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8. GIRSANOV’S THEOREM

The stochastic calculus techniques we developed for continuous martingales did not
make use any particular facts about their distributions. That being said, the connection
with Brownian motion provided by Lévy characterization and other representation the-
orem revealed a prominent role of the Brownian motion, which is a Gaussian process.
Here we will expand on the Gaussian nature of the standard Brownian motion further
by proving Girsanov’s theorem, which is a useful tool in stochastic analysis.

8.1 Exponential change of measure.

We begin by a list of motivational examples that will hopefully elucidate what Gir-
sanov’s theorem is really about. All of these will be based on a technique referred to
as “exponential change of measure” which is a standard method to adjust the mean in
large deviation theory. A simple form of that is the content of:

Lemma 8.1 (Exponential tilt) Let X1, . . . , Xn be independent and ji(l) := EelXi † 8 for

all l P R and all i = 1, . . . , n. For A P s(X1, . . . , Xn) and l = (l1, . . . , ln) P Rn
, set

Pl(A) := E

✓
1A exp

! nÿ

i=1

⇥
liXi ´ log ji(li)

⇤)◆
(8.1)

Then (X1, . . . , Xn) remain to be independent under Pl with expectation

El(Xi) =
j1

i
(li)

ji(li)
(8.2)

for all i = 1, . . . , n.

Proof. The product structure of Pl is verified directly from (8.1). For (8.2) the product
structure shows El(Xi) = ji(li)´1

E(XielXi) = j1
i
(li)/ji(li). ⇤

The point of the above lemma is that, since l fiÑ ji(l) is strictly convex (under the
assumption of having all exponential moments), its logarithmic derivative is strictly in-
creasing. It follows that, by tuning li appropriately, we can adjust the expectation of
each Xi to whatever value in the interior of the convex hull of the support of Xi under P.
The title of the lemma brings up another buzzword — exponential tilt — for the above
technique as this is what the exponential factor — sometimes referred to as the “tilt” —
does to the initial distribution.

For general underlying random variables, a drawback of the “tilting” technique is
that is that varying li is inevitably accompanied by changes to the whole distribution
of the Xi’s. As our next lemma shows, this is not the case when Gaussian random vari-
ables are of concern as these are determined by only two parameters — the mean and
covariance matrix.

Lemma 8.2 (Tilted Gaussian law) Let X = (X1, . . . , Xn) be a multivariate normal with

mean zero and covariance C = tCov(Xi, Xj)un

i,j=1. For l = (l1, . . . , ln) P Rn
let

Pl(A) := E
�
1Ael¨X´ 1

2 l¨Cl
�

(8.3)
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Then

X ´ Cl under Pl
law
= X under P (8.4)

Here “¨” denotes the Euclidean inner product in Rn
.

Proof. Let t P Rn. Then

El

�
et¨(X´Cl)� = E

�
et¨(X´Cl)+l¨X´ 1

2 l¨Cl
�

= E
�
e(l+t)¨X´ 1

2 (l+t)¨C(l+t)�e
1
2 t¨Ct = e

1
2 t¨Ct

(8.5)

Since the latter is the Laplace transform of N (0, C), the claim follows using the Curtiss
Theorem and the Cramér-Wold device. ⇤

The mean-zero restriction is made for convenience of expression; if the mean equals µ,
then replace X by X ´ µ above. While the underlying Gaussian nature allowed us to
treat a fully general case in one step, its special case of independent Gaussians could
have also be dealt with inductively, by integrating out one variable at the time. This
leads to another version of “exponential change of measure” which, this time, is very
close to the one we are ultimately aiming for.

