2, we conclude:

Corollary 4.2 For tN „ 2gq(log N)2 with q ° 1, we have

P$
�@x P DN : Lt(x) ° 0

� ›Ñ
NÑ8

1. (4.5)

For q † 1 we at least get that the expected number of avoided points grows as a power
of N. As we will show by proving Theorem 1.7, the actual number of avoided points
runs on the same scale.

As discussed in the second lecture, our key tool will be the Second Ray-Knight Theo-
rem (Theorem 2.7) that states that there exists a coupling of Lt and two copies h and h̃ of
the DGFF on V such that

Lt KK h ^ Lt +
1
2

h2 =
1
2
�
h̃ +

?
2t
�2 (4.6)
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We will use this roughly as follows: Suppose x is such that Lt(x) = 0. Then, if hx
happens to be order unity, also the field on the right is of order unity which means that

h̃x = ´
?

2t + O(1) (4.7)

For the choice t = 2gq(log N)2 we have
?

2t = 2?g
?

q log N, which means that x is a?
q-thick point of h̃!
Of course, assuming that hx is order unity needs to be justified because hx is (at typ-

ical x) normal with variance log N and so it is order unity only with probability pro-
portional to (log N)´1/2. Since h is independent and the points where Lt vanishes are
somewhat scattered, we may think of the above argument though Poisson thinning: Di-
luting the points where Lt(x) = 0 (more or less) independently with probability of order
(log N)´1/2 gives us, roughly, the

?
q-points of h̃.

4.2 Light points.

In order to implement the above strategy quantitatively, a moment’s thought reveals
that tracking only the points where the local time vanishes is not sufficient. Instead, we
will need to track the set where the local time is as well of order unity that we sometimes
refer to as the random walk light points. We introduce the notation for the corresponding
measure

JN :=
1

pKN

ÿ

xPDN

dx/N b dLt(x) (4.8)

Our first goal is to show that the family of measures tJNuN•1 is tight. For this we need
to upgrade Lemma 4.1 to the form:

Lemma 4.3 For each x P V, t • 0 and b • 0,

P$
�

Lt(x) § b
� § e

´ t
GV (x,x)

expt´ b
GV (x,x)

u § e
´ t

GV (x,x)
+b t

GV (x,x)2 (4.9)

Proof. The argument from the proof of Lemma 4.1 gives us the representation

p(x)Lt(x) law
=

Ntÿ

k=1

Zkÿ

j=1

Tk,j (4.10)

where

‚ tTk,juk,j•1 are i.i.d. Exponential with parameter 1
‚ tZkuk•1 are i.i.d. Geometric with parameter Px(H$ † pHx)

‚ Nt is Poisson with parameter p($)P$(Hx † pH$)t.

with all the random variables independent of each other. Indeed, all we need to real-
ize that, when an excursion from $ hits x, the number of visits to x on this excursion
will be Geometric with parameter Px(H$ † pHx) and each visits leaves an independent
Exponential(1)-time to the time spent at x.
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Abbreviate q := Px(H$ † pHx). A thinning argument for exponential random vari-
ables gives

Zkÿ

j=1

Tk,j
law
= Exponential(q´1) (4.11)

Observe also that reversibility (2.32) gives

p($)P$(Hx † pH$) = p(x)Px(H$ † pHx) = p(x)q (4.12)

and so Nt = Poisson(p(x)q). Hence we get

P$
�

Lt(x) § b
� § P

 
@k = 1, . . . , Nt :

Zkÿ

j=1

Tk,j § p(x)b

!

=
8ÿ

n=0

[tp(x)q]n

n!
⇥
1 ´ e´p(x)bq⇤ne´tp(x)q = e´tp(x)q exptbp(x)qu

(4.13)

To get the first bound in the claim, we now observe that p(x)q = GV(x, x)´1. The second
bound follows from the inequality e´s • 1 ´ s for all s • 0. ⇤

Hereby we now conclude:

Corollary 4.4 Suppose tN „ 2gq(log N)2 for q P (0, 1). Then for all b • 0 there exists c =
c(b) † 8 such that for all A Ñ R2,

E$ J
�

A ˆ [0, b]
� § c

|AN|
N2 (4.14)

where AN := tx P DN : x/N P Au.

