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5. ITÔ FORMULA

We will now move to the fundamental tool associated with the stochastic integral: the
celebrated Itô formula. We begin by an extended version of a definition from 275D:

Definition 5.1 Given a filtration tFtut•0, a semimartingale is a stochastic process of the
form tMt + At : t • 0u, where M = tMt : t • 0u is a local martingale and A = tAt : t • 0u
is an adapted process with A0 = 0 and finite first variation on any compact interval of
times. The semimartingale is continuous if both M and A have continuous paths.

As a consequence of Lemma 2.2, we have:

Lemma 5.2 The processes M and A in the decomposition of a continuous semimartingale are

unique up to indistinguishability.

Proof. If tMt + At : t • 0u and tÄMt + rAt : t • 0u are two representations of the same
process, then Mt ´ ÄMt = rAt ´ At holds for all t • 0. Since A ´ rA is of bounded variation,
Lemma 2.2 implies that P(@t • 0 : Mt ´ ÄMt = Mt ´ ÄMt) = 1 a.s. A0 = rA0 = 0 implies
M0 = ÄM0 and so we get that M and ÄM, and then also A and rA, are indistinguishable. ⇤

Definition 5.3 Let X be a continuous semimartingale with decomposition X = M + A

for M a continuous local martingale and A a continuous, adapted process of locally
bounded variation. We then set:

xXyt := xMyt (5.1)

and let
ª

t

0
YsdXs :=

ª
t

0
YsdMs +

ª
t

0
YsdAs (5.2)

for any t • 0 whenever Y P V
loc
M

is also Lebesgue-Stieltjes integrable with respect to A

a.s. (The latter is the meaning of the integral on the right.)

A few remarks are in order. First, the formula (5.1) is consistent with the interpretation
of X fiÑ xXyt as quadratic variation (restricted to limit in probability of second variation
for deterministic partitions whose mesh tends to infinity). Indeed, the fact that A, being
continuous and of bounded first variation, will not contribute to the limiting second
variation. The reader should bear in mind though that, in this interpretation, tX

2
t

´
xXyt : t • 0u is not necessarily a local martingale.

Our second remark concerns the existence of an adapted continuous version of the
process in (5.2). Since the Lebesgue-Stieltjes integral of an adapted process Y with re-
spect to a continuous and adapted A is necessarily continuous and adapted, this co-
incides with the existence of the continuous version for the Itô integral, for which F0
containing all P-null sets is sufficient.

With the above notions in place, we can now state:
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Theorem 5.4 (Itô formula for semimartingales) Let X be a continuous semimartingale

and f P C
2(R). Then for all t • 0,

f (Xt) = f (X0) +
ª

t

0
f

1(Xs)dXs +
1
2

ª
t

0
f

2(Xs)dxXys a.s. (5.3)

where the integrals exist in their respective meaning.

The proof of this theorem conveniently uses the following facts about Itô integral:

Lemma 5.5 Let M P M cont
loc and suppose that Y P V

loc
M

and tY
(n)unPN P (V loc

M
)N

are such

that, for some t • 0,
ª

t

0

�
Ys ´ Y

(n)
s

�2dxMys

P›Ñ
nÑ8 0. (5.4)

Then also ª
t

0
Y
(n)
s dMs

P›Ñ
nÑ8

ª
t

0
YsdMs. (5.5)

Proof. This was left as a homework exercise in 275D so we give a proof. By linearity, we
may assume that Y = 0. Define

en := inf

#
e • 0 : P

✓ª
t

0
(Y(n)

s )2dxMys ° 2e

◆
° e

+
. (5.6)

The assumed convergence in probability then gives en Ñ 0. Next, for each n P N

consider the stopping time

tn := inf
"

t • 0 : xMyt • n _
ª

t

0

�
Y
(n)
s

�2dxMys ° en

*
. (5.7)

Since the probability that
≥

t

0(Y
(n)
s )2dxMys ° en is no larger than en, we have tn Ñ 8 in

probability. But Itô isometry then shows

E

✓
1ttn°tu

ˇ̌
ˇ
ª

t

0
Y
(n)
s dMs

ˇ̌
ˇ
2
◆

§ E

✓ˇ̌
ˇ
ª

t

0
Y
(n)
s 1ttn°sudMs^tn

ˇ̌
ˇ
2
◆

= E

✓ª
t^tn

0

�
Y
(n)
s

�2dxMys

◆
§ en.

