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9. APPLICATIONS OF GIRSANOV’S THEOREM

We will now proceed deeper into the subject of Girsanov’s theorem by first discussing
the conditions under which it can be used and then giving some standard applications.

9.1 Conditions for M being a martingale.

The requirement that the local martingale Mt has unit expectation for all t • 0 and thus,
by Lemma 8.5, constitutes a proper martingale is not at all trivial. To demonstrate this,
consider the following illustrative example:

Lemma 9.1 Let d ° 2 and let Xt be d-dimensional Bessel process solving the SDE

dXt =
d ´ 1
2Xt

dt + dBt (9.1)

with initial value X0 = 1. Then Mt := X
2´d

t
takes the form

Mt = exp
"

´(d ´ 2)
ª

t

0

1
Xs

dBs ´ (d ´ 2)2

2

ª
t

0

1
X2

s

ds

*
(9.2)

which is well defined for all t • 0 as inft•0 Xt ° 0 a.s., and is thus a local martingale. Yet

@t ° 0 : EMt † 1. (9.3)

Proof. Suppose, by way of contradiction, that EMT = 1 for some T ° 0. Since d ° 2
implies P(t0 † 8) = 1, also

M
1
t := exp

"
´(d ´ 2)

ª
t

0

1
Xs

1tt0°sudBs ´ (d ´ 2)2

2

ª
t

0

1
X2

s

1tt0°su ds

*
(9.4)

obeys E(M
1
T
) = 1. Then Theorem 8.4 shows that the process trBt : t § Tu, for

rBt := Bt +
ª

t

0

d ´ 2
Xs

1tt0°suds (9.5)

is a standard Brownian motion under the measure rP(A) := E(1A M
1
T
). As this gives

dBt = d rBt ´ d´2
Xt

dt, the SDE (9.1) transforms into

dXt =
⇣

d ´ 1
2Xt

´ d ´ 2
Xt

⌘
1tt0°tudt + d rBt =

3 ´ d

2Xt

1tt0°tudt + d rBt. (9.6)

Setting d
1 ´ 1 := 3 ´ d gives d

1 = 4 ´ d and so we get that tXt : t § Tu is a (4 ´ d)-
dimensional Bessel process under rP. As discussed in 275D, the solution is unique up to
the first hitting time of zero and since the process continues along the path of rBt ´ rBt0

thereafter, it is unique for all t • 0.
The key point for the present proof is that, since 4 ´ d † 2 for d ° 2, the (4 ´ d)-

dimensional Bessel process does hit zero in time interval [0, T] with positive probability.
(We leave a proof of this to homework.) This means

rP
�

inf
tP[0,T]

Xt = 0
⌘

° 0 (9.7)
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yet the assumption that d ° 2 gives

P
�

inf
tP[0,T]

Xt = 0
⌘
= 0 (9.8)

in contradiction with rP ! P on FT. It follows that E(MT) † 1 after all. ⇤
An interesting additional twist of the above example is that, for any d ° 2, the local

martingale tMt : t • 0u in (9.2) admits moments slightly larger than one and is thus uni-
formly integrable. (Yet, as discussed after Theorem 1.4 and witnessed by the statement
of the lemma, this is not sufficient to turn it into a proper martingale.) We leave proofs
of these facts to homework.

In light of above observations, one is thus interested in natural, and reasonably sharp,
conditions on a local martingale M with M0 = 0 that would guarantee E(eMt´ 1

2 xMyt) = 1.
Here is one that is fairly easy to prove:

Lemma 9.2 Let M P M cont
loc be such that M0 = 0 and let t ° 0. Then

De ° 0 : E
�
e(

1
2+e)xMyt

� † 8 (9.9)

implies

E
�
eMt´ 1

2 xMyt

�
= 1. (9.10)

Proof. Abbreviate Xt := eMt´ 1
2 xMyt . We proceed by a localization argument. For n • 1,

denote tn := inftt • 0 : Mt • nu and pick l ° 1. Pick p ° 1 and let q be such that
p

´1 + q
´1 = 1. Then some rewrites and the Hölder inequality give

E
�
X

l
tn^t

�
= E

�
elMtn^t´ l

2 xMytn^t

�

= E
�
elMtn^t´ pl2

2 xMytn^t e
l
2 (pl´1)xXytn^t

�

§
⇣

E
�
eplMtn^t´ p

2l2
2 xMytn^t

�⌘1/p⇣
E
�
e

l
2 (pl´1)qxMytn^t

�⌘1/q

(9.11)

