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4. INTEGRABILITY AND LOCALIZATION

Here we will continue discussing the Itô integral with respect to continuous martingales.
The topics we will focus on are criteria for integrability and extension of the integral to
local martingales and locally integrable processes.

4.1 Which processes can we integrate?.

The stochastic integral would hardly be very useful if we cannot supply an independent
characterization of the class of processes that can be integrated. The answer to this turns
out to be somewhat more subtle than for the Itô integral with respect to standard Brow-
nian motion. Indeed, it will matter whether the quadratic variation process is absolutely
continuous a.s. or not. The former case is actually the same:

Proposition 4.1 Let M P M cont
2 and recall the definition of VM from (3.12). If t fiÑ xMyt is

absolutely continuous a.s., then V0
[[¨]]M = VM.

Proof. Let Y P VM and suppose first that Y is bounded by some K ° 0. A lemma from
275D gives existence of a sequence tY(n)unPN P V0 such that

@t • 0 : E
✓ ª t

0
(Ys ´ Y(n)

s )2ds
◆

›Ñ
nÑ8 0. (4.1)

We may also assume that the processes tY(n)unPN are bounded by the same constant
as Y. Resorting to a subsequence if necessary, a Borel-Cantelli argument in turn permits
us to assume that

!
t • 0 : lim sup

nÑ8
|Yt ´ Y(n)

t | ° 0
)

(4.2)

has vanishing Lebesgue measure P-a.s.
The assumed absolute continuity of t fiÑ xMyt(w) now implies the existence of a

(random) Radon-Nikodym derivative dxMyt
dt which is a locally Lebesgue integrable func-

tion FM : R+ Ñ R+ such that
ª t

0
(Ys ´ Y(n)

s )2dxMys =
ª t

0
(Ys ´ Y(n)

s )2FM(s)ds (4.3)

holds for each t • 0. In light of the Lebesgue-null property of the set (4.2) and the bound-
edness of Y ´ Y(n), the integral on the right converges to zero P-a.s. by the Dominated
Convergence Theorem. But the integral on the left is bounded by 4KxMyt, which is in L1.
The Dominated Convergence Theorem then shows

@t • 0 : E
✓ ª t

0
(Ys ´ Y(n)

s )2dxMys

◆
›Ñ
nÑ8 0 (4.4)

proving that [[Y ´ Y(n)]]M Ñ 0 and thus Y P V0
[[¨]]M whenever Y P VM is bounded.
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If Y P VM is unbounded, we set Y(n)
s = Ys1t|Ys|§nu and observe that Y(n) P VM is

bounded and so Y(n) P V0
[[¨]]M by the previous argument. But then

E
✓ ª t

0
(Ys ´ Y(n)

s )2dxMys

◆
= E

✓ ª t

0
Y2

s 1t|Ys|°nudxMys

◆
(4.5)

and the right-hand side tends to zero as n Ñ 8 by the Monotone Convergence Theorem
and the fact that Y P VM. Hence Y P V0

[[¨]]M in this case as well. ⇤
For the case when t fiÑ xMyt is not absolutely continuous, we will have to rely on the

following weaker conclusion:

Proposition 4.2 For all M P M cont
2 and all Y P VM progressively measurable, Y P V0

[[¨]]M .

Proof. The proof proceeds by a random time change that, effectively, reduces it again to
the case (4.1) above. Progressive measurability is needed to ensure that the time-changed
process is adapted to the time-changed filtration.

A natural process to base the time change on is t fiÑ xMyt. Unfortunately, this process
may not be a strictly increasing (and thus one-to-one) function and so we instead work
with t fiÑ xMyt + t. The inverse is supplied by the stopping times

T(u) := inf
 

t • 0 : xMyt + t • u
(

(4.6)

for which we get
@u • 0 : T(u) + xMyT(u) = u. (4.7)

The process t fiÑ T(u) is continuous and strictly increasing.
Let now Y P VM be as in the statement. The argument in the previous proof permits

us to assume that Y is bounded, say, |Y|t § K for all t • 0. The progressive measur-
ability ensures that tYT(u) : u • 0u is adapted to the filtration tFT(u)uu•0 and the joint
measurability of tYt : t • 0u and tT(u) : u •u (implied, in the latter case, by continuity)
shows that tYT(u) : u • 0u is jointly measurable. Since E[

