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25. PICARD’S THEOREM AND BEYOND

We proceed by stating another theorem concerning existence and, this time also unique-
ness, of the solution to above ODE. Then we note an example that shows why the stated
treatment fails when the driving signal is finite p-variation for p = 2 but not any p † 2.

25.1 Generalized Picard theorem.

In treatments of standard ODEs, uniqueness is typically addressed by imposing the con-
dition that the function h is Lipschitz continuous. (Note that uniqueness fails for one-
dimensional ODEs whenever y fiÑ 1/h(y) is locally integrable near a zero of h, so Lips-
chitz continuity also nearly necessary.) This also leads to a different proof of existence,
based on convergence of so called Picard-Lindelöf iterations defined recursively by setting,
for each t • 0,

y0(t) := y0 (25.1)
and letting

yn+1(t) := y0 +
ª t

0
h(yn)dx (25.2)

for each n P N. One advantage of this approach is control of rate of convergence of the
iterates, and thus possibility to approximate the unique solution up to a known error. In
addition, one also gets continuity of the solution in the initial value y0 and the driving
signal. (This would be a meaningless statement without uniqueness.)

The classical Picard theorem does the above for x(t) := t and h Lipschitz continu-
ous. Our generalization to rougher signals requires just a bit more regularity than that;
namely, that h is differentiable with h1 Hölder continuous:

Theorem 25.1 (Generalized Picard theorem) Let h : R Ñ R be differentiable with h1 locally
a-Hölder continuous for some a P (0, 1]. Let x : R+ Ñ R be such that @t ° 0 : x P Vp([0, t])
for some p † 1 + a. For each y0 P R, there exists T ° 0 and a unique y P Vp([0, T]) such that

@t P [0, T] : y(t) = y0 +
ª t

0
h(y)dx (25.3)

Moreover, y0, x fiÑ y is continuous as a map R ˆ Vp([0, T]) Ñ Vp([0, T]).

The assumption of Hölder continuity of the derivative enters through a rather in-
volved estimate stated and proved in:

Lemma 25.2 Let h : R Ñ R be differentiable with h1 such that |h1(z) ´ h1(z̃)| § K|z ´ z̃|
a for

each z, z̃ P R. Suppose that I Ñ R is a bounded interval and y, ỹ P V
p(I) for some p • 1. Then

}h ˝ y ´ h ˝ ỹ}
V p/a(I) §

⇣
2}h1

} + 2K
�
}y}

a
p,I + }ỹ}

a
p,I
�⌘

}y ´ ỹ}V p(I) (25.4)

where }h1
} := supt|h1(z)| : }z} § ru for r := suptPI maxt}y(t)}, }ỹ(t)}u.

Proof. The Fundamental Theorem of Calculus gives us h(z) ´ h(z̃) = g(z, z̃)(z ´ z̃) for
g(z, z̃) :=

≥1
0 h1(sz + (1 ´ s)z̃)ds. Note that we have

ˇ̌
g(z, z̃)

ˇ̌
§ }h1

} (25.5)
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and
ˇ̌
g(z, z̃) ´ g(z1, z̃1)

ˇ̌p/a
§

✓
K
ª 1

0
ds

�
s|z ´ z1

| + (1 ´ s)|z̃ ´ z̃1
|
�a
◆p/a

§ Kp/a
�
|z ´ z1

|
p + |z̃ ´ z̃1

|
p�

(25.6)

Given any s, t P I, the rewrite

h(yt) ´ h(ỹt) ´
�
h(ys) ´ h(ỹs)

�

= g(yt, ỹt)
�
yt ´ ỹt ´ (ys ´ ỹs)

�
+

�
g(yt, ỹt) ´ g(ys, ỹs)

�
(ys ´ ỹs)

(25.7)

along with the inequality (a + b)g
§ 2g´1(ag + bg) for any a, b • 0 and g • 1 give

ˇ̌
ˇh(yt) ´ h(ỹt) ´

�
h(ys) ´ h(ỹs)

�ˇ̌
ˇ
p/a

§ 2p/a´1
}h1

}
p/a

ˇ̌
ˇyt ´ ỹt ´ (ys ´ ỹs)

ˇ̌
ˇ
p/a

+ 2p/a´1Kp/a
�
|yt ´ ys|

p + |ỹt ´ ỹs|
p�

|ys ´ ỹs|
p/a

(25.8)