Since teplMtn^t´ p
2l2
2 xMytn^t : t • 0u is a bounded local martingale, and thus martingale,

the first expectation on the right equals one. The monotonicity of t fiÑ xMyt then gives

sup
n•1

E
�
X

l
tn^t

� §
⇣

E
�
e

l
2 (pl´1)qxMyt

�⌘1/q

(9.12)

Noting that

l(pl ´ 1)q = pl
pl ´ 1
p ´ 1

(9.13)

tends to one as l Ó 1 and p Ó 1, we can choose l ° 1 and p ° 1 so that the coeffi-
cient multiplying xMyt in (9.12) is less than 1

2 + e. The condition (9.9) then gives that
tXtn^t : n • 1u is bounded uniformly in L

l and is thus uniformly integrable. In light of
E(Xtn^t) = 1 and Xtn^t Ñ Xt a.s., this yields EXt = 1. ⇤
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The integrability condition (9.9) is actually not far from optimal. First, as examples
show, the conclusion does not hold in general if (9.9) with e † 0 is assumed. More-
over, the case e = 0 is included in the positive conclusion, albeit with a different (and
somewhat complicated) proof:

Theorem 9.3 (Novikov’s condition) Let M P M cont
loc obey M0 = 0 and t • 0 be such that

E
�
e

1
2 xMyt

� † 8. (9.14)

Then

E
�
eMt´ 1

2 xMyt

�
= 1. (9.15)

The condition (9.14) can further be weakened by requiring the expectation to be finite
with t replaced by t

1, for any t
1 † t. This is known as the Kazamaki condition. The

Kazamaki condition (and thus also Novikov’s condition) is not necessary.
The main point why Novikov’s condition is so well known is that it is easy to state

and verify (various sufficient conditions exist for Y of the form Ys = a(Bs) that imply it).
Looking for sharper conditions may in fact be somewhat beyond the point because the
closer to optimal, the harder the condition will likely be to verified.

9.2 Removal of drift from Langevin-type SDE.

We now move to applications of Girsanov’s theorem. The first one is on solving a par-
ticular class of Langevin-type SDEs:

Theorem 9.4 (Removal of drift term) Suppose a : [0, 8) ˆ R Ñ R is Borel measurable and

such that, for B a standard Brownian motion started from zero and x P R,

@t • 0 : E

✓
exp

!1
2

ª
t

0
a(s, x + Bs)

2ds

)◆
† 8 (9.16)

Then the SDE

dXt = a(t, Xt)dt + dBt (9.17)

admits a weak solution with X0 = x.

Proof. Consider the setting of the standard Wiener space (W,F , P), where W := C[0, 8),
F := B(C[0, 8)) and P is the Wiener measure. The Brownian motion is then realized
by coordinate projections, Bt(w) := w(t), and the s-algebra F

B

t
can be identified with

B(C[0, t]). Given T ° 0, let rPT be the measure on(W,F B

T
) defined by rPT(A) := E(1A MT),

where E is expectation with respect to P and

Mt := exp
"ª

t

0
a(s, x + Bs)ds ´ 1

2

ª
t

0
a(s, x + Bs)

2ds

*
. (9.18)

By Theorem 9.3, the condition (9.16) gives that rPT is a probability measure. The fact
that M is a martingale in turn shows

@s § t @A P F
B

s : rPt(A) = rPs(A) (9.19)
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which means that the measure spaces t(W,F B

t
, rPt) : t • 0u form a Komogorov-consistent

family. As the underlying measurable space is standard Borel and s(
î

t•0 F
B

t
) = F ,

the Kolmogorov Extension Theorem gives that rPt is the restriction to F
B

t
of a unique

probability measure rP on (W,F ).
Thanks to the fact that rP|

F B

T

= rPT for each T ° 0, Girsanov’s Theorem gives that,
under rP, the process trBt : t P [0, T]u where

rBt := Bt ´
ª

t

0
a(s, x + Bs)ds (9.20)

has the law of a standard Brownian motion on [0, T]. As this determines the law on
(W,F ), the process trBt : t • 0u is a standard Brownian motion under rP. Using the
shorthand Xt := x + Bt, we can rewrite this as

Xt = x +
ª

t

0
a(s, Xs)dt + rBt (9.21)

and so X is a solution to (9.17) on the probability space (W,F , rP). ⇤
The upshot of Theorem 9.4 is that for, say, t, x fiÑ a(t, x) bounded, a weak solution

is produced under no regularity assumptions on t, x fiÑ a(t, x) beyond measurability
that is in fact necessary to make the equation meaningful. (We solved (9.17) earlier in
a strong sense by converting it to an ODE, but that requires Lipschitz continuity in x.)
That being said, not conclusion is made concerning uniqueness which may be harder to
control without any structure of the coefficients.

