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Lecture 2

Green function asymptotic and connection to DGFF

The purpose of the second lecture, which is also a kind of tutorial, is to develop two im-
portant technical ingredients that enter our later proofs. The first of these is the asymp-
totic of the Green function which is responsible for many of the underlying phenomena.
The second ingredient concerns the connection of the local time to the DGFF which will
later allow us to derive Theorem 1.7 from Theorem 1.5.

2.1 Asymptotic of the Green function.

Suppose that D is an admissible domain. For any x P D, let PD denote the harmonic
measure from x. This can be defined as the exit distribution from D of the standard
Brownian motion B started at x, i.e., for any Borel A Ñ R2,

PD(x, A) := Px�BtDc P A
�

where tDc := inf
 

t • 0 : Bt R D
(

(2.1)

Let tDNuN•1 be a sequence of admissible approximations of D. Write txNu for the
unique z P Zd such that x ´ z P [0, 1)2. We wish to prove:

Theorem 2.1 Let } ¨ } denote the Euclidean norm on R2. We then have:
(1) There exist a constant c P (0, 8) such that for all N • 1 and all x, y P DN

GDN (x, y) § g log
✓

N
1 + }x ´ y}

◆
+ c (2.2)

where g is as in (1.23).
(2) For all x P D,

GDN
�
txNu, txNu

�
= g log N + c0 + g log rD(x) + o(1) (2.3)

where c0 := 1
4 (2g + log 8) for g denoting the Euler constant,

rD(x) := exp
"ª

BD
PD(x, dz) log }z ´ x}

*
(2.4)

and o(1) Ñ 0 as N Ñ 8 locally uniformly in x P D.
(3) For all x, y P D with x ‰ y,

GDN
�
txNu, tyNu

�
= ´g log }x ´ y} + g

ª

BD
PD(x, dz) log }z ´ y} + o(1) (2.5)

where o(1) Ñ 0 as N Ñ 8 locally uniformly in (x, y) P D ˆ D r t(z, z) : z P Du.
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Before we delve into the proof, let us make three remarks. First, the asymptotic (2.3)
and (2.5) require that the points x and y stay away from BD and from each other. This is
because the Green function vanishes near the boundary and has a logarithmic singular-
ity on the “diagonal.”

Second, the somewhat strange way of writing the x dependent term on the right
of (2.3) is motivated by the interpretation of rD. Indeed, for D simply connected this
quantity coincides with the conformal radius of D from x, which is a measure of the lin-
ear size of D that is invariant under conformal maps. The fact that x fiÑ log }x ´ z} is
harmonic in x ‰ z is used crucially in verifying this property.

Third, the limit function on the right of (2.5), namely,

pGD(x, y) := ´g log }x ´ y} + g
ª

BD
PD(x, dz) log }z ´ y} (2.6)

is the so called continuum Green function in D with Dirichlet boundary condition. Since
also this function is symmetric and positive semidefinite, it is a covariance, albeit only
for a generalized Gaussian process called the Continuum Gaussian Free Field (CGFF).

We remark that the CGFF is defined only by projections on suitable test functions (see,
e.g., Sheffield’s review [60]) due to the fact that pGD(x, y) Ñ 8 as y Ñ x which makes
pointwise value meaningless. This makes working with CGFF somewhat technically in-
volved. Still, the singularity is only logarithmic and so thinking of the field as a random
function usually gives a very good intuition.

2.2 Proof of Theorem 2.1.

The proof of Theorem 2.1 is based on a convenient representation of the Green function
using the so called potential kernel. In our normalization, this is a function a : Z2 Ñ R

defined by

a(x) :=
1
4

ª

(´p,p)2

dk
(2p)2

1 ´ cos(k ¨ x)
sin(k1/2)2 + sin(k2/2)2 (2.7)

where the integral converges because the numerator in the integrand vanishes quadrat-
ically (in k) in the limit as k Ñ 0. With this we get:

Lemma 2.2 For all finite V Ñ Z2 and all x, y P V,

GV(x, y) = ´a(x ´ y) +
ÿ

zPBV
HV(x, z)a(z ´ y) (2.8)

where HV(x, z) is the probability that X started at x exists V at z P BV.