Bounding the very last factor by |ys ´ ỹs|
p/a

§ }y ´ ỹ}8,I and using the resulting inequal-
ity over intervals in a partition P and optimizing over the partition gives

Vp/a(h ˝ y´h ˝ ỹ, I)

§ 2p/a´1
}h1

}
p/aVp/a(y ´ ỹ, I)

+ 2p/a´1Kp/a
�
Vp(y, I) + Vp(ỹ, I)

�
}y ´ ỹ}8,I

(25.9)

Taking a/p-power with the help of the inequality (a + b)a/p
§ aa/p + ba/p shows

}h ˝ y´h ˝ ỹ}p/a,I

§ 21´a/p
}h1

}}y ´ ỹ}p/a,I + 21´a/pK
�
}y}

a
p,I + }ỹ}

a
p,I
�
}y ´ ỹ}8,I

(25.10)

Bounding 21´a/p
§ 2 and combining this with

}h ˝ y ´ h ˝ ỹ}8,I § }h1
}}y ´ ỹ}8,I (25.11)

the claim follows from downward monotonicity of p fiÑ } f }p,I . ⇤
We are now ready to give:

Proof of Theorem 25.1. Suppose h : R Ñ R is differentiable with |h1(z) ´ h1(z̃)| § K|z ´ z̃|
a

for each z, z̃ P R. Let I be an interval of the form [0, t] and let y, ỹ P Vp(I) be such
that y(0) = ỹ(0) = y0. Note that F(y)(t) := y0 +

≥t
0 h ˝ ydx is well defined for each t P

I by the fact that h ˝ y P Vp(I), and similarly for F(ỹ). Fix r ° 0 and suppose that
maxt}y(t)}, }ỹ(t)}u § r for all t P I. Then

max
 

}F(y) ´ y0}8,I , }F(y)}p,I
(

§ }h ˝ y}8,I}x}p,I + Cp,p}h ˝ y}p,I}x}p,I

§

⇣››h(y0)
›› + 2Cp,p}h1

}}y}p,I

⌘
}x}p,I

(25.12)
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where }h1
} := supt|h1(z)| : }z} § ru for r := suptPI }y(t)}. Similarly, using Lemma 8.2 we

also get

}F(y) ´ F(ỹ)}Vp(I) § 2Cp,p/a}h ˝ y ´ h ˝ ỹ}p/a,I}x}p,I

§ 2Cp,p/a

⇣
2}h1

} + 2K
�
}y}

a
p,I + }ỹ}

a
p,I
�⌘

}y ´ ỹ}Vp(I)}x}p,I .
(25.13)

Now pick T ° 0 so small that, for JT := [0, T],
⇣››h(y0)

›› + 2Cp,p}h1
}r
⌘

}x}p,JT § r (25.14)

and

2Cp,p/a

�
2}h1

} + 4Kra
�
}x}p,JT §

1
2

(25.15)

The bound (25.12) then shows that F maps

KT :=
!

y P Vp(JT) : y(0) = y0 ^ }y}Vp(JT) § r
)

(25.16)

into itself while (25.13) shows that F is a contraction on KT, i.e.,

@y, ỹ P KT : }F(y) ´ F(ỹ)}Vp(JT) §
1
2

}y ´ ỹ}Vp(JT) (25.17)

Since KT is also closed in Vp(JT), the Banach fixed point theorem implies existence of
a unique y P KT such that y = F(y). By the fact that every solution of the ODE will
lie in KT1 for some T1

° 0 small, also the solution is locally unique. Applying this
inductively, the solution is thus unique globally as well.

It remain to prove continuity in the initial data and the driving signal. For simplicity,
we will only prove the continuity in x. Let f : Vp(JT) Ñ Vp(Jt) denote the solution
map x fiÑ f(x). Given two signals x, x̃ P Vp(JT) such that, without loss of generality,
}x̃}p,JT § }x}p,JT , note that

ft(x) ´ ft(x̃) =
ª t

0

⇥
h ˝ f(x) ´ h ˝ f(x̃)

⇤
dx +

ª t

0
h ˝ f(x̃)d(x ´ x̃) (25.18)

Interpreting the first integral as F(f(x)) ´ F(f(x̃)) for F defined using x, the contractiv-
ity of F in (25.17) gives

}f(x) ´ f(x̃)}Vp(JT) §
1
2

}f(x) ´ f(x̃)}Vp(JT) + }h ˝ f(x̃)}Vp(JT)}x ´ x̃}p,I (25.19)

and so, noting that

}h ˝ f(x̃)}Vp(JT) §

⇣››h(y0)
›› + 2Cp,p}h1

}}f(x̃)}p,I

⌘
(25.20)

we get

}f(x) ´ f(x̃)}Vp(JT) § 2r
}x ´ x̃}p,JT

}x}p,JT

(25.21)

by invoking (25.14). This is the desired statement of continuity in the driving signal. ⇤
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25.2 What happens for p • 2?.

