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LECTURE 3. THICK POINTS OF THE DGFF
The main goal of this lecture is to give the proof of Theorem 1.5. For lack of time, not
all of the details will be spelled out; the point is to convey the main ideas and explain
the key technical steps. The reader is referred to the PIMS notes of the author for deeper
treatment and, if even that is not sufficient, to the original paper with O. Louidor.

3.1 Gibbs-Markov property of DGFF.

We start by an important fact about the Gaussian Free Field that we call the Gibbs-Markov
property. This is nothing but the “domain-Markov property” introduced in N. Beresty-
cki’s lectures; the reason for attaching Gibbs’ name to this concept is that, for DGFF, this
property arises from the fact that the law of the DGFF is a Gibbs measure for a nearest-
neighbor Hamiltonian. Here is the precise statement:

Lemma 3.1 (Gibbs-Markov property) Let U, V Ñ Z2 be non-empty finite sets with U à V
and let hV be the DGFF in V. Define

jV,U
x :=

$
’&

’%

ÿ

zPBU
HU(x, z)hV

z , if x P U,

hV
x , if x R U.

(3.1)

Then
hV ´ jV,U and jV,U are independent (3.2)

with
hV ´ jV,U law

= DGFF in U (3.3)
Every sample path of jV,U is discrete harmonic on U.

Proof. If we set HU(x, z) = dxz when x R U, we can write (3.1) concisely as

jV,U
x =

ÿ

zPVrU
HU(x, z)hV

z (3.4)

Hereby we get

f (x, y) : = Cov
�
hV

x ´ jV,U
x , jV,U

y
�

=
ÿ

z,z1PVrU

⇥
GV(x, z1) ´ GV(z, z1)

⇤
HU(x, z)HU(y, z1) (3.5)

Here are some facts about f . First, f (x, y) = 0 whenever x P V rU. Second, x fiÑ f (x, y)
is discrete harmonic in y P U and, for each y P V rU, equals

GV(x, y) ´
ÿ

zPVrU
GV(z, y)HU(x, z) (3.6)

which is discrete harmonic in x P U. The uniqueness of discrete harmonic extension
forces f (x, y) = 0 whenever y P V r U. From discrete harmonicity of y fiÑ f (x, y) we
then get that f (x, y) = 0 for all x, y P V; i.e.,

Cov
�
hV

x ´ jV,U
x , jV,U

y
�
, x, y P V (3.7)
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meaning that hV ´ jV,U and jV,U are uncorrelated. As they are both multivariate Gauss-
ian, they are independent, proving (3.2).

In order to prove (3.3) we use (3.4) to observe that

Cov
�
hV

x ´ jV,U
x , hV

y ´ jV,U
y

�
= GV(x, y) + harmonic in x, y P U (3.8)

The potential-kernel representation (2.8) then shows that, for each y P U,

a(x ´ y) + Cov
�
hV

x ´ jV,U
x , hV

y ´ jV,U
y

�
(3.9)

is harmonic in x P U and equal to a(z ´ y) at all z P BU. The argument in the proof of
the identity (2.8) then gives

Cov
�
hV

x ´ jV,U
x , hV

y ´ jV,U
y

�
= GU(x, y) (3.10)

proving (3.3). The discrete harmonicity of x fiÑ jV,U
x is a consequence of the same prop-

erty of x fiÑ HU(x, z) for z R U. ⇤
Note that (3.1) means that jV,U is a discrete-harmonic extension into U of the values

of hV outside U. In order to make referencing to the Gibbs-Markov property easier, we
will often write it in the form

hV law
= hU + jV,U where hU KK jV,U (3.11)

where hV and hU are DGFFs in V and U and jV,U has the law as specified above.
One setting in which we will need the Gibbs-Markov property is when U := V r txu.

Then (3.11) reads

hV law
= gx(¨)hV

x + hU where hU KK hV
x (3.12)

and gx : V Ñ [0, 1] is a (deterministic) function that is discrete harmonic on V r txu with
gx(x) = 1 and gx = 0 on Vc. As is easy to check, we have

gx(y) =
GV(x, y)
GV(x, x)

(3.13)

for all y P V.
Another instance where the Gibbs-Markov property will be used is when V is the

square t1, . . . , 2N ´ 1u2 and U is the union of four translates of the square t1, . . . , N ´ 1u2

by vectors (0, 0), (N, 0), (0, N) and (N, N). The set V r U is a “cross” of two lines of
vertices as depicted in
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On the “cross” jV,U has the law of hV and is thus quite rough there. However, thanks
to discrete harmonicity, jV,U is quite smooth, at least as soon as we lock sufficiently far
from the boundary. A sample of jV,U is shown in

