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Lecture 1

Introduction and main results

The minicourse to be given over four 50-minute lectures will focus on extremal prop-
erties of random walk local time. This turns out to be a particular aspect of the larger
area of logarithmically correlated processes that has attracted a lot of attention in recent
years. For lack of time, we will focus only on one particular result; namely, the scaling
limit of the points avoided by a two-dimensional simple random walk. The main ob-
jective of the course is to motivate the students to learn other, and often more difficult,
results through self-study of papers and existing review articles.

1.1 Random walk local time.

Throughout we will consider a continuous time Markov chain X on a finite state space
that in general will take the form V Y t$u, where V is a finite set and $ is a distinguished
vertex (not belonging to V). The transitions will occur at “constant speed,” which means
that the chain takes the form Xt = ZN(t), where Z is a discrete-time Markov chain
and tN(t) : t • 0u is a rate-1 Poisson point process independent of Z. We assume that X
(and Z) is irreducible and reversible with respect to measure p and write Px for the law
of the chain started at x, with associated expectation denoted as Ex.

Of our prime interest in these lectures is the local time associated with X. This is the
two-parameter stochastic process

 
`t(x) : x P V Y t$u, t • 0

(
(1.1)

defined by

`t(x) :=
1

p(x)

ª t

0
1tXs=xuds (1.2)

(Recall that irreducibility forces p(x) ° 0 for all x P V Y t$u.) To explain the normal-
ization, note that Xt will for large t be distributed according to suitably-normalized p
which means that the time spent at x grows proportionally to p(x).

The main question of interest in these lectures is then:

What does `t look like at large t? (1.3)

While this is our general objective, we focus on particular questions. For example, we
may ask about the size and asymptotic law of

max
xPVYt$u

`t(x) and min
xPVYt$u

`t(x) (1.4)
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Noting that the minimum is zero until the first time all vertices are visited naturally
leads us to the notion of the cover time,

tcov := inf
!

t • 0 : min
xPVYt$u

`t(x) ° 0
)

(1.5)

of which we can then ask how it scales with t and the size of V. Another natural question
(which is the one we will focus in these notes) concerns the structure of the set of points
not yet visited by X at time t; namely,

A(t) :=
 

x P V Y t$u : `t(x) = 0
(

(1.6)

that we will refer to as avoided points.
Of course, taking t to be large without changing V will hardly lead to interesting

conclusions. We will also treat only one particular class of Markov chains; namely, that
arising from the simple symmetric random walk (SRW) on Zd. So, unless we discuss
general aspects of the theory where the setting introduced above is more appropriate,
we take V to be a scaled-up and discretized version DN Ñ Zd of a “nice” continuum
domain D Ñ Rd; i.e., the set (roughly) of the form

 
x P Zd : x/N P D

(
(1.7)

or (in some references to prior work) the lattice torus (Z/NZ)d. The point is now to
study the local time for the simple random walk in DN at times tN such that tN Ñ 8,
subject to specific restrictions on growth rate with N as N Ñ 8.

A technical point for DN of the form (1.7) is how to interpret the “random walk” at
the vertices of DN that, in Zd, would have an edge to the complement of DN . One possi-
bility is to treat this as a free boundary condition which means to ignore jumps leading out
of DN . For reasons that will become clear later we use a different “return mechanism,”
corresponding to the wired boundary condition, which is defined as follows: Collapse all
the vertices in Zd r DN to one boundary vertex $. Then route the edges emanating out
of DN to $. This leads to a domain as in Fig. 1.

DN

$

Fig. 1: An illustration of the state space for the random walk. Here DN is simply an N ˆ N
square while $ is a vertex to which all the boundary edges of DN in Z2 are re-routed.

Note that the invariant measure p(x) equals the degree of the vertex x in the resulting
graph which for DN with wired boundary condition will be equal 2d at x P DN and equal
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Fig. 2: A sample of the local time (left) and the trajectory of the walk (right) over time (with
time axis running upwards) for the random walk on DN Y t$u as in Fig. 1 with N = 200.

to the size of the edge boundary of DN in Zd at $. The chain X is then a constant-speed
continuous-time random walk on the resulting finite graph that runs just as the simple
random walk on DN and, after each exit, returns back to DN through a randomly-chosen
boundary edge. (For readers worried that this might lead to the local time building up
near the boundary, Fig. 2 and our Theorem 1.7 show that this is not the case.)

1.2 The case for d = 2.

In these lectures we will focus on the above setting in spatial dimension d = 2. To
motivate this, let us recount some of the basic facts about random walk on Zd. The key
difference arises already in the celebrated Pólya theorem that says

SRW on Zd is

#
transient, in d • 3
recurrent, in d = 1, 2

(1.8)

The transience can be thought of as a “short memory” (or decaying-autocorrelation)
property that very often makes a number of arguments easier to handle.