(5.8)

Chebyshev’s inequality now gives
≥

t

0 Y
(n)
s dMs Ñ 0 in probability as desired. ⇤

We will use this lemma through:

Lemma 5.6 Let M P M cont
loc and suppose that Y P V

loc
M

has left-continuous locally bounded

sample paths. Then for any t • 0 and any sequence tPnunPN of partitions of [0, t] such

that Pn = t0 = t
n

0 † ¨ ¨ ¨ † t
n
mn

= tu we have

}Pn} Ñ 0 ñ
mnÿ

i=1

Yt
n

i´1
(Mti

´ Mti´1)
P›Ñ

nÑ8

ª
t

0
YsdMs. (5.9)
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In short, under left-continuity the left-endpoint Riemann-Stieltjes sums converge to the Itô inte-

gral in probability as the mesh of the partition tends to zero.

Proof. Setting

Y
(n)
s :=

nÿ

i=1

Yt
n

i´1
1(tn

i´1,tn

i
](s) (5.10)

we have
mnÿ

i=1

Yt
n

i´1
(Mti

´ Mti´1) =
ª

t

0
Y
(n)
s dMs. (5.11)

The assumed left-continuity and local boundedness with the help of the Bounded Con-
vergence Theorem validate (5.4) with convergence in pointwise-everywhere (no proba-
bility needed) sense. The claim then follows from Lemma 5.5. ⇤
Proof of Theorem 5.4. As the proof is quite similar to that for integrals with respect to
standard Brownian motion, we spell out only the main steps. Fix t ° 0 and assume first
that f , f

1 and f
2 are bounded and that, for some deterministic K ° 0, the objects in the

semimartingale representation X = M + A obey

sup
s§t

|Ms| § K ^ xMyt § K ^ V
(1)
t

(A) § K. (5.12)

Given n • 0, let Pn = t0 = t0 † ¨ ¨ ¨ † tn = tu be a partition such that ti ´ ti´1 = 1/n for
each i = 1, . . . , n. Then

f (Xt) = f (X0) +
nÿ

i=1

⇥
f (Xti

) ´ f (Xti´1)
⇤

= f (X0) +
nÿ

i=1

f
1(Xti´1)(Xti

´ Xti´1) +
1
2

nÿ

i=1

f
2(Xti´1)

�xXyti
´ xXyti´1

�

+
1
2

nÿ

i=1

f
2(Xti´1)

h
(Xti

´ Xti´1)
2 ´ �xXyti

´ xXyti´1

�i

+
nÿ

i=1

ª 1

0

h
f

2�
uXti´1 + (1 ´ u)Xti

� ´ f
2(Xti´1)

i
(Xti

´ Xti´1)
2
udu,

(5.13)

where we first invoked Taylor’s theorem with a remainder and then employed some
convenient rearrangements of terms in the sums. Lemma 5.6 along with the fact that
Stietjels integral

≥
f dg exists whenever f is continuous and g of bounded variation imply

nÿ

i=1

f
1(Xti´1)(Xti

´ Xti´1)
P›Ñ

nÑ8

ª
t

0
f

1(Xs)dXs (5.14)

and
nÿ

i=1

f
2(Xti´1)

�xXyti
´ xXyti´1

� ›Ñ
nÑ8

ª
t

0
f

2(Xs)dxXys (5.15)
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We thus have to show that, as n Ñ 8, the last two terms in (5.13) tend to zero in proba-
bility. Let us call these terms In and Jn, respectively.

As to the term In, here we write it as

In =
1
2
⇥
I
(1)
n + 2I

(2)
n + I

(3)
n

⇤
, (5.16)

where

I
(1)
n :=

nÿ

i=1

f
2(Xti´1)(Ati

´ Ati´1)
2

I
(2)
n :=

nÿ

i=1

f
2(Xti´1)(Ati

´ Ati´1)(Mti
´ Mti´1)

I
(3)
n :=

nÿ

i=1

f
2(Xti´1)

h
(Mti

´ Mti´1)
2 ´ �xMyti

´ xMyti´1

�i

(5.17)

For the first of these we invoke the bound |I(1)n | § } f
2}V

(2)
t

(A, Pn) and then observe that

V
(2)
t

(A, P) § oscA

�
[0, t], }P}�V

(1)
t

(A) (5.18)

The total variation is less than K by (5.12) while the oscillation vanishes as }P} Ñ 0 by
uniform continuity of A. Hence I

(1)
n Ñ 0 pointwise. For the second term a Cauchy-

Schwarz bound similarly gives

|I(2)n | § } f
2} V

(2)
t

(A, Pn)
1/2

V
(2)
t

(M, Pn)
1/2 (5.19)

which tends to zero in probability by the fact V
(2)
t

(M, Pn) is convergent in probability
and thus forms a tight sequence.