≥t
0 Y2

s ds] § Kt for each t • 0, the
aforementioned lemma from 275D yields existence of processes tY(n)unPN of the form

Y(n)
u = Z(n)

0 1t0u(u) +
mnÿ

i=1

Z(n)
i 1(tn

i´1,tn
i ]
(u) (4.8)

with m P N, 0 = tn
0 † ¨ ¨ ¨ † tmn such that

@n P N @i = 0, . . . , mn : Z(n)
i is FT(tn

i´1_0)-measurable (4.9)

for which

@t • 0 : E
✓ ª t

0
(YT(u) ´ Y(n)

u )2du
◆

›Ñ
nÑ8 0. (4.10)

Abbreviating
rY(n)

s := Y(n)
xMys+s (4.11)
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which is jointly measurable thanks to the fact that s fiÑ xMys is jointly measurable, the
substitution u = xMys + s inside the integral then shows, for each t • 0, that

E
✓ ª t

0
(Ys ´ rY(n)

s )2dxMys

◆
§ E

✓ ª t

0
(Ys ´ Y(n)

xMys+s)
2(dxMys + ds)

◆

= E
✓ ª t+xMyt

0
(YT(u) ´ Y(n)

u )2du
◆

§ E
✓ ª t+v

0
(YT(u) ´ Y(n)

u )2du
◆
+ 4K2E

�
(t + xMty)1txMyt•vu

�
,

(4.12)

where we used that (YT(u) ´ Y(n)
u )2 § 4K2. The first term on the right now tends to zero

as n Ñ 8 by (4.10) while the second term tends to zero as v Ñ 8 using the Dominated
Convergence Theorem. We conclude that [[Y ´ rY(n)]]M Ñ 0.

To get the claim it thus suffices to show that rY(n) P V0
[[¨]]M for each n • 0. For this we

observe that the continuity and strict monotonicity of t fiÑ T(t) gives

rY(n)
u = Z(n)

0 1t0u(u) +
mnÿ

i=1

Z(n)
i 1(T(tn

i´1),T(t
n
i )]
(u). (4.13)

Defining Tk(t) := 2´kr2kT(t)s, we have Tk(t) Ó T(t) and so 1(Tk(s),Tk(u)] Ñ 1(T(s),T(u)]
pointwise as k Ñ 8 for all s † u. It follows that, as k Ñ 8,

rY(n,k)
u := Z(n)

0 1t0u(u) +
mnÿ

i=1

Z(n)
i 1(Tk(tn

i´1),Tk(tn
i )]
(u) (4.14)

converges to rY(n)
u for each u • 0. The limit [[rY(n,k) ´ rY(n)]]M Ñ 0 as k Ñ 8 then takes

place by the Dominated Convergence Theorem.
We will now show that Y(n,k) P V0. Indeed, thanks to the dyadic approximation of the

stopping times, (Tk(tn
i´1), Tk(tn

i )] is the union of intervals (2´k(j ´ 1), 2´k j] for j such that
Tk(tn

i´1) † 2´k j § Tk(tn
i ). Noting that Tk(tn

i ) § tn
mn and setting rn,k := r2ktn

mn s, we can
thus rewrite the right-hand side of (4.14) as

rY(n,k)
u = Z(n)

0 1t0u(u) +
mnÿ

i=1

rn,kÿ

j=1

�
Z(n)

i 1tTk(tn
i´1)†2´k j§Tk(tn

i )u
�
1(2´k(j´1),2´k j](u). (4.15)

Now observe that tTk(tn
i´1) † 2´k j § Tk(tn

i )u P F2´k(j´1) and that Z(n)
i is Ftn

i´1
-measurable

and thus also F2krtn
i´1s-measurable. Hence we get that

Z(n)
i 1tTk(tn

i´1)†2´k j§Tk(tn
i )u is F2´k(j´1)-measurable (4.16)

for each i = 1, . . . , mn and each j = 1, . . . , rn,k. This implies rY(n,k) P V0 for each n, k • 0
and, by above reasoning, rY(n) P V0

[[¨]]M for each n • 0. ⇤
That we need to ask more from Y when we ask less from xMy is a well known fact in

Stieltjes integration theory where this is often used to trade regularity of the integrand
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against the regularity of the integrating function. Still, one is left to wonder what is V0
[[¨]]M

when t fiÑ xMyt is not absolutely continuous. A criterion is offered in:

Lemma 4.3 Let M P M cont
2 and Y P VM. Then

(1) Y P V0
[[¨]]M

(2) DrY P VM progressively measurable such that

ª 8

0
1tYt‰rYtudxMyt = 0 a.s. (4.17)

are equivalent.