The discrepancy between the recurrent and transient regime typically manifests itself
in the analytic form of the conclusions. To give an example, note that for the cover time
of the lattice torus (Z/NZ)d the following holds:

tcov —

$
’&

’%

Nd log N, in d • 3
N2(log N)2, in d = 2
N2, in d = 1

(1.9)

where the first two lines are true as sharp asymptotics (with a known constant of propor-
tionality) because the cover time concentrates strongly around its expected value. This
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Fig. 3: Samples of the set of avoided points for the random walk on DN run for time
proportional to q = 0.1 (left) and q = 0.3 (right) fraction of the expected cover time. (The
same run of the random walk is used for both figures.)

concentration fails in d = 1 as tcov/N2 tends in law (as N Ñ 8) to a non-degenerate
random variable.

The formula Nd log N in d • 3 is easy to understand: One needs Nd time to visit most
of the vertices but then a coupon-collector reasoning need to be employed to sweep out
the outliers. A similar reasoning can be used in d = 2; the extra log N appears because
once a vertex is hit, it will be visited order log N times before it is left for good. (Much
more is known in fact; thanks to a result of D. Belius [13], we know a full limit law of
suitably centered tcov in all d • 3. In d = 2, the corresponding asymptotic is the subject
of active research by several groups.)

Moving to the set of avoided points, the natural time scales to consider are those
proportional to the cover time. So we will specialize (1.6) to the form

AN(q) :=
 

x P DN : `qE$tcov(x) = 0
(

(1.10)

We now ask about the asymptotic properties of this set, specifically, the number of points
and the way they are distributed in DN , in the limit as N Ñ 8.

Also in this problem the recurrence/transience dichotomy manifests itself strongly in
the conclusions. Indeed, in d • 3 the set AN(q) partitions into a collection of indepen-
dent small “islands” which, thanks to a result of J. Miller and P. Sousi [52] from 2017 can
even be nailed to the form

AN(q)
a.s.« Bernoulli(N´qd) (1.11)

for a non-trivial interval of q P [0, 1]. Here the squiggly equality represents a coupling in
total variational distance to the set where the Bernoulli process equals 1.

In contrast to this, in d = 2, the set AN(q) scales to a random fractal, as shown in Fig. 3.
The point of these lectures is to make sense of a limit of these pictures as N Ñ 8.
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1.3 Link to Gaussian Free Field.

Our method to control the local time will rely on a close connection between the local
time of a Markov chain and a Gaussian process called Gaussian Free Field. We will now
introduce this concept in the general setting of Markov chains on V Y t$u introduced
above. The connection itself will be discussed in Lecture 2.

We start with some standard definitions. For any x P V Y t$u we introduce the first
hitting time of x by X as

Hx := inftt • 0 : Xt = xu (1.12)

Notice that Hx = 0 Px-a.s. We then use this to define the Green function

GV : (V Y t$u) ˆ (V Y t$u) Ñ [0, 8) (1.13)

by the formula

GV(x, y) := Ex�`H$(y)
�

=
1

p(y)

ª 8

0
Px�Xt = y, H$ ° t

�
dt (1.14)

where the second expression is based on writing `H$(y) = 1
p(y)

≥H$

0 1tXt=tudt and apply-
ing Tonelli’s theorem. We now pose our first exercise:

Exercise 1.1 Show that, if viewed as a matrix, GV is symmetric and positive semidefinite.

The reason why we highlight these properties is that they make GV a covariance. This is
enough to make sense of:

Definition 1.2 The Discrete Gaussian Free Field (DGFF) on V is a Gaussian process

thV
x : x P V Y t$uu (1.15)

such that
@x, y P V Y t$u : EhV

x = 0 ^ E(hV
x hV

y ) = GV(x, y) (1.16)

(We will use P and E for probability and expectation associated with the DGFF.)

Note that the definitions ensure that GV($, y) = 0 = GV(x, $) for any x and y. This
along with Eh$ = 0 forces

hV
$ = 0 P-a.s. (1.17)

which also explains the special role the “boundary vertex” $ plays in the whole setup.
In particular, our hV corresponds to the case of Dirichlet boundary conditions.

The reason for calling this the “Discrete” GFF is to make a distinction between the
corresponding concept in the continuum, called the “Continuum” GFF with the short-
hand CGFF. While the latter is not a prime target of interest in our notes, we will make
some references to it when we discuss the scaling limits in Lectures 3 and 4.

When we specialize ourselves to the random walk on V := DN and take the resulting
DGFF hDN at face value, we are naturally led to ask a number of questions about its
extremal properties similar as those for the local time asked above. For instance:

What is the growth rate/scaling limit of max
xPDN

hDN
x ? (1.18)
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Fig. 4: A sample of DGFF on 500 ˆ 500-square color coded so that the red regions are those
with large positive values and purple regions are those with large negative values. The
values in-between are coded according to usual ordering of colors by the wave-length.