Proof. Denote the discrete Laplacian acting on f : Z2 Ñ R with compact support as

D f (x) :=
ÿ

y„x

⇥
f (y) ´ f (x)

⇤
(2.9)

where y „ x denotes that (x, y) is an edge in Z2. Using the Markov property of X it is
then checked that, for each h P V, we have

#
DGV(¨, y) = ´dy(¨) on V

GV(¨, y) = 0 on Z2 r V
(2.10)
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What makes the potential kernel particularly useful in this proof is that it solves a similar
problem; namely,

#
Da(¨) = d0(¨) on Z2

a(0) = 0
(2.11)

as is explicitly checked from (2.7). Combining (2.10–2.11) we conclude that

x fiÑ GV(x, y) + a(x ´ y) is discrete harmonic on V (2.12)

Relying on the fact that the discrete harmonic function is a martingale for the underlying
random walk, we thus get

GV(x, y) + a(x ´ y) =
ÿ

zPBV
HV(x, z)

⇥
GV(z, y) + a(z ´ y)

⇤
(2.13)

Noting that GV(z, y) = 0 for z R V, this reduces to (2.8). ⇤
In order to make use of the formula (2.8) we need two lemmas whose proof we will

leave to an exercise and/or literature study. The first of these concerns the asymptotic
growth of the potential kernel, which is also where the constants g and c0 in Theorem 2.1
enter the fray:

Lemma 2.3 For x ‰ 0 we have a(x) • 0. Moreover,

a(x) = g log }x} + c0 + O
�}x}´2� (2.14)

This was apparently first proved by A. Stöhr [61] in 1950. An article by G. Kozma and
E. Schreiber [45] from 2004 links the constant g and c0 to geometric properties of the un-
derlying lattice, which allows then to verify the formula for other lattices as well. A very
probabilistic approach to the theory of the potential kernel can be found in Section 4.4 of
the monograph by G. Lawler and V. Limić [46].

Exercise 2.4 Prove (2.14) by way of asymptotic analysis of the integral (2.7).

With Lemma 2.3 in hand, we are able to give:

Proof of (1) in Theorem 2.1. Since V fiÑ GV(x, y) is non-decreasing with respect to the set
inclusion, it suffices to prove this for x and y such that d8(y, Dc

N) • N. Assuming x ‰ y
and plugging the asymptotic (2.14) shows

GDN (x, y) = ´
h

g log }x ´ y} + c0 + O
�}x ´ y}´2�

i

+
ÿ

zPBDN

HDN (x, z)
h

g log }z ´ y} + c0 + O
�}z ´ y}´2�

i (2.15)

Using that HDN (x, ¨) is a probability mass function, the constant c0 cancels in both terms
while the assumption that d8(y, Dc

N) • N means that the last term in the square bracket
is O(N´2). Bounding }z ´ y} by a constant times N, we then get the desired bound. In
the case when x = y we use that a(0) = 0 and bound the second term as above. ⇤

For the remaining two parts of Theorem 2.1 we also need:
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Lemma 2.5 For any x P D,
ÿ

zPBDN

HDN
�
txNu, z

�
dz/N

vaguely›Ñ
NÑ8

PD(x, ¨) (2.16)

The proof of this is somewhat technical due to the fact that we want to make this work
for rather general D. The argument proceeds by coupling the random walk to Brownian
motion so that their exit distributions remain close to each other. Details can be found in
Appendix of a joint paper of the author with O. Louidor [18].

We are now ready for:
Proof of (2-3) in Theorem 2.1. Starting with (2), since a(0) = 0 we only need to use the
asymptotic on the second term on the right of (2.8). This gives

GDN
�
txNu,txNu

�
=

ÿ

zPBDN

HDN
�
txNu, z

�
a
�
z ´ txNu

�

= g log N + c0 + g
ÿ

zPBDN

HDN
�
txNu, z

�
log

✓}z ´ txNu}
N

◆
+ O(N´2)

(2.17)

where the error term uses the fact that, for N large enough, }z ´ z ´ txNu} • dN for
some x-dependent d ° 0 uniformly in z P BDN . For similar reason the vague con-
vergence in Lemma 2.5 applies to the function z fiÑ log }z ´ x} and, by way of an ele-
mentary approximation to get rid of the integer rounding, makes the sum to converge
to log rD(x), locally uniformly in x P D.

For part (3) we assume x ‰ y and again use the asymptotic to get

GDN
�
txNu, tyNu

�
= ´g log

✓}txNu ´ tyNu}
N

◆

+ g
ÿ

zPBDN

HDN
�
txNu, z

�
log

✓}z ´ tyNu}
N

◆
+ O(N´2)

(2.18)

where c0 again dropped out using that z fiÑ HDN (x, z) is a probability mass function.
Passing to the limit using Lemma 2.5 then yields the claim. ⇤

2.3 Connection between the local time and the DGFF.

The second topic of our interest in this lecture is a connection between the local time and
the DGFF. We will treat this in the general case of a Markov chain on V Y t$u where $ is
the distinguished vertex that was used to define the Green function GV .