Note that the map t, w fiÑ 1tYt(w)‰rYt(w)u is measurable and so the Lebesgue-Stieltjes
integral (4.17) is well defined and defines a random variable. We leave the proof of
Lemma 4.3 to a homework assignment.

Examples of processes that are measurable, adapted, but not progressively measur-
able exist although they seem to invariably capitalize on a huge difference between F
(which determines measurability) and Ft (which determines progressive measurabil-
ity). Still, assuming progressive measurability from the outset is not a considerable loss
because of the following result:

Theorem 4.4 Given a probability space (W,F , P) and a jointly measurable process Y, for each
filtration tFtut•0 there exists a progressively measurable process rY that is a version of Y in the
sense that @t • 0 : P(Yt ‰ rYt) = 0.

Proof. This can found in several advanced texts albeit, apparently, with difficult proofs.
A simple proof has appeared recently in M. Onderját and J. Seilder’s paper “On existence
of progressively measurable modifictions” published in Electronic Communications in
Probability, vol. 18, no. 20, year 2013, pages 1-6. The key step of that proof is to show that,
given any B P B(R+) b F , the process tE(1B(t, ¨)|Ft) : t • 0u admits a progressively
measurable version; the rest are approximation arguments. The proof works in great
generality; namely, for Y taking values in any Polish space. ⇤

Since (by Tonnelli), any two versions Y and rY of the same process necessarily agree
away from a Lebesgue null-set of times a.s., the criterion (4.17) holds for any M P M cont

2
with absolutely continuous xMy, thus reproducing the conclusion of Proposition 4.1
from Proposition 4.2 and Theorem 4.4.

4.2 Localized Itô integral.

The restriction of the above stochastic integral to square integrable processes and square
integrable integrands is at times too restrictive. Fortunately, there is a way to avoid it
by a procedure referred to as localization which amounts to “stopping” the processes at
conveniently defined stopping times that effectively revert the integration to the square
integrable case.
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Given M P M cont
loc , let

V loc
M :=

"
Y : measurable ^ adapted ^ @t • 0 :

ª t

0
Y2

s dxMys † 8 a.s.
*

(4.18)

be the class of processes that are locally integrable with respect to M. We then have:

Theorem 4.5 Let M P M cont
loc and Y P V loc

M . For each K • 0 set

tK := inf
"

t • 0 : xMyt • K _
ª t

0
Y2

s dxMyt • t
*

(4.19)

and denote M(K)
t := Mt^tK . Then M(K) P M cont

2 and Y P VM(K) . Moreover,

@ rK • K ° 0 @t • 0 :
ª t

0
Ys dM(rK)

s =
ª t

0
Ys dM(K)

s a.s. on ttK ° tu (4.20)

and so

@t • 0 :
ª t

0
Ys dMs := lim

KÑ8

ª t

0
Ys dM(K)

s exists a.s. (4.21)

Moreover, assuming F0 contains all P-null sets, the process t≥t
0 YsdMs : t • 0u admits a contin-

uous version I(Y) := tIt(Y) : t • 0u which is a continuous local martingale with

@t • 0 :
@

I(Y)yt =
ª t

0
Y2

s dxMys a.s. (4.22)

Finally, for any stopping time T and any t • 0,
ª T^t

0
YsdMs := IT^t(Y) =

ª t

0
Ys1tT°sudMs a.s. (4.23)

where the integral on the right is in the sense (4.21).

Since the proof is almost exactly the same as for the Brownian case, we proceed only
by some remarks. Note that in this case we need to truncate both the quadratic variation
of the integral to be defined and that of the underlying martingale. This was not needed
when M was standard Brownian motion because then xMy was explicit. Also note that
for Brownian motion we truncated the integrals slightly differently; namely, by writing≥t

0 Ys1ttK°su dMs instead of
≥t

0 Ys dM(K)
s . The reason is that the former integral is still only

in the localized sense while the latter is a proper L2-Itô integral. That these are the same
follows from (4.23).

Further reading: Sections 3.1-3.3 of Karatzas-Shreve
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