Proof. Let b • 0. Lemma 4.3 gives us

E$ J
�

A ˆ [0, b]
� § 1

pKN

ÿ

xPAN

min
!

e
´ tN

G(x,x) +b tN
G(x,x)2 , e´ tN

G(x,x) expt´ b
G(x,x) u)

, (4.15)

where we write G(x, x) instead of GDN (x, x) for brevity. If x is such that G(x, x) •
e´bg log N, then the uniform bound G(x, x) § g log N + c gives

tN

G(x, x)
´ b

tN

G(x, x)2 • tN

g log N + c
´ be2b tN

(g log N)2 (4.16)

which is at least tN
g log N ´ c1 for some constant c1 depending only on b. On the other hand,

if x satisfies G(x, x) § e´bg log N then the fact that G(x, x) • 1 implies

tN

G(x, x)
exp

!
´ b

G(x, x)

)
• eb tN

g log N
e´b =

tN

g log N
(4.17)

Hence the minimum in (4.14) is at most a constant times e´ tN
g log N = pKN/N2. ⇤
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4.3 Extended process.

The tightness of tJNuN•1 permits us to extract subsequential weak limits. Our goal is to
characterize these limits with the help of the coupling (4.6) but this in turn requires that,
along with small values of Lt we also track small values of h. For this we introduce

Jext
N :=

a
log N
pKN

ÿ

xPDN

dx/N b dLt(x) b dhx (4.18)

Here the additional
a

log N in the normalization reflects the fact that, forcing a point
with small value of Lt(x) to have a small value of hx costs O((log N)´1/2) in probability.
A key technical lemma to prove then is:

Lemma 4.5 Suppose tNkuk•1 is a strictly increasing sequence such that JNk
law›Ñ J. Then

Jext
Nk

law›Ñ
kÑ8

J b Leb (4.19)

where Leb is the Lebesgue measure on R.

Proof (modulo a technical step). We first note that the convergence holds in expectation.
Indeed, writing E for the expectation with respect to h only, for any f = f (x, `, h) non-
negative and continuous with compact support,

E
�xJext

N , f y� =
a

log N
pKN

ÿ

xPDN

E f
�
x/N, Lt(x), hx

�

=

a
log N
pKN

ÿ

xPDN

ª
1?
2p

1a
G(x, x)

e´ h2
2G(x,x) f

�
x/N, Lt(x), h

�
dh

(4.20)

The restriction on compact support means that h is bounded in a compact interval and x
is away from the boundary of DN . This means that

1a
G(x, x)

e´ h2
2G(x,x) =

1a
g log N

+ O
⇣ 1

log N

⌘
(4.21)

uniformly in h of interest. Since 2pg = 1, we thus get

E
�xJext

N , f y� =
✓

1 + O
⇣ 1a

log N

⌘◆
xJN b Leb, f y (4.22)

which, in light of tightness of tJNuN•1, is xJN b Leb f y + o(1).
In order to use this to prove the statement, observe that the conditional Jensen in-

equality immediate upgrades the above to the form

E$ b E
�
e´xJext

N , f y� • eo(1)E$
�
e´xJNbLeb, f y� (4.23)

Since convergence of Laplace transforms implies convergence in law, we thus need to
show that an opposite inequality holds as N Ñ 8. This is done roughly as follows:
Given s ° 0, consider the expectation

E$ b E
�xJext

N , f ye´sxJext
N , f y�. (4.24)
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This is related to the above by

E$ b E
�
e´xJext

N , f y� = 1 ´
ª s

0
E$ b E

�xJext
N , f ye´sxJext

N , f y�ds (4.25)

Now the additive form of xJext
N , f y implies

E$ b E
�xJext

N , f ye´sxJext
N , f y�

=

a
log N
pKN

ÿ

xPDN

E$ b E
⇣

f
�
x/N, Lt(x), hx

�
e´sxJext

N , f y
⌘ (4.26)

Since f • 0 and the argument of f under expectation depends only on hx, the conditional
Jensen inequality gives

E$ b E
⇣

f
�

x/N, Lt(x), hx
�

e´sxJext
N , f y

⌘

• E$ b E
⇣

f
�
x/N, Lt(x), hx

�
e´sE(xJext

N , f y | hx)
⌘ (4.27)

The point is now to show that the conditioning on hx can be ignored and the conditional
expectation can be replaced by xJN b Leb, f y + o(1). This is done through a truncation
argument for which we refer the reader to Lemma 7.1 in the paper with Y. Abe.