Recall that Lt is the local time parametrized by the local time at $ which in particular
means Lt($) = t a.s. As our first result, we state the following limit theorem:

Theorem 2.6 (DGFF limit) For Lt sampled under P$,
Lt ´ t?

2t
law›Ñ

tÑ8
hV (2.19)

and, in particular,
a

Lt ´
?

t law›Ñ
tÑ8

1?
2

hV (2.20)
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where hV is the DGFF on V.

This result tells us that, at large times, a properly shifted and scaled local time profile
is close to a sample of the DGFF. The rewrite (2.20) explains why it is sometimes better
with the square-root of Lt as no normalization is required. However, the connection runs
far deeper and, in fact, applies at any fixed time t:

Theorem 2.7 (Second Ray-Knight Theorem) For each t • 0, there exists a coupling of Lt
and two copies h and h̃ of DGFF on V such that

Lt and h are independent (2.21)

and

@x P V Y t$u : Lt(x) +
1
2

h2
x =

1
2
�
h̃x +

?
2t)2 a.s. (2.22)

This has been proved as equality in distribution by Eisenbaum, Kaspi, Marcus, Rosen
and Shi [35] in 2000 with the coupling part added by Zhai [64] in 2018.

We remark that Theorem 2.7 belongs to a larger collection of results that link local time
of stochastic processes to random fields. That such connection exists was first conceived
of by K. Symanzik [62], and later developed by mathematical physicics (D. Brydges,
J. Fröhlich and T. Spencer [25]) and probabilists (E.B. Dynkin [34]). While Theorem 2.7
is sometimes referred to as “Dynkin isomorphism,” this is a misattribution as the “iso-
morphism” in [34, Theorem 1] works under a different setting than (2.22).

To explain the reliance on the specific time parameterization, observe that, under P$,
the local time Lt on V is the sum of a random number of independent excursions that
start by an exponential waiting time at $, then exit into V and, after running around V
for a while, terminate by hitting $ again. Denoting, for each x P V Y t$u, the first return
time of the chain to x by

Ĥx := inf
 

t • 0 : Xt = x ^ Ds P [0, t) : Xs ‰ x
(

(2.23)

we thus get:

Lemma 2.8 Given t ° 0, let t`juj•1 be i.i.d. copies of `Ĥ$
sampled under P$ and let Nt denote

an independent Poisson random variable with parameter p($)t. Then

Lt under P$ law
=

Ntÿ

j=1

`j, on V (2.24)

Proof. The independence of the excursions is a consequence of the strong Markov prop-
erty of X. That the number of excursions has Poisson law is the standard fact that the
number of i.i.d. Exponentials with parameter one needed to accumulate the total value
at least u is Poisson with parameter u. ⇤

Note that (2.24) fails at $ a.s. due to the fact that Lt($) is non-random, which is the
reason why we exclude $ from many statements below. With Lemma 2.8 in hand one
can already prove the formula (2.19). While we will prove both theorems along the same
lines, we leave the alternative argument to:
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Exercise 2.9 Using the notation in Lemma 2.8, prove that

@x P V Y t$u : E$
�
`1(x)

�
= 1 (2.25)

and
@x, y P V Y t$u : CovP$

�
`1(x), `1(y)

�
= GV(x, y) (2.26)

Then use the multivariate (random-index) Central Limit Theorem and the decomposition in
Lemma 2.8 to prove Theorem 2.6.

2.4 Kac moment formula.

The proof of the above results is actually somewhat algebraic in nature. In order to
present the details, introduce the standard inner product

x f , gy :=
ÿ

xPVYt$u
f (x)g(x), (2.27)

and let Mf be the operator of point-wise multiplication by f acting as

Mf g(x) := f (x)g(x), x P V Y t$u (2.28)

The driving force of all subsequent derivations is then:

Lemma 2.10 (Kac moment formula) For each f : V Y t$u Ñ R with f ($) = 0,

E$
�x`1, f yn� = n!

1
p($)

@
f , (GV Mf )

n´1 1
D

, n • 1 (2.29)

where (GV Mf )g(x) =
∞

yPVYt$u GV(x, y) f (y)g(y).

Proof. The Markov property and elementary symmetrization tells us

E$
�x`1, f yn� = n!