Lemma 8.3 (Discrete-time Girsanov Theorem) Let X1, . . . , Xn be independent with Xi =
N (0, s2

i
) for all i = 1, . . . , n. For each k = 1, . . . , n, let lk : Rk´1 Ñ R be a Borel-measurable

function. (In particular, l1 is a constant.) Then

Pl(A) := E

✓
1A exp

" nÿ

k=1

h
lk(X1, . . . , Xk´1)Xk ´ 1

2 lk(X1, . . . , Xk´1)
2s2

k

i*!
(8.6)

is a probability measure and

"
Xk ´

kÿ

j=1

lj(X1, . . . , Xj´1)s
2
j

*n

k=1
under Pl

law
= X under P (8.7)

Proof. For k = 1, . . . , n, let

Mk :=
kπ

j=1

elj(X1,...,Xj´1)Xj´ 1
2 lj(X1,...,Xj´1)2s2

j (8.8)

and set Fk := s(X1, . . . , Xk). We claim that tMkun

k=1 is a martingale for filtration tFkun

k=1
under P. To see this note that

E
�

Mk+1
ˇ̌
Fk

�
= MkE

�
el(X1,...,Xk)Xk+1´ 1

2 l(X1,...,Xk)
2s2

k+1
ˇ̌
Fk

�
, (8.9)

where the expectation on the right equals one by the fact that we can regard l(X1, . . . , Xk)
as a constant under the conditional expectation. It follows that E(Mk) = 1 for all
k = 1, . . . , n and since

@A P Fn : Pl(A) = E
�
1A Mn

�
, (8.10)

we also get that Pl is a probability measure.
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In order to prove (8.7), abbreviate

rXk := Xk ´
kÿ

j=1

lj(X1, . . . , Xj´1)s
2
j

(8.11)

and, given any t = (t1, . . . , tn) P Rn, let

Nk :=
kπ

j=1

etj¨ rXj´ 1
2 s2

j
t
2
j (8.12)

where, we note, we are using the shifted variables (8.11). A calculation shows that

Nk Mk =
kπ

j=1

e[tj+lk(X1,...,Xj´1)]Xj´ 1
2 [tj+lj(X1,...,Xj´1)]2s2

j (8.13)

and so, by the same argument as above, also tNk Mkun

k=1 is a martingale under P. It
follows that

1 = E(N0M0) = E(Nn Mn) = El(Nn) (8.14)

Using the explicit form of Nn, this can be written as

Elet¨ rX = e
1
2 t¨s2

t = Eet¨X (8.15)

The Curtiss and Cramér-Wold theorems now imply the claim. ⇤

8.2 Statement and proof.

The ultimate result of this lecture is a continuous-time version of Lemma 8.3. The main
difference is that here we have to assume that the tilted measure is a probability, rather
than derive it as part of the proof.

Theorem 8.4 (Girsanov 1960) Assume a Brownian motion B adapted to a filtration tFtut•0
with F0 containing all P-null sets. For Y P V

loc
B

and t • 0 set

Mt := exp
!ª

t

0
YsdBs ´ 1

2

ª
t

0
Y

2
s ds

)
(8.16)

and let

@A P Ft : rP(A) := E
�
1A Mt

�
(8.17)

If EMt = 1, then rP is a probability measure and

"
Bs ´

ª
s

0
Yudu : s P [0, t]

*
under rP (8.18)

is a standard Brownian motion.

We start by a lemma that reveals why the assumption EMt = 1 is important:

Lemma 8.5 For M as in Theorem 8.4, if EMt = 1 then tMs^t : s • 0u is a martingale.
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Proof. First note that, by the Itô formula,

dMt = Mt

�
YtdBt ´ 1

2Y
2
t dt) +

1
2

MtY
2
t dt = MtYtdBt (8.19)

and so tMs : s • 0u is a local martingale. Letting

tn := inf
"

u • 0 :
ˇ̌
ˇ
ª

u

0
YsdBs

ˇ̌
ˇ • n

*
(8.20)

the process tMs^tn
: s • 0u is bounded by en and is thus a martingale with EMs^tn

