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6. REPRESENTATION THEOREMS

Here we present our first applications of stochastic calculus and Itô formula. All of these
related to discovering a standard Brownian motion in the structure of a continuous local
martingale. It is here where we find it beneficial that the stochastic integral has been
extended to continuous local martingales.

6.1 Lévy characterization.

We start with the following cute observation going back to P. Lévy:

Theorem 6.1 (Lévy’s characterization of Brownian motion) Let M P M cont
loc be such that

@t • 0 : xMyt = t and M0 = 0. Then M is a standard Brownian motion.

Proof. Given M P M cont
loc and l P R, let tZt : t • 0u be the C-valued process defined by

Zt := eilMt+ 1
2 l2xMyt . (6.1)

The Itô formula then shows

dZt = Zt

⇣
ildMt +

1
2

l2dxMyt

⌘
+

1
2

l2
ZtdxMyt = ilZtdMt. (6.2)

As the right-hand side has no “drift term,” we conclude Z P M cont
loc . Under the as-

sumption that xMyt the random variable |Zt| is bounded by e
1
2 l2

t. As bounded local
martingales are martingales, we get that Z P M cont.

The fact that Z is a martingale means that E(Zt|Fs) = Zs for all 0 § s § t. For the case
at hand this reads

E
�
eilMt+ 1

2 l2
t
ˇ̌
Fs

�
= eilMs+ 1

2 l2
t. (6.3)

Rearranging with the help of the Fs-measurability then gives

E
�
eil(Mt´Ms)

ˇ̌
Fs

�
= e´ 1

2 l2(t´s). (6.4)

Using this iteratively along the sequence 0 = t0 † ¨ ¨ ¨ † tn shows that

E

✓
exp

!
i

nÿ

j=1

lj(Mtj
´ Mtj´1)

)◆
= exp

"
´1

2

nÿ

j=1

lj(tj ´ tj´1)

*
(6.5)

holds for all l1, . . . , ln P R. Using the Cramér-Wold device, it follows that M has the
same finite-dimensional distributions as the standard Brownian motion. Since M is con-
tinuous with M0, it is a standard Brownian motion. ⇤

We note that the above has been proved in 275D for the case that M is a stochastic inte-
gral with respect to standard Brownian motion. The fact that we can now treat integrals
with respect to general continuous local martingales allows us to prove this without any
restriction on the structure of M; see also Theorem 6.2 below.

We also remark that the result extends seamlessly to Rd-valued local martingales M.
The condition we then need is that the Cartesian components M

(1), . . . , M
(d) of M obey

@t • 0 @i, j = 1, . . . , d :
@

M
(i), M

(j)
D

t
= tdij (6.6)

The argument is identical modulo introduction of a dot product in relevant places.
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A natural question arises what happens when xMyt = t is not assumed. Here is one
type of a result that one can hope to get in such a case:

Theorem 6.2 (Time change to Brownian motion) Let M P M cont
loc be such that M0 = 0 and

every path of t fiÑ xMyt is strictly increasing with limtÑ8xMyt = 8. For each t • 0, set

T(t) := inf
 

u • 0 : xMyu • t
(

. (6.7)

Then T(t) is a stopping time for each t • 0, every path of t fiÑ T(t) is continuous and the process

tBt : t • 0u, defined by Bt := MT(t), is a standard Brownian motion. Moreover, we have

@t • 0 : Mt = BxMyt
. (6.8)

Proof. That T(t) is a stopping time follows from tT(t) § uu = txMyu § tu as implied by
continuity of xMy. The continuity of T is then inherited from the continuity and strict
monotonicity of xMy. In order to prove the main part of the claim, note that

@t • 0 : xMyT(t) = t (6.9)

which also entails T(t) Ñ 8 as t Ñ 8. Since the process tZt : t • 0u from (6.1) continues
to be a local martingale, the explicit form

ZT(t)^u = eilMT(t)^u+
1
2 xMyT(t)^u (6.10)

reveals that tZT(t)^u : u • 0u is a bounded martingale. For s § t, the Optional Stopping
Theorem applied to the stopping times T(s) § T(t) under the filtration tFT(t) : t • 0u
then gives

E
�
ZT(t)

ˇ̌
FT(s)

�
= ZT(s) (6.11)

Using (6.9), this now readily translates into

E
�
eil(MT(t)´MT(s))

ˇ̌
FT(s)

�
= e´ 1

2 l2(t´s). (6.12)

Proceeding as in the proof of Lévy characterization, we then readily conclude that the
process tMT(t) : t • 0u is a standard Brownian motion. The identity (6.8) is a direct
consequence of T being the inverse of xMy. ⇤

Theorem 6.2 makes a number of convenient assumptions that can be further relaxed.
First, we do not need to assume that the various assumed properties occur for all paths,
but rather only almost surely. Here we need to impose the assumption that F0 contains
all P-null sets and modify the definitions of B on a null set.