ª

0§t1†¨¨¨†tn†H$

dt1 . . . dtn
f (Xt1)
p(Xt1)

. . .
f (Xtn)
p(Xtn)

(2.30)

Abbreviating
Pt(x, y) := Px(Xt = y, Ĥ$ ° t) (2.31)

and changing variables to sk := tk ´ tk´1 (where t0 := 0), the Markov property of X
allows us to rewrite the integral in (2.30) as

ÿ

x1,...,xnPVYt$u

✓ nπ

i=1

f (xi)
p(xi)

◆ ª

s1,...,sn•0
ds1 . . . dsn Ps1($, x1) . . .Psn(xn´1, xn) (2.32)

Next we observe that
ª 8

0
ds Ps(x, y) = Ex

⇣ ª H$

0
ds 1tXs=yu

⌘
= p(y)GV(x, y), x, y ‰ $ (2.33)

and, using the strong Markov property at the first hitting time of y,
ª 8

0
ds Ps($, y) = P$(Hy † Ĥ$)p(y)GV(y, y), x ‰ $ (2.34)

To bring (2.34) to a better form, use reversibility to get

p($)P$(Hy † Ĥ$) = p(y)Py(H$ † Ĥy) (2.35)
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and then note that, by a decomposition of the form (2.33) and the fact that Exponential(1)-
random variable has mean one, p(y)GV(y, y) equals one plus the expected time to first
succeed in independent trials with success probability Py(H$ † Ĥy). This implies

p(y)GV(y, y) =
1

Py(H$ † Ĥy)
(2.36)

which combining with (2.35) gives
ª 8

0
ds Ps($, y) =

p(y)
p($)

, y ‰ $ (2.37)

Note that this a different structure than (2.33).
For f : V Y t$u Ñ R with f ($) = 0 we now restrict the sums in (2.32) to xi P V and

note that (2.33) and (2.37) give

E$
�x`1, f yn� =

n!
p($)

ÿ

x1,...,xn‰$

f (x1)G(x1, x2) . . . G(xn´1, xn) f (xn). (2.38)

The sum on the right is identified with x f , (GMf )n´11y. ⇤
A formula of the kind (2.29) was first derived by M. Kac [43] with a follow up by

D.A. Darling and M. Kac [29]. A reader interested in more background and further
results should consult P.J. Fitzimmons and J. Pitman [37].

The Kac moment formula gives us an explicit handle of the law of Lt:

Corollary 2.11 For any f : V Y t$u Ñ R with f ($) = 0 and maxxPV | f (x)| small enough so
that }GV Mf } † 1,

E$
�
ex`1, f y� = 1 +

1
p($)

@
f , (1 ´ GV Mf )

´11
D

. (2.39)

In particular, for each t • 0,

E$
�
exLt, f y� = e tx f ,(1´GV Mf )

´1 1y (2.40)

Proof. Assume that f is so small that }GMf } † 1. The identity (2.39) then follows by
summing (2.29) on n • 1. With the help from (2.24) we then get

E$
�
exLt, f y� = exp

!
tp($)

⇥
E
�
ex`1, f y� ´ 1

⇤)
(2.41)

and so (2.40) follows from (2.39). ⇤
This now permits us to conclude:

Proof of Theorem 2.6. Assuming f small enough, rewrite (2.40) as

E$
�
ex(Lt´t), f y� = e tx f ,(1´GV Mf )

´1 GV f y (2.42)

Now rescale f by
?

2t and notice that, as t Ñ 8, the right-hand side tends to e
1
2 x f , GV f y,

which is the Laplace transform of x f , hVy. The Curtiss theorem then gives the claim. ⇤
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2.5 Proof of the Second Ray-Knight Theorem.

Since V is fixed throughout, we will ease the notation by writing G for GV throughout
this subsection. In order to prepare for the proof of Theorem 2.7, we recall:

Lemma 2.12 (Gaussian integration by parts) Let X = (X1, . . . , Xn) be a multivariate
Gaussian with mean zero and covariance matrix C. Then for any g P C1(Rn) with subgaus-
sian growth of rg and any linear f : Rn Ñ R,

Cov
�

f (X), g(X)
�

=
ÿ

i,j=1,...,n
C(i, j)E

✓ B f
Bxi

(X)
Bg
Bxj

(X)

◆
(2.43)

Proof. For X1, . . . , Xn i.i.d. N (0, 1), this is checked readily from xe´ 1
2 x2

= ´ d
dx e´ 1

2 x2 and
integration by parts. The general case is handled by writing X = AZ where Z is a vector
of i.i.d. N (0, 1) and A is a matrix such that Cov(X) = AAT. ⇤

Using this we first note:

Lemma 2.13 For all f , g : V Y t$u Ñ R with f small enough and each s P R,

E
⇣

xh + s, gy e
1
2 x(h+s)2, f y

⌘
= s

@
1, (1 ´ Mf G)´1g

D
E
⇣

e
1
2 x(h+s)2, f y

⌘
(2.44)

Proof. Gaussian integration by parts shows

E
⇣

xh + s, gy e
1
2 x(h+s)2, f y

⌘
= sx1, gy E

⇣
e

1
2 x(h+s)2, f y

⌘
+ E

⇣
xh, gy e

1
2 x(h+s)2, f y

⌘

= sx1, gyE
⇣

e
1
2 x(h+s)2, f y

⌘
+ E

⇣@
Mf (h + s), Gg

D
e

1
2 x(h+s)2, f y

⌘ (2.45)

Putting the last term on the right together with the term on the left we get

E
⇣@

h + s, g ´ Mf Gg
D

e
1
2 x(h+s)2, f y

⌘
= sx1, gy E

⇣
e

1
2 x(h+s)2, f y

⌘
(2.46)

The claim follows by relabeling g for (1 ´ Mf G)´1g. ⇤
Hence we get:

Corollary 2.14 For any f : V Y t$u Ñ R sufficiently small and any s • t,

E
⇣

e
1
2 x(h+s)2, f y

⌘
= e

1
2 (s2´t2)x1,(1´Mf G)´1 f y E

⇣
e

1
2 x(h+t)2, f y

⌘
(2.47)

Proof. Using the previous lemma, we get

d
dr

E
⇣

e
1
2 x(h+r)2, f y

⌘
= E

⇣
xh + r, f y e

1
2 x(h+r)2, f y

⌘

= r
@

1, (1 ´ Mf G)´1 f
D

E
⇣

e
1
2 x(h+r)2, f y

⌘ (2.48)

The differential equation is readily solved to get the result. ⇤
Proof of Theorem 2.7. Noting that

e
1
2 (s2´t2)x1,(1´Mf G)´1 f y (2.49)
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is the exponential moment of xLr, f y for r := 1
2 (s2 ´ t2), we rewrite (2.47) as

E
⇣

e
1
2 x(h+s)2, f y

⌘
= E$

�
exLr , f y�E

⇣
e

1
2 x(h+t)2, f y

⌘
(2.50)

As this holds for all f small, solving for s as a function of t and r and applying the fact
that the Laplace transform determines the underlying law shows

Lr KK h ñ Lr +
1
2
(h + t)2 law

=
1
2
�
h +

a
t2 + 2r

�2 (2.51)

Setting t := 0 then gives (2.22) as equality in distribution. In order to construct the
coupling, given independent Lt and h, sample h̃ from

P
⇣

hV P ¨
ˇ̌
ˇ 1

2
�
hV +

?
2t)2 = f

⌘ˇ̌
ˇ
f:=Lt+ 1

2 h2
(2.52)

where the conditioning is well defined by the fact that the probability density of hV is a
continuous function. The identity (2.22) then holds a.s. ⇤

We finish with the following remark: Note that relabeling t for
?

2t in (2.51) gives
(2.22) in the form

Lr KK h ñ Lr +
1
2
�
hV +

?
2t
�2 law

=
1
2

⇣
hV +

b
2(r + t)

⌘2
(2.53)

which can alternatively be derived by iterating (2.22) while using the independence of
increments of t fiÑ Lt. However, since the construction of the signs of h̃ +

?
2t, which is

what sampling from the conditional measure (2.52) is really about, is non-constructive,
a question remains whether an almost-sure coupling can be constructed simultaneously
for all times. We thus pose:

Question 2.15 Is there a coupling of the local time tLt : t • 0u (sampled under P$) and
an RVYt$u-valued càdlàg process th(t) : t • 0u such that

(1) @t • 0 : h(t) law
= hV ,

(2) @t • 0 : th(s) : s § tu and tLt+u ´ Lt : u • 0u are independent,
(3) for all r, t • 0,

@r, t • 0 :
1
2
�
h(r) +

?
2r
�2 ´ Lr =

1
2
�
h(t) +

?
2t

�2 ´ Lt, a.s. (2.54)

hold true?

To see that (2.54) is consistent with (2.53) note that, for t • r we have Lt ´ Lr
law
= Lt´r and

so bringing Lt to the left-hand side results in an identity that at least holds in distribution.
The reason why we ask for such a coupling is two-fold. First, we find this to be an
interesting possibility. Second, having the coupling would make some of the technical
arguments in, e.g., [4] much easier.
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