(Since the field is symmetric, the minimum scales as the negative of the maximum.)
Another question to ask is:

What is the cardinality/scaling limit of
!

x P DN : hDN
x • l max

xPDN
hDN

x

)
? (1.19)

Here, for l P (0, 1), we call the points in the set the l-thick points of hDN .
Similarly as for the local time, the DGFF samples in spatial dimensions d • 3 are not

nearly so interesting as in spatial dimension two. Indeed, in d = 2 the field itself is a
random fractal which we demonstrate in Fig. 4.

Looking at the figure, the reader will surely notice the fractal curves separating the
mostly-green and mostly-blue regions; these are known to be described by the SLE4-
curves thanks to a celebrated work by O. Schramm and S. Sheffield [55]. Our interest in
the present text are the yellow-to-red regions, where the field is unusually large.

A key problem in making any of the above mathematically reasonable is the fact that
the DGFF in d = 2 becomes increasingly singular as the side of the underlying domain
increases. This has to do with the fact that the field is logarithmically correlated; we will
elaborate on what this means in Lecture 2.

1.4 Main result on DGFF.

We are now ready to make precise statements of the main results to be discussed in detail
throughout the rest of the course. We start with those for the DGFF. First we identify the
continuum regions D to which our results apply:
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Fig. 5: An illustration of an admissible approximation DN (marked by the lattice side in
the dark region) of an admissible domain D Ñ R2 (bounded by the thick lines).

Definition 1.3 (Admissible domain) A set D Ñ R2 is an admissible domain if it is
bounded, open and BD has a finite number of connected components each of which has
a positive Euclidean diameter.

Since a bounded simply connected open subset of R2 has a connected boundary, it
follows that any such set is an admissible domain by the above definition. However, we
also allow for non-trivial arcs in the interior. While connectedness is not required, the
fact that our processes will trivially factor over connected components means that we
only need to work with connected admissible D.

Next we will specify more precisely the way we allow ourselves to discretize D. While
(1.7) seems to be a canonical choice, the problem is that this choice may result in a dis-
crete set that “looks” quite different than D itself; particularly, from the perspective of
harmonic analysis. Writing d8 for the infinity distance on Z2, we instead use:

Definition 1.4 (Admissible approximations) A sequence tDNuN•1 of non-empty sub-
sets of Z2 is an admissible approximation of an admissible domain D Ñ Rd if

@N • 1 : DN Ñ
 

x P Zd : d8(x/N, R2 r D) ° 1/N
(

(1.20)

and, for all d ° 0 there exists N0 • 1 such that

@N • N0 : DN Ö
 

x P Zd : d8(x/N, R2 r D) ° d
(

(1.21)

To illustrate this on an example, Fig. 5 shows an admissible lattice approximation of an
admissible domain. In Lecture 2 we will give the reasons why definitions need to be set
up this way.

In order to set the scales, next we note that for x deep inside DN we will have

GDN (x, x) = g log N + O(1) (1.22)

where the constant of proportionality equals

g :=
1

2p
(1.23)
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Fig. 6: The level sets at l := 0.1 (left) and l = 0.3 (right) multiple of the expected
maximum of DGFF on a square box of side-length 500..

For the maximum of the DGFF we then get the asymptotic

max
xPDN

hDN
x = 2

?
g log N + O(log log N) (1.24)

Interestingly, the same asymptotic applies even for i.i.d. normals with variance g log N;
however, while the leading order is the same in the two cases, the constant multiplying
log log N is already different.

We now define the set of l-thick points again as

TN(l) :=
 

x P DN : hDN
x • 2

?
lg log N

(
, l P (0, 1). (1.25)

As noted earlier, this set is expected to look like a random fractal which readily con-
firmed by simulation, see Fig. 6.

A question to address next is in what sense we can take a scaling limit of the pictures
in Fig. 6. The natural choice of Hausdorff distance is out because, after scaling by 1/N
and taking N Ñ 8, these sets are everywhere dense and so have vanishing asymptotic
distance to domain D itself. We will therefore use a different approach: We associate
with each set a point process that records both the position and the value of the field and
then take the limit of this process itself.