Once the conditioning is taken care of, we again apply the calculation (4.20–4.22) to
the remaining occurrence of hx in the expression under the sum in (4.26). Hence we get

E$ b E
�xJext

N , f ye´sxJext
N , f y� • o(1) + eo(1)E$

�xJN b Leb, f ye´sxJNbLeb, f y� (4.28)

where both o(1) tend to zero as N Ñ 8 uniformly in s P [0, 1]. Plugging this in (4.25)
then gives

E$ b E
�
e´xJext

N , f y� § o(1) + eo(1)E$
�
e´xJNbLeb, f y� (4.29)

This, along with (4.23), completes the proof. ⇤

4.4 Distributional identity.

With the convergence (4.19) in hand, we are ready for the application of the coupling
(4.6) which links every subsequential weak limit of random measures tJN•1 to the mea-
sures describing the thick points of the DGFF:

Lemma 4.6 Given f : D ˆ R+ Ñ R with compact support, denote

f ˚Leb(x, `) :=
ª

R

dh f
�
x, `+ h2

2
�
. (4.30)

Then every subsequential weak limit J of random measures tJN•1 satisfies

@
J, f ˚LebD law

=
ª

ZD?
q
(dx) b ea

?
qhdh f

�
x, h2

2
�

(4.31)

simultaneously for all f as above.
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Proof. Consider the coupling of Lt, h and h̃ such that (4.6) holds. Denote

KN :=
N2

a
log N

e´ (
?

2tN )2

2g log N (4.32)

and observe that a
log N
pKN

=
1

KN
(4.33)

Given f as above, abbreviate

f ext(x, `, h) := f
�
x, `+ h2

2
�

(4.34)

The coupling then gives

1
KN

ÿ

xPDN

f
�

x/N, 1
2 (h̃x +

a
2tN)

2� =
a

log N
pKN

ÿ

xPDN

f
�

x/N, Lt(x) + 1
2 h2

x
�

=
@

Jext
N , f extD

(4.35)

Lemma 4.5 then tells us that, along the subsequence tNkuk•1 that takes JNk to J, the
left-hand side tends weakly to

xJ b Leb, f exty =
ª

J(dxd`)dh f ext�x, `+ h2

2
�
=

@
J, f ˚LebD

(4.36)

On the other hand, since
?

2tN „ 2?g
?

q log N, Theeorem 1.5 tells us that the left-hand
side of (4.35) tends weakly to

ª
ZD?

q
(dx) b ea

?
qhdh f

�
x, h2

2
�

(4.37)

This now gives the claim. ⇤
We now claim that this gives:

Corollary 4.7 Suppose µ is a deterministic measure on R+ with the Laplace transform
ª

R+
µ(d`)e´s` = exp

!a2q

2s

)
, s ° 0. (4.38)

Then every subsequential weak limit J of random measures tJN•1 takes the form

J(dxd`) = ZD?
q
(dx) b µ(d`) (4.39)

Proof. Given an open set A Ñ R2, abbreviate zA(B) := J(A ˆ B). Given s ° 0, abbreviate
gs(`) := e´s`. Take a sequence t fnun•1 of continuous compactly supported functions
that increase to f := 1A b g and note that f ˚Leb

n then increases to

f ˚Leb(x, `) = 1A(x)e´s`
c

2p

s
(4.40)

Realizing the equality in law in (4.31) as almost sure equality, applying the identity along
the above sequence with the help of the Monotone Convergence Theorem then shows

c
2p

s

ª
zA(d`)e´s` = ZD?

q
(A)

ª
dh ea

?
qhe´s 1

2 h2
a.s. (4.41)
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The Gaussian integral on the right equals e
a2q
2s

b
2p
s which tells us that the measure

ns(A) := exp
!