An important fact associated with this setting in domains U Ñ V that are scaled-up
version of two continuum domains by N, the field jV,U is well approximated (and con-
verges to) a smooth process. Explicitly, we have:

Lemma 3.2 Let tDNuN•1 and t rDNuN•1 be admissible approximation of two admissible do-
mains rD Ñ D Ñ R2. For each N • 1 there exists a coupling of jDN , rDN and a Gaussian process
tFD, rD(x) : x P rDu with law determined by

@x P rD : EFD, rD(x) = 0 (3.14)

and
@x, y P rD : E

�
FD, rD(x)FD, rD(y)

�
= pGD(x, y) ´ pG rD(x, y), (3.15)

where pGD is the continuum Green function in D defined in (2.6), such that for each d ° 0,

sup
xP rD

d(x, rDc)°d

ˇ̌
jDN , rDN

txNu ´ FD, rD(x)
ˇ̌ P›Ñ

NÑ8
0 (3.16)

Moreover, a.e. sample path of FD, rD is harmonic on rD.

Note that the singular parts of the continuum Green function cancel in the expression
pGD(x, y) ´ pG rD(x, y). That this is a covariance follows from it being the limit of the co-
variances of jDN , rDN . This gives convergence in law in the sense of finite-dimensional
distributions. To get convergence in local-supremum norm, one has to control the oscil-
lation of the two processes.

3.2 Subsequential limits.

We now move to the main goal of this section. Fix a sequence taNuN•1 such that l
defined by the limit in (1.25) belongs to (0, 1). We will only carry out the proof under the
assumption that l † 1/

?
2 because this does not require truncations in second-moment

calculations we perform below.
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Let tDNuN•1 be admissible approximations of an admissible domain D Ñ R2. Abbre-
vite the measures of interest as

hN :=
1

KN

ÿ

xPDN

dx/N b d
hDN

x ´aN
(3.17)

and recall that KN = N2(1´l2)+o(1). We also introduce the notation

GN(b) :=
 

x P DN : hDN
x • aN + b

(
(3.18)

and, using the shorthand, xµ, f y :=
≥

f dµ, note that, given any A Ñ D open and abbre-
viating AN := tx P Z2 : x/N P Au, we have

1
KN

ˇ̌
GN(b) X AN

ˇ̌
=

@
hN , 1A b 1[b,8)

D
(3.19)

Our aim is now to compute two moments of the size of the level set GN(b). We start with
a bound on the first moment:

Lemma 3.3 There exists c ° 0 such that for all N • 1 and all b P [´aN/2, aN ],

@A Ñ DN : E
ˇ̌
GN(b) X A

ˇ̌
§ c

|A|
N2 e´ aN

g log N bKN (3.20)

Proof. Recall that G(x, x) := GDN (x, x) § g log N + c̃ uniformly in x P DN . Using the
standard Gaussian estimate

X = N (0, s2) ñ @t • 0 : P(X • t) § st´1e´ t2
2s2 (3.21)

we get

P(hDN • aN + b
� §

a
G(x, x)

aN + b
e´ (aN+b)2

2G(x,x)

§
a

g log N + c̃
aN/2

e´ (aN+b)2

2[g log N+c̃] § ca
log N

e´ a2
N

2g log N e´ aN
g log N b

(3.22)

where we used that (g log N + c̃)´1 = (g log N)´1 + O(log N)´2). Writing the prefactor
of the last exponential as cKN/N2, the claim follows by summing over x P A. ⇤

The purpose of the upper bound is that it allows us to control the contribution from
the part of DN close to the boundary where the Green function is not close to the upper
bound we used in the proof. This, along with the precise asymptotic in Theorem 2.1(2),
is the main ingredient for the proof of:

Lemma 3.4 Let A Ñ D be open and set AN := tx P Z2 : x/N P Au. Then for all b P R,
1

KN
E

ˇ̌
GN(b) X AN

ˇ̌
›Ñ

NÑ8
ĉ(al)´1e´alb

ª

A
rD(x)2l2

dx (3.23)

where

ĉ :=
e´2c0l2/g

?
8p

a (3.24)

for c0 the constant in (2.3) and rD is as in (2.4).

Preliminary version (subject to change anytime!) Typeset: January 23, 2025



22

Leaving the proof to an exercise, we now move to the second moment. It is here where
the restriction on l comes from.

Lemma 3.5 Suppose l P (0, 1/
?