The caution we exercised in constructing rP an applying the conclusion of Girsanov’s
Theorem in the probability space (W,F , rP) is not without reason. Indeed, rP is obtained
by an extension argument and that may, and often will, wreak havoc on null sets. In fact,
the measure rP will typically not be absolutely continuous with respect to P due to the
fact that B under rP does not at all look like Brownian motion. Still, this is not because of
its local behavior as rPT is still absolutely continuous with respect to the restriction of P

to F
B

T
for each T ° 0. The source of the singularity is behavior at infinity; indeed, B may

be transient to +8 under rP while it is recurrent under P.

9.3 Brownian motion conditioned to stay positive.

We will now demonstrate the above issue on an example of Brownian motion condi-
tioned to stay positive. Indeed, writing t0 := inftt • 0 : Bt = 0u for Brownian mo-
tion with law P

x such that P
x(B0 = x) = 1, we would like to describe the measure

P
x(¨|t0 = 8) for x ° 0. Unfortunately, this is meaningless because P

x(t0 = 8) = 0 for
all x. We will therefor proceed by a limit argument.

Continuing working in the Wiener space, given T ° 0 and x ° 0, consider the mea-
sure Q

x

t
defined by

Q
x

T
(A) := P(A|t0 ° T) (9.22)

Since P
x(t0 ° T) ° 0 for x ° 0, this is well defined. We then claim:
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Theorem 9.5 (Brownian motion conditioned to stay positive) Let (W,F , P) be the Wiener

space. Then for all x ° 0, t • 0 and A P Ft, the limit

Q
x(A) := lim

TÑ8
Q

x

T
(A) (9.23)

exists and extends to a unique probability measure on (W,F ). Moreover, tBt : t • 0u under Q
x

has the law of the 3-dimensional Bessel process started from x.

Proof. Write P
x for the law of the standard Brownian motion started from x and let E

x be
the associated expectation. Define

ht(x) := P
x(t0 ° t) (9.24)

Then for each 0 § t † T and A P Ft, the Markov property gives

Q
x

T
(A) = E

x

⇣
1AXtt0°tu

hT´t(Bt)
hT(x)

⌘
(9.25)

We now claim:

Lemma 9.6 (Reflection principle) For each t • 0 and x ° 0,

ht(x) = P
x(Bt ° 0) ´ P

x(Bt † 0) (9.26)

In particular, we have

@x • 0 @t ° 0 : e´ x
2

2t

c
2
p

x?
t

§ ht(x) §
c

2
p

x?
t
+

x
2

t
(9.27)

and

@x • 0 : lim
tÑ8

?
t ht(x) =

c
2
p

x (9.28)

Postponing the proof of this lemma until the main line of argument is finished, plug-
ging this into the ratio on the right of (9.25) we now observe that, for T • 2t, T • 2 and
and x §

?
T,

hT´t(Bt)
hT(x)

§
?

e
x

?
T?

T ´ t

⇣
Bt + 2

B
2
t?

T ´ t

⌘
§

?
e

x
(Bt + 2B

2
t ) (9.29)

where we relied on (9.27) along with
?

p/2 § 2 and e´ x
2

2T • e´1/2 when x §
?

T. The
limit statement (9.28) in turn gives

lim
TÑ8

hT´t(Bt)
hT(x)

=
Bt

x
(9.30)

The Dominated Convergence Theorem then allows us to conclude that

lim
TÑ8

Q
x

T
(A) = E

x

⇣
1AXtt0°tu

Bt

B0

⌘
(9.31)

In particular, the limit in (9.23) exists. The argument used in the proof of Theorem 9.4
shows that Q

x extends to a probability measure on (W,F ).
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In order to identify the law of B under Q
x, we need a minor truncation argument.