For the last term we have to work a bit harder. Noting that I
(3)
n is the sum of uniformly

bounded martingale increments shows

E
⇥
(I

(3)
n )2⇤ § } f

2}2
nÿ

i=1

E

✓h
(Mti

´ Mti´1)
2 ´ �xMyti

´ xMyti´1

�i2
◆

§ 2} f
2}2

h
E
�
V

(4)
t

(M, Pn)
�
+ E

�
V

(2)
t

(xMy, Pn)
�i

(5.20)

where we invoked the inequality (a+ b)2 § 2a
2 + 2b

2 and interpreted the resulting sums
using the fourth and second variation. Note that, for any p ° p

1 ° 1 and any h : [0, t] Ñ
R, we have V

(p)
t

(h, P) § osch([0, t], }P})p
1
V

(p´p
1)

t
( f , P). In light of V

(1)
t

(M) § K as-
sumed in (5.12), this implies

E
�
V

(2)
t

(xMy, Pn)
� § KE

�
oscxMy([0, t], }Pn})� (5.21)

which tends to zero by the Bounded Convergence Theorem and the fact that the oscil-
lation is bounded by 2K thanks to the second inequality in (5.12) and it tends to zero
pointwise by continuity of xMy. Using the above with p := 4 and p

1 := 2 and employing
Cauchy-Schwarz similarly yields

E
�
V

(4)
t

(M, Pn)
� § E

�
oscM([0, t], }Pn})2� (5.22)
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which again tends to zero as n Ñ 8 by the Bounded Convergence Theorem and the
fact that the oscillation is bounded by 2K by the first inequality in (5.12). This implies
I
(3)
n Ñ 0 in L

2 and, combining with the above, In Ñ 0 in probability.
Concerning Jn, here we use the bound

|Jn| § osc f 2˝X

�
[0, t], }Pn}�V

(2)
t

(X, Pn). (5.23)

The assumed continuity of f
2 implies continuity of f

2 ˝ X which means that the oscilla-
tion tends to zero as n Ñ 8 pointwise. Since

V
(2)
t

(M + A, P) § 2V
(2)
t

(M, P) + 2V
(2)
t

(A, P) (5.24)

the sequence V
(2)
t

(X, Pn) is tight. Hence, Jn Ñ 0 in probability as well.
The above proves the Itô formula under the assumptions made at the beginning of

the proof; namely, that f , f
1 and f

2 are bounded and (5.13) holds. Let

tK := inf
!

t • 0 : sup
s§t

|Xs| • K _ (5.12) fails
)

. (5.25)

Then the above proof gives

f (Xt^tK
) = f (X0) +

ª
t

0
f

1(Xs)1ttK°sudXs +
1
2

ª
t

0
f

2(Xs)1ttK°sudxXys. (5.26)

(Technically speaking, we also need to formally argue that f can be changed outside the
interval [´K, K] so that f , f

1 and f
2 are bounded everywhere. This is done by extend-

ing f by the second-order Taylor polynomials centered at ˘K.) As tK Ñ 8 a.s. as K Ñ 8,
we now pass to K Ñ 8 limit inside these integrals using ordinary Bounded Convergence
Theorem in the Lebesgue-Stieltjes integrals supplied in addition with Lemma 5.5 for the
stochastic integral. This leads to the desired limit formula (5.3). ⇤

The formula (5.3) is actually the simplest of several Itô formulas. Indeed, one can
consider a function f : Rd Ñ R of Rd-valued X, in which case we get

f (Xt) = f (X0) +
ª

t

0
r f (Xs) ¨ dXs +

1
2

ª
t

0
rr f (Xs) ¨ dxX, Xys (5.27)

where we think of rr f as a d ˆ d matrix and contact the indices against those of the
d ˆ d-matrix xX, Xy. (In particular, for X being a standard Brownian motion dxX, Xyt is
the identity matrix times dt and rr f then contracts into the Laplacian D f .)

Another generalization is in the direction of functions of Xt and also of the time t

and the quadratic variation process xXyt. An ordinary integral of the corresponding first
derivative then pops up for these additional components on the right-hand side. Yet
another generalization would be that of several processes entering the arguments of f .
All of these are handled by the infinitesimal rules of stochastic calculus

dMtd ÄMt = dxM, ÄMyt ^ dtdMt = 0 ^ (dt)2 = 0 (5.28)

that allow treating each case of interest depending on context.
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As our final remark we note that requiring f P C
2(R) is not necessary for Itô formula

to hold. Indeed, straightforward approximation arguments (transfered to the stochas-
tic integral with the help of Lemma 5.5) show that continuity of f

2 can be weakened
to f

1 being absolutely continuous. We will discuss this extension when we push the Itô
formula even beyond that case using the concept of the Brownian local time.

Further reading: Section 3.3A of Karatzas-Shreve
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