2). There exists c ° 0 such that for all N • 1,

E
⇣ˇ̌

GN(b)
ˇ̌2⌘ § cK2

N (3.25)

Proof. Let us set b := 0 for simplicity (or absorb the term into aN). Then

E
⇣ˇ̌

GN(b)
ˇ̌2⌘

=
ÿ

x,yPDN

P
�
hDN

x • aN , hDN
y • aN

�
(3.26)

To bound the summand uniformly in x or y regardless how far these are from the bound-
ary DN , we replace hDN by the field in the enlarged domain

rDN := tx P Z2 : d8(x, DN) § Nu (3.27)

noting that then

1
4

P
�
hDN

x • aN , hDN
y • aN

� § P
�
h rDN

x • aN , h rDN
y • aN

�
(3.28)

holds by the Gibbs-Markov property.
Next we split the sum according to whether d8(x, y) § ?

KN or not. The first part we
bound using Lemma 3.3 as

ÿ

x,yPDN
d8(x,y)§?

KN

P(h rDN
x • aN , h rDN

y • aN) § (2
a

KN + 1)2
ÿ

xPDN

P(h rDN
x • aN) § cK2

N (3.29)

In the second part we distinguish whether h
rDN
x exceeds 2aN or not. Using that

P(h rDN
x • 2aN

� § ca
log N

e´2
a2

N
g log N = c

⇣KN

N2

⌘2a
log N e´ a2

N
g log N § c

⇣KN

N2

⌘2
(3.30)

once N is sufficiently large, the part where h
rDN
x • 2aN contributes at most

ÿ

x,yPDN

P
�
h rDN

x ° 2aN , h rDN
y • aN

� § c
⇣ |DN|

N2

⌘2
K2

N (3.31)

where the right-hand side is again at most a constant times K2
N .

We are thus left to bound the expression
ÿ

x,yPDN
d8(x,y)°?

KN

P
�
2aN • h rDN

x • aN , h rDN
y • aN

�
(3.32)

Here we note that the Gibbs-Markov property allows us to condition on h
rDN
x • aN by

way of the decomposition (3.12–3.13) that in the present setting reads

h rDN
y

law
= gx(y)h

rDN
x + ĥ

rDNrtxu
y (3.33)
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where gx : Z2 Ñ [0, 1] is the unique discrete-harmonic function in DN r txu extending

the boundary values gx(x) = 1 and gx = 0 on Dc
N and ĥ

rDNrtxu
y is the DGFF in DN r txu

that is sampled independently of h
rDN
x . Using this we can write

P(2aN • h rDN
x • aN , h rDN

y • aN)

=
ª aN

0
P(h rDN

x ´ aN P ds)P
⇣

ĥ
rDNrtxu
y • aN

⇥
1 ´ gx(y)

⇤ ´ sgx(y)
⌘ (3.34)

In order to bound the integrand, observe that d8(x, y) ° ?
KN = N1´l2+o(1) along with

the fact that x, y are “deep” inside DN imply

gx(y) =
G rDN (x, y)
G rDN (x, x)

§
log N

}x´y} + c

log N ´ c

§ 1 ´ (1 ´ l2) + o(1) = l2 + o(1)

(3.35)

Since l † 1/
?

2, it follows that, given any e P (0, 1 ´ 2l2),

eaN § aN
⇥
1 ´ gx(y)

⇤ ´ sgx(y) § aN (3.36)

holds for all for s P [0, aN ] once N is sufficiently large, uniformly in x and y contributing
to the sum (3.32). The standard Gaussian estimate (3.21) along with the bound

�
aN [1 ´ gx(y)] ´ sgx(y)

�2 • a2
N ´ 2(aN + s)gx(y) (3.37)

then show

P
⇣

ĥ
rDNrtxu
y • aN

⇥
1 ´ gx(y)

⇤ ´ sgx(y)
⌘

§
a

G(y, y)
eaN

e´ (aN [1´gx(y)]´sgx(y))2

2G(y,y) § c
KN

N2 e
a2

N
g log N gx(y)+

aN
g log N gx(y)s

(3.38)

where G(y, y) abbreviates G rDNrtxu(y, y). (We also used that the upper bound G(y, y) §
g log N + c applies regardless of how far y is to the boundary of rDN r txu.)

Now observe that the first inequality in (3.35) gives

e
a2

N
g log N gx(y) § c

✓
N

}x ´ y}

◆4l2+o(1)

(3.39)

Using in the explicit form of the probability density of h
rDN
x we also get

P(h rDN
x ´ aN P ds) § c

KN

N2 e´ aN
g log N sds (3.40)

With the help of these we bring (3.34) to the form

P(2aN • h rDN
x • aN , h rDN

y • aN)

§ c
✓

KN

N2

◆2✓ N
}x ´ y}

◆4l2+o(1) ª aN

0
e´ aN

g log N [1´gx(y)]sds
(3.41)
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In light of gx(y) § l2 + o(1), the integral converges uniformly in all y of concern. As a
consequence, we get

ÿ

x,yPDN
d8(x,y)°?