´a2q

2s

) ª

AˆR+

J(dxd`)e´s` (4.42)

equals to ZD?
q
(A) a.s. on all open A Ñ R2, regardless of s ° 0. To overcome the fact that

the implicit null set may depend on A and s, note that the Borel sets in R2 are generated
by a countably many open sets. Hence we get that, on a set of full probability, ns = ZD?

q
for all rational s ° 0. But then alsoª

AˆR+

J(dxd`)e´s` = ZD?
q
(A)

ª

R

µ(d`)e´s` (4.43)

holds for all Borel A Ñ R2 and all s ° 0 on an event of full probability measure, where
we also used that both sides are continuous whenever finite. The fact that the Laplace
transform determines the measure then gives the claim. ⇤

We have basically proved:

Theorem 4.8 For all q P (0, 1) and any ttNuN•1 with tN „ 2gq(log N)2,

JN
law›Ñ

NÑ8
ZD?

q
(dx) b µ(d`) (4.44)

where µ is the measure

µ(d`) := d0(d`) +
✓ ÿ

n•0

1
n!(n + 1)!

⇣a2q

2

⌘n+1
`n
◆

1[0,8)(`)d` (4.45)

Proof. We just need to check that µ has the Laplace transform (4.38) which is a straight-
forward calculation. ⇤

4.5 Proof of Theorem 1.7.

Intuitively, the measure µ above gives us access to the “distribution” of O(1)-values of
the local time so the setting of Theorem 1.7 should correspond to taking just the atom at 0
from µ. However, to make this precise we have to invoke approximation by continuous,
compactly supported functions which requires checking that no part of that atom came
from infinitesimal values somehow accumulating to zero in the limit. This is done in:

Lemma 4.9 For any d ° 0 there exists c ° 0 such that

1
pKN

E$

✓ ÿ

xPDN
d8(x,Dc

N)°dN

1t0†LtN (x)§eu

◆
§ ce (4.46)

holds for all N • 1.

Proof. Invoking one more time the representation (4.10) we have

P$
�
0 † Lt(x) § e

� § P
✓

Nt • 1 ^ @k = 1, . . . , Nt :
ZKÿ

k=1

Tk,j § ep(x)
◆

(4.47)
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Proceeding as in (4.13) this gives

P$
�
0 † Lt(x) § e

� § e´ t
G(x,x) expt´ e

G(x,x) u ´ e´ t
G(x,x) § e´ t

G(x,x)
⇥
e

e t
G(x,x)2 ´ 1

⇤
(4.48)

Now set V := DN and tN = O((log N)2). For any d ° 0 small, once x at least dN from
the boundary, we have

P$
�
0 † Lt(x) § e

� § c
pKN

N2 e (4.49)

The claim follows by summing this over x P DN with d8(x, Dc
N) ° dN. ⇤

We now finally give:
Proof of Theorem 1.7. Let g : D Ñ R be continuous with compact support and, for
each n • 1, set fn(x, `) := g(x)(1 ´ n`)+. Denote

kN :=
1

pKN

ÿ

xPDN

1tLtN (x)=0udx/N (4.50)

Then
ˇ̌
xJN , fny ´ xkN , gy

ˇ̌
§ }g} 1

pKN
E$

✓ ÿ

xPDN
x/NPsupp(g)

1t0†LtN (x)§1/nu

◆
(4.51)

Since d8(supp(g), Dc) ° d, Lemma 4.9 tells us that

lim
nÑ8 lim sup

NÑ8

ˇ̌
xJN , fny ´ xkN , gy

ˇ̌
= 0 (4.52)

Invoking Theorem 4.8, this gives

xkN , gy law›Ñ
NÑ8

@
ZD?

q
, g

D
lim

nÑ8

ª
µ(d`) fn(`) (4.53)

The limit on the right equals 1 and so kN
law›Ñ ZD?

q
as measures on D ˆ R+. The conver-

gence is extended to D ˆ R+ with the help of tightness proved in Corollary 4.4 and the
fact that JN naturally dominates kD. ⇤
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