Pick a P (0, x), set ta := inftt • 0 : Bt = au and use the Itô formula to write
Bt

B0
= exp

 
log Bt ´ log B0

(
= Mt on tta ° tu (9.32)

where

Mt := exp
!ª t

0

1
Bs

1tta°sudBs ´ 1
2

ª
t

0

1
B2

s

1tta°suds

)
(9.33)

Let rPx be the extension to (W,F ) of A fiÑ E
x(1A Mt) on F

B

t
. Then

@A P F
B

t : Q
x
�

A X tta ° tu� = rPx
�

A X tta ° tu� (9.34)

Since s fiÑ B
´1
s 1tta°su is bounded, M is a martingale and Girsanov’s Theorem shows that

rBt := Bt ´
ª

t

0

1
Bs

1tta°suds (9.35)

is a standard Brownian motion under rPx. Turning this around, this means that B satisfies

dBt =
1
Bt

1tta°tudt + d rBt (9.36)

on (W,F , rPx). By (9.34), under Q
x the process tBta^t : t • 0u is a 3-dimensional Bessel

process stopped upon hitting level a. Since the 3-dimensional Bessel process does not
hit zero in finite time, we have ta Ñ 8 as a Ó 0 under Q

x and so we get that tBt : t • 0u
is a 3-dimensional Bessel process under Q

x. ⇤
Notice that Q

x is concentrated on paths that avoid zero yet P
x is not. This is actually

quite common when exponential change of measure is invoked. A condition that en-
sures that the extension of measures rP(A) := E(1A Mt) remains absolutely continuous
with respect to P is that M admits a terminal element; i.e., Mt Ñ M8 in L

1(P). Of course,
this is not what usually happens in applications.

We also note that the expressions (9.25) and (9.31) where ratios of two random vari-
ables at different times appear are reminiscent of the h-transform from countable-state
Markov chain theory. The role of these is exactly as there: express the change of weight
of the random path due to the conditioning event.

9.4 Proof of Reflection Principle.

We owe to the reader:
Proof of Lemma 9.6. The identity (9.26) is classical, proved originally for random walks
in consideration of so called Ballot Theorem by J.L.F. Bertrand in 1887 (with an earlier
proof from 1878 due to W.A. Whitworth). We follow a continuum version of the elegant
proof of the latter by Désiré André (also from 1887). The argument relies on a reflection
trick; hence the title of the lemma.

The starting point is the disjoint decomposition

tt0 § tu =
⇣

tt0 § tu X tBt • 0u
⌘

Y
⇣

tt0 § tu X tBt † 0u
⌘

(9.37)
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Next observe that, by the strong Markov property, for x ° 0,

P
x
�
t0 § t ^ Bt ° 0

�
= E

x
�
1tt0§tuP

0(Bt´s ° 0)|s:=t0

�
(9.38)

Brownian symmetries imply that P
0(Bt´s ° 0) = P

0(Bt´s † 0) and so, wrapping this
around, we conclude

P
x
�
t0 § t ^ Bt ° 0

�
= P

x
�
t0 § t ^ Bt † 0

�
= P

x(Bt † 0) (9.39)

where we also noticed that Bt † 0 implies t0 § t when B0 ° 0. Since P
x(Bt = 0) = 0, we

thus get
P

x(t0 ° t) = 1 ´ P
x(t0 § t)

= 1 ´ 2P
x(Bt † 0) = P

x(Bt ° 0) ´ P
x(Bt † 0)

(9.40)

thus proving (9.26).
In order to prove the remaining statements, we now write

P
x(Bt ° 0) ´ P

x(Bt † 0) =
ª 8

0

1?
2pt

⇥
e´ (y´x)2

2t ´ e´ (y+x)2
2t

⇤
dy

= e´ x
2

2t

ª 8

0

1?
2pt

e´ y
2

2t

⇥
e

xy

t ´ e´ xy

t

⇤
dy

(9.41)

Writing the difference of the two exponentials as an integral yields

ht(x) =

c
2
p

x

t3/2 e´ x
2

2t

ª 1

´1

1
2

⇣ª 8

0
ye´ y

2
2t

´ yx

t
sdy

⌘
ds

=

c
2
p

x?
t

e´ x
2

2t

ª 1

0

⇣ª 8

0
ze´ z

2
2 cosh

�
zx?

t
s
�
dz

⌘
ds

(9.42)

where we changed variables via y = z
?

t and then use the symmetry of the integral with
respect to s to wrap the result using hyperbolic cosine. For the lower bound in (9.26) we
now use that cosh(r) • 1 while for the upper bound we bound cosh(r) § er and then
note that

e´ x
2

2t

ª 8

0
ze´ z

2
2 + zx?

t dz §
ª 8

0
ze´ (z´x/

?
t)2

2 dz

§
ª 8

´x/
?

t

�
u + x?

t
)e´ u

2
2 du § e´ x

2
2t +

c
p

2
x?
t

(9.43)

Bounding the exponential by one, we then get the upper bound in (9.26). The limit
statement (9.28) follows from (9.42) and the Dominated Convergence Theorem. ⇤

Further reading: Karatzas-Shreve, Sections 2.6 and 3.5D
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