KN

P
�
2aN • h rDN

x •aN , h rDN
y • aN

�

§ c
✓

KN

N2

◆2 ÿ

x,yPDN
d8(x,y)°?

KN

✓
N

}x ´ y}

◆4l2+o(1) (3.42)

Using that 4l2 † 2, the sum is dominated by pairs x and y such that }x ´ y} is order N
and so is order (N2)2. (Alternatively, dominate the sum by an integral.) The expression
is thus bounded by a constant times K2

N , as desired. ⇤

3.3 Factorization and uniqueness.

As a consequence of Lemmas 3.3–3.5 we get:

Corollary 3.6 Suppose l † 1/
?

2. Then thNuN•1 form a tight sequence of measures on D ˆ
(R Y t+8u) and every subsequential weak limit h obeys

E h
�

A ˆ [b, 8)
�
= ĉ(al)´1e´alb

ª

A
rD(x)2l2

dx (3.43)

for any relatively open A Ñ D and any b P R.

A particular consequence of (3.43) is that h is non-vanishing on each non-empty open
set with positive probability. Similar as Lemma 3.4 refines the bound from Lemma 3.3,
the second moment calculation from Lemma 3.5 can be refined to get:

Lemma 3.7 Suppose l † 1/
?

2 and, given A Ñ D open, set AN := tx P Z2 : x/N P Au.
Then for all b P R,

1
K2

N
E

✓hˇ̌
GN(b) X AN

ˇ̌
´ e´alb ˇ̌

GN(0) X AN
ˇ̌ˇ̌
ˇ
2
◆

›Ñ
NÑ8

0 (3.44)

Proof (idea). We write the expectation as the sum over x, y P AN of

P
�
hDN

x • aN + b, hDN
y • aN + b

� ´ e´albP
�
hDN

x • aN + b, hDN
y • aN

�

´ e´albP
�
hDN

x • aN , hDN
y • aN + b

�
+ e´2albP

�
hDN

x • aN , hDN
y • aN

� (3.45)

The proof of Lemma 3.5 (with
?

KN cut-off replaced by d
?

KN) tells us that it suffices to
control the pairs d8(x, y) • dN. Here we suffices to show that for any b1, b2 P t0, bu,

P
�
hDN

x • aN + b, hDN
y • aN + b

�

=
�
e´al(b1+b2) + o(1)

�
P
�
hDN

x • aN , hDN
y • aN

� (3.46)

which is checked by a similar calculation as that in the proof of Lemma 3.5. ⇤
This now allows us to upgrade the conclusion of Corollary 3.6 as:
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Corollary 3.8 (Factorization) Suppose l † 1/
?

2. Then every subsequential weak limit h of
measures thNuN•1 factors as

h = ZD(dx) b e´alhdh (3.47)

where ZD is a random Borel measure such that

EZD(A) = ĉ
ª

A
rD(x)2l2

dx (3.48)

holds for any relatively open A Ñ D. In particular, ZD(A) = 0 a.s. for any A Ñ Rd with
vanishing Lebesgue measure.

Proof. Lemma 3.7 implies

h
�

A ˆ [b, 8)
�
= e´albh

�
A ˆ [0, 8)

�
(3.49)

Setting
ZD(A) := (al)´1h

�
A ˆ [0, 8)

�
(3.50)

the right hand side of (3.49) coincides with the integral of the measure on the right of
(3.47) over A ˆ [b, 8). Varying A and b then identifies the form of the measure uniquely.
The identity (3.48) then follows from (3.43). ⇤

With the measure taking the desired product form, the following question remain:
Is the subsequential weak limit unique in law? And, if so, is there a way to character-
ize ZD? In order to answer these, we need to first show how the Gibbs-Markov property
manifests itself for the limit object:

Lemma 3.9 Let D, rD be admissible domains with rD Ñ D yet with D r rD of vanishing
Lebesgue measure. Then for ZD and Z rD constructed along the same subsequence,

ZD(dx) law
= ealFD, rD(x)Z rD(dx), FD, rD KK Z rD (3.51)

where on the right FD, rD is the Gaussian process from Lemma 3.2.