For instance, for the set (1.25) the point process would take the form
ÿ

xPDN

dx/N b d
hDN

x ´2?g l log N
(1.26)

where the tensor product of delta-measures is just a convenient way to write a delta-
measure at the corresponding two-coordinate quantity. The point is that, while having
total mass of DN , this measure does give us access to the cardinality of TN(l) by inte-
grating it against the function f (x, h) := 1[0,8)(h). Of course, (1.26) by itself would not
allow for a reasonable limit as N Ñ 8 as one still needs to normalize the measure in
such a way that a limit in law is possible. This is what we do in:
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Theorem 1.5 (B.-Louidor [20]) Let tDNuN•1 be admissible approximations of an admissible
domain D Ñ R2. There exists a family of a.s-finite random Borel measures tZD

l : l P (0, 1)u
on D such that for any positive sequence taNun•1 with

l := lim
NÑ8

aN

2?g log N
P (0, 1) (1.27)

and with

KN :=
N2

a
log N

e´ a2
N

2g log N (1.28)

we have
1

KN

ÿ

xPDN

dx/N b d
hDN

x ´aN

law›Ñ
NÑ8

ZD
l (dx) b e´alhdh (1.29)

where a := 2/?g and the weak convergence is relative to vague topology on D ˆ R. Moreover,
a.e. sample of ZD

l charges every non-empty open set and is diffuse (i.e., has no atoms).

A few remarks are on order: First, the statement (1.29) means that integrating the
measure on the left with respect to any number of continuous functions D ˆ R Ñ R

with compact support results in a family of random variables that converge jointly in
law to the corresponding integrals with respect to the measure on the right-hand side.
As it turns out, due to linearity of the integral and the Cramèr-Wold device, it suffices to
check convergence for integrals of just one function at the time.

Next observe that (1.27–1.28) give

KN = N2(1´l2)+o(1), N Ñ 8. (1.30)

Although the total mass of the measure in (1.27) diverges proportionally to N2l2+o(1),
the mode of convergence ensures that the mass it puts on any compact subset of D ˆ R

is tight and admits a distributional limit.
Third, as a corollary of Theorem 1.5 we get a limit law for the total size of the level set

of l-thick points:

Corollary 1.6 For the setting of Theorem 1.5,

1
KN

#
 

x P DN : hDN
x • aN

( law›Ñ
NÑ8

(al)´1 ZD
l (D) (1.31)

This generalizes a result of Daviaud [30] from 2006 who obtained the leading order
growth of the level set without identifying the subleading terms and/or a limit law.
The above results will be discussed and, for l † 1/

?
2, proved in Lecture 3.

1.5 Main result on the local time.

Moving to our results on the local time, consider the random walk on DN Y t$u as de-
scribed above. We will for simplicity focus only on the avoided points at times propor-
tional to the cover time of DN Y t$u. As it turns out, the easiest format to state this is
under a different time parametrization. For each t • 0, let

t$(t) := inf
 

s • 0 : `s($) • t
(

(1.32)
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Then set
Lt(x) := `t$(t)(x), x P DN Y t$u (1.33)

Since Lt($) = t a.s., this is the parametrization of the local time by the local time at $.
As it turns out E$(Lt(x)) = t for each x P DN , so (1.9) tells us that the cover time with

happen on time scales such that t — (log N)2. This motivates the parametrization (1.34)
in our second main result to be discussed in these lectures:

Theorem 1.7 (Abe-B. [3]) Suppose ttNuN•1 is a positive sequence such that

q := lim
NÑ8

tN

2g(log N)2 ° 0 (1.34)

Then setting
pKN := N2e´ tN

g log N (1.35)
for q P (0, 1) we have

1
pKN

ÿ

xPDN

1tLtN (x)=0udx/N
law›Ñ

NÑ8
ZD?

q
(1.36)

where the random measures tZD
l : l P (0, 1)u are as in Theorem 1.5. The limit (and, for large

enough N, the sequence of measures on the left) vanishes when q ° 1.

Observe that from (1.34–1.35) we get
pKN = N2(1´q)+o(1), N Ñ 8 (1.37)

This decays to zero when q ° 1 and so q = 1 corresponds to the scaling of the cover time.
(Note that we make no claims in this case as that requires going beyond the leading order
asymptotic; see Appendix of these notes for more discussion.)

The punchline of Theorem 1.7 is that, in the parametrization by the local time at $,
the set of avoided points at q-multiple of the cover time is asymptotically distributed
exactly as the

?
q-thick points of the DGFF. We note that, even though we are looking at

the points where the local time vanishes, the time-parametrization matters. Indeed, a
follow-up joint work with Y. Abe and S. Lee [4] shows that the limit measure is different
in the natural time parametrization. See Appendix for a precise statement.

As for the DGFF, we get information about the cardinality of the avoided set:

Corollary 1.8 For the setting of Theorem 1.7,
1

pKN
#
 

x P DN : LtN (x) = 0
( law›Ñ

NÑ8
ZD?

q
(D) (1.38)

Theorem 1.7 will be extracted from Theorem 1.5 and the connection of the local time and
the DGFF discussed in Lecture 2. The actual proof will be given in Lecture 4.
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