Another assumption that is easy to drop is xMyt Ñ 8 as t Ñ 8, which ensures that
the intrinsic time of tMT(t) : t • 0u varies throughout all the positive reals. If this is
not assumed, we only get a standard Brownian motion up to a stopping time; the stan-
dard trick is then to enhance the probability space and append another path of standard
Brownian motion after that stopping time.

A somewhat more difficult assumption is that of strict monotonicity of t fiÑ xMyt

which ensures the uniqueness of the inversion. Since the Optional Stopping Theorem
for continuous martingales allows us to work with right-continuous filtrations, here one
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modifies the definition of T(t) to make it right-continuous (which is achieved by replac-
ing “§ t” in (6.7) by “° t”). The general time-change result of above type can be found
as Theorem 4.6 in Karatzas and Shreve.

As a final remark concerning the above results, we welcome the reader to compare
them with the so called Skorokhod embedding which says that every discrete time mar-
tingale can be embedded into a path of standard Brownian motion using a sequence of
stopping times. Besides elegance, this fact is very useful in proving the so called Mar-
tingale Functional Central Limit Theorem.

6.2 Representation via a stochastic integral.

While time change to Brownian motion is definitely a very useful tool, at times it suf-
fices to represent the continuous martingale only as a stochastic integral with respect to
Brownian motion. Here is a result in this vain:

Theorem 6.3 Given a probability space (W,F , P) and a filtration tFtut•0 with F0 containing

all P-null sets, let M P M cont
loc be adapted to tFtut•0 and such that t fiÑ xMyt is absolutely con-

tinuous a.s. Unless xMy is strictly increasing a.s., suppose in addition that the probability space

supports a standard Brownian motion trBt : t • 0u which is adapted to tFtut•0 and independent

of M. Then there exists a standard Brownian motion tBt : t • 0u and a version of the Lebesgue

derivative of s fiÑ xMys that lies in V
loc
B

such that

@t • 0 : Mt = M0 +
ª

t

0

c
dxMys

ds
dBs a.s. (6.13)

In short, every continuous local martingale with absolutely continuous quadratic variation is an

Itô integral with respect to standard Brownian motion.

For the proof, we need:

Lemma 6.4 (Substitution rule for Itô integrals) Given M P M cont
loc and X P V

loc
M

, assuming

the filtration tFtut•0 is such that F0 contains all P-null sets, let N P M cont
loc be defined as

@t • 0 : Nt =
ª

t

0
XsdMs a.s. (6.14)

Then for all Y P V
loc
N

we have XY P V
loc
M

and

@t • 0 :
ª

t

0
XsYsdMs =

ª
t

0
YsdNs a.s. (6.15)

In short, the substitution rule dNt = XsdMs applies.

Proof. Suppose first that Ys := Yu1(u,v](s) with Yu bounded. Then for X P V0 such that
(without loss of generality) u and v belong among the partition points, we readily check

ª
t

0
XsYsdMs = Yu

ª
v

u

XsdMs = Yu(Nt^v ´ Nt^v) (6.16)
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using the explicit formula for the integral. (We suppress the details that we leave to the
reader.) Next take a sequence tX

(n)u P V
N
0 with

≥
t

0(X
(n)
s ´ Xs)2dxMy Ñ 0 in probability

for all t • 0. Lemma 5.5 then gives

@r • 0 :
ª

r

0
X

(n)
s dMs

P›Ñ
nÑ8

ª
r

0
XsdMs = Nr (6.17)

and, since also
≥

t

0 Y
2
s (X

(n)
s ´ Xs)2dxMy Ñ 0 in probability, we similarly get

@t • 0 :
ª

t

0
X

(n)
s YsdMs

P›Ñ
nÑ8

ª
t

0
XsYsdMs (6.18)

It follows (6.16) holds a.s. for each X P V
loc
M

.
Combining (6.16) with

Yu(Nt^v ´ Nt^v) =
ª

t

0
YsdNs (6.19)

proves (6.15) for Y as above. Additivity then extends this to all Y P V0. We now per-
form another extension by picking up tY