Proof. Let hD
N , resp, h

rD
N denote the finite N processes in DN , resp., rDN . The proof is based

on the observation that the Gibbs-Markov property cast as a.s. equality translates into
@

hD
N , f (¨, ¨)

D
=

@
h

rD
N , f (¨, ¨ + jDN , rDN

t¨Nu )
D

(3.52)

whenever f is compactly supported in rD ˆ R. Passing to a joint distributional limit
along the same subsequence shows that the limiting processes hD and h

rD obey

xhD, f y =
@

h
rD, f (¨, ¨ + FD, rD)

D
(3.53)

A change of coordinates then shows ZD(dx) = ealFD, rD Z rD(dx) as measures on rD. Since
neither sides charges D r rD, the equality applies even as measures on D. ⇤

We are finally ready to give:
Proof of Theorem 1.5 for l † 1/

?
2, modulo a technical step. We will argue that the law of ZD

is uniquely determined by the expectation (3.48) and the Gibbs-Markov property (3.51).
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We start with D being a square S := (0, 1) ˆ (0, 1). Use tSn
i : i = 1, . . . , 4nu to label the

boxes of the form k2´n + `2´n + (0, 2´n) ˆ (0, 2´n) for k, ` = 0, . . . , 2n ´ 1 and denote

Sn :=
4n§

i=1

Sn
i (3.54)

The Gibbs-Markov property then gives

ZS(dx) law
= ealFS,Sn

(x)ZSn
(dx), PhiS,Sn KK ZSn

(3.55)

Since the DGFF is independent over connected components of the underlying domain,
we can write

ealFS,Sn
(x)ZSn

(dx) =
4nÿ

i=1

1Sn
i
(x)ealFS,Sn

(x)ZSn
i (dx) (3.56)

Introduce the measure in which ZSn
i is replaced by its expectation,

YS
n (dx) := ĉ

4nÿ

i=1

1Sn
i
(x)ealFS,Sn

(x)rSn
i (x)2l2

dx (3.57)

For any f : S Ñ [0, 8) continuous with compact support, taking expectation with respect
to the law of the measures tZSn

i : i = 1, . . . , 4nu via (3.48) and the conditional Jensen
inequality then gives

E
�
e´xZD , f y� • E

�
e´xYD

n , f y� (3.58)

The point is to prove the reverse inequality, at least in the limit as n Ñ 8. Here we
invoke:

Exercise 3.10 (Reverse Jensen inequality) Prove that if X1, . . . , Xn are independent non-
negative random variables, then

E
✓

exp
!

´
nÿ

i=1

Xi

)◆
§ exp

"
´e´e

nÿ

i=1

E(Xi|Xi § e)

*
(3.59)

holds for all e ° 0.

Given d P (0, 1/2) we apply this to

Xi :=
@

ZSn
i , 1Sn,d

i
f
D

, (3.60)

where Sn,d
i is obtained by same translate as Sn

i but of the box (d2´n, (1 ´ d)2´n). Since

xZD, f y •
4nÿ

i=1

Xi (3.61)

the inequality (3.59) gives

E
�
e´xZD , f y� § E

✓
exp

!
´e´e

4nÿ

i=1

E(Xi|Xi § e)
)◆

(3.62)
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In order to show that these approximations are negligible, we then have to show that
the errors incurred by conditioning are negligible,

@e ° 0 :
4nÿ

i=1

E(Xi|Xi ° e) P›Ñ
nÑ8 0 (3.63)

Second, denoting Sn
d :=

î4n

i=1 Sn,d
i , we have to show that the restriction of the integral

underlying xYS
n , f y from S to Sn

d is negligible,

@e ° 0 : lim
dÓ0

lim sup
nÑ8

P
�
YS

n (S r Sn
d ) ° e

�
= 0 (3.64)

These are proved by calculations that still do require l † 1/
?

2. We refer to the PIMS
lecture notes (page 217) of the author for full details. ⇤

We note that the above proof shows that

YS
n

law›Ñ
nÑ8 ZS (3.65)

This gives ZS a representation of Gaussian multiplicative chaos. Moreover,

Var
�
FD, rD(x)

�
= g log

✓
rD(x)
r rD(x)

◆
(3.66)

along with the fact (implied by Cov(FD, rD) = pGD ´ pG rD) that the increment fields

tFS,Sn+1 ´ FS,Sn
: n • 0u (3.67)

can be realized as independent on the same probability space shows that xYS
n , f y is for

any continuous compactly-supported f • 0 a positive martingale and the convergence
(3.65) thus takes place a.s. We remark that, since pGD ´ pG rD are all non-negative functions,
a criterion of Kahane characterizes the law of ZS uniquely. The Gibbs-Markov property
and some limits extend this to ZD for all admissible D.
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