=
EM0 = 1. The Optional Stopping Theorem then shows

@s • 0 : E
�

Mt^tn

ˇ̌
Fs

�
= Mt^s^tn

a.s. (8.21)

As tn Ñ 8 P-a.s. as n Ñ 8 by the fact that Y P V
loc, we have Mu^tn

Ñ Mu pointwise
a.s. Fatou’s lemma then shows

@s • 0 : E(Mt^s) § 1 (8.22)

while its conditional version gives

@s • 0 : E(Mt|Fs) § Mt^s a.s. (8.23)

But the expectation of the left hand side equals EMt = 1 which in conjunction with (8.22)
forces EMt^s = 1 for all s • 0. It follows that Mt^s^tn

Ñ Mt^s both pointwise and in the
mean, which implies that the convergence takes place in L

1. Using this (8.21) shows that
tMs^t : s • 0u is a martingale, as claimed. ⇤

Note that the argument (8.22–8.23) shows that any non-negative supermartingale
with constant expectation is a martingale. We are now ready to give:
Proof of Theorem 8.4. In order to prove (8.18), we will invoke a continuous-time version
of the argument (8.12–8.15) but, since integrability is no longer automatic, we will rely
on characteristic functions instead of Laplace transforms. Abbreviate

rBs := Bs ´
ª

s

0
Yudu (8.24)

where our assumptions allow us to take a continuous version of the stochastic integral
on the right. Given any Z P V bounded, set

Ns := exp
!

i
ª

s

0
Zsd rBs +

1
2

ª
s

0
Z

2
s ds

)
. (8.25)

Putting MsNs together into one exponential as in (8.13), the Itô formula gives

dMsNs = MsNs(Ys + iZs)dBs (8.26)

and so tMsNs : s • 0u is a local martingale.
Let tn be as in (8.20). Then for all s • 0 and n • 1,

E
�

Mt^tn
Nt^tn

ˇ̌
Fs

�
= Ms^t^tn

Ns^t^tn
a.s. (8.27)

Since the proof of Lemma 8.5 shows that tMs^t^tn
: n • 1u is uniformly integrable, the

fact that tNs : s § tu is bounded also implies that tMs^t^tn
Ns^t^tn

: n • 1u is uniformly

Preliminary version (subject to change anytime!) Typeset: April 18, 2024



MATH 285K notes 40

integrable. This upgrades pointwise convergence Mt^tn
Ñ Mt to L

1-convergence and
so we get

@s • 0 : E(MtNt |Fs) = Ms^tNs^t a.s. (8.28)
Applying this to s = 0 shows

1 = E(M0N0) = E(MtNt) = rE(Nt) (8.29)

For the choice

Zt :=
nÿ

j=1

lj1(tj´1,tj](s) (8.30)

where 0 = t0 † t1 † ¨ ¨ ¨ † tn = t and l1, . . . , ln P R, this becomes

rE
✓

exp
!

i
nÿ

j=1

lj(rBtj
´ rBtj´1)

)◆
= exp

!
´1

2

nÿ

j=1

l2
j
(tj ´ tj´1)

)
(8.31)

Using the Cramér-Wold device we get that, under rP, the process rB has the same finite-
dimensional distributions as B under P. Since rB is continuous, it is a standard Brownian
motion as claimed. ⇤

The above proof is somewhat subtle because it works under the minimal possible
conditions. Indeed, a slight upgrade of Lemma 8.3 gives the statement for all Y sim-
ple without the proviso EMt = 1 (which comes automatically in this case) so another
strategy to address the general case could rely on approximation of Y by simple pro-
cesses. The problem here is that, while the L

2([0, t])-convergence
≥

t

0[Y
(n)
s ´ Ys]2ds Ñ 0 in

probability implies that the associated exponential martingales M
(n)
t

converge to Mt in
probability, we need M

(n)
t

Ñ Mt in L
1 which entails uniform integrability for which we

have no direct argument.

Further reading: Karatzas-Shreve, Section 3.5
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