(n)u P V0 such that
≥

t

0(Y
(n)
s ´ Ys)2dxNys Ñ 0 in

probability for each t • 0. (This is possible because Y P V
loc
N

.) Using the substitution rule

dxNys = X
2
s dxMys (6.20)

for ordinary Lebesgue-Stieltjes integrals, this gives
≥

t

0 X
2
s (Y

(n)
s ´ Ys)2dxMys Ñ 0 in prob-

ability for each t • 0 showing that XY P VM. The equality
≥

t

0 XsY
(n)
s dMs =

≥
t

0 Y
(n)
s dNs

proved earlier, then yields (6.15) for all Y P V
loc
N

as desired. ⇤
We are now ready to give:

Proof of Theorem 6.3. Let (W,F , P) be a probability space supporting a continuous local
martingale tMt : t • 0u and a standard Brownian motion trBt : t • 0u with both of these
adapted to a filtration tFtut•0 such that F0 contains all P-null sets. Let

W0 :=
 

t fiÑ xMyt is AC
(

(6.21)

and note that, since absolute continuity of xMy amounts to a countable number of con-
ditions involving differences of xMy over intervals of time with rational endpoints, we
have W0 P F . By our assumptions, W0 P F0.

On W0, for each t ° 0 abbreviate
rYt := lim inf

nÑ8
�xMyt ´ xMyt´1/n

�
n (6.22)

and for all t • 0 set

Yt :=

#
rYt, if t ° 0 ^ rYt † 8,
0, else.

(6.23)

We put Yt := 0 for all t • 0 on W0. Clearly, Y is non-negative, jointly measurable and,
thanks to the use of a left limit, adapted to tFtut•0. Moreover, Yt is the left deriva-
tive of xMy at t whenever this derivative exists. The absolute continuity along with the
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Lebesgue differentiation theorem then give

@t • 0 :
ª

t

0
Ys ds = xMyt on W0. (6.24)

In particular, Y is an adapted, jointly measurable version of dxMyt

dt
.

Next define tBt : t • 0u by

Bt :=
ª

t

0

1?
Ys

1tYs°0u dMs +
ª

t

0
1tYs=0ud rBs, (6.25)

where we assumed the use of continuous versions of the stochastic integrals. The prop-
erties of the stochastic integral imply B P M cont

loc with

xByt =
ª

t

0

⇣ 1?
Ys

⌘2
1tYs°0u dxMys +

ª
t

0
1tYs=0uds (6.26)

On W0 we have Ys = dxMys

dt
at Lebesgue a.e. s • 0, which allows to perform the substi-

tution dxMys = Ysds showing that the first integral equals
≥

t

0 1tYs°0uds. Combining this
with the second integral, we conclude xByt = t a.s. (The null set does not depend on t

by continuity of both sides.) By Theorem 6.1, B is a standard Brownian motion.
To conclude the proof, we now observe that, by a mild extension of the substitution

rule from Lemma 6.4,
ª

t

0

a
Ys dBs =

ª
t

0

a
Ys

1?
Ys

1tYs°0u dMs +
ª

t

0

a
Ys1tYs=0ud rBs

=
ª

t

0

a
Ys

1?
Ys

1tYs°0u dMs =
ª

t

0
1tYs°0udMs,

(6.27)

where we dropped the second integral on the right of the first line because the integrand
vanishes and then simplified the integrand in the first integral. In light of the fact that

ª
t

0
(1 ´ 1tYs°0u)

2dxMys =
ª

t

0
1tYs=0uYsds = 0 on W0 (6.28)

the very last integral in (6.27) equals
≥

t

0 dMs = Mt ´ M0 a.s. This proves (6.13) and thus
the whole claim. ⇤

Note that the role of the auxiliary Brownian motion rB is to make the variance grow
even on intervals where xMy, and thus also M are constant. No such intervals exist when
xMy is strictly increasing throughout, in which case rB is not needed.

We also note that the above theorem extends to Rd-valued martingales. An addi-
tional difficulty is that the quadratic variation xM, My is matrix valued and so is thus its
adapted, jointly-measurable time derivative Y. We then strive to write dMt = UtDtdBt

where Dt is a diagonal matrix and Ut is an orthogonal matrix such that Yt = Ut(Dt)2
U

+
t

.
This is done by polar decomposition with a pesky detail is that we need also D and U to
be adapted and jointly measurable. We refer the reader to Theorem 4.2 in Section 3.4A
of Karatzas-Shreve.

Further reading: Section 3.3B and 3.4A of Karatzas-Shreve
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