With the above results proving good control of the realm of processes in Vp([0, T])
with p † 2, a natural question to ask is: What can be done when the driving signal
of the ODE lies in Vp([0, T]) for p • 2 but not for any p † 2? A simple answer to this is:
not much, because pretty much everything goes wrong in this case.

The primary obstacle to overcome is the definition of the integral. Here the traditional
definition of the Riemann-Stieltjes integral does run into problems due to the following
fact: Given a compact interval I, let P = (ttiu

n
i=0, tti´1u

n
i=1) and P = (ttiu

n
i=0, ttiu

n
i=1) be

two partitions of I with the same partition points, but the left-endpoint marked points
for P and the right-endpoint marked points for P1. Then

S( f , f , P1) ´ S( f , f , P) = V2( f , I, P) (25.22)

and so once f is only finite second variation, one should not expect that the Riemann-
Stieljes sum becomes independent of the marked points when the mesh of the parti-
tion tends to zero. (That this is in fact a problem can be checked by setting f to be a
path of standard Brownian motion which is in Vp(I) a.s. for each p ° 2 but for which
V2( f , I, Pn) Ñ |I| a.s. if }Pn} Ñ 0 so fast that

∞
n•1 }Pn} † 8.)

Another approach one might want to try is to define integral directly by functional
analytic means. Unfortunately, also this fails rather spectacularly:

Lemma 25.3 Let p • 2 and let I Ñ R be a non-degenerate compact interval. Then the bilinear
map f , g fiÑ

≥
f dg, defined on smooth functions as the ordinary Stietjes integral, admits no

continuous extension to Vp(I) ˆ Vp(I). In fact, the map is not even bounded in } ¨ }p,I-norm.

Proof. We will prove the second part of the statement as that implies the first. By shift
and scaling it suffices to prove this for I := [0, 2p]. Given b ° 1 and a ° 0, consider the
following functions

fn(t) :=
nÿ

k=1

1
?

k
b´ak cos(bnt) (25.23)

and

gn(t) :=
nÿ

k=1

1
?

k
b´ak sin(bnt) (25.24)

These converge pointwise to

f (t) :=
8ÿ

k=1

1
?

k
b´ak cos(bnt) (25.25)

and

g(t) :=
8ÿ

k=1

1
?

k
b´ak sin(bnt), (25.26)

respectively.
Next assume a P (0, 1). We claim that fn Ñ f and gn Ñ g in V1/a(I). For this we

proceed similarly as in the proof of (23.14): Given s † t, bound | cos(bkt) ´ cos(bks)| by
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bk
|t ´ s| when k § logb 1/|t ´ s| and by 2 otherwise to get

ˇ̌
( f ´ fn)(t)´( f ´ fn)(s)

ˇ̌
§

8ÿ

k=n+1

1
?

k
b´ak

| cos(bkt) ´ cos(bks)|

§
1

?
n + 1

✓ ÿ

k§logb 1/|t´s|
b(1´a)k

|t ´ s| + 2
ÿ

k°logb 1/|t´s|
b´ka

◆

§
K

?
n + 1

|t ´ s|
a

(25.27)

for K as defined after (23.14). This now shows

} f ´ fn}1/a,I §
K

?
n + 1

|I|
a (25.28)

proving that fn Ñ f in V1/a(I). (The proof of convergence gn Ñ g in V1/a(I) is com-
pletely analogous so we omit it.)

Next assume that b is an integer with b • 2. Then
ª 2p

0
fndgn =

nÿ

k,`=1

1
?

k
1

?

`
b´a(k+`)

ª 2p

0
cos(bkt)b` cos(b`t)dt

=
nÿ

k=1

1
k

b(1´2a)k
ª 2p

0
cos(bkt)2dt

= p
nÿ

k=1

1
k

b(1´2a)k

(25.29)

For a := 1/p with p • 2 this diverges to infinity despite the fact that, as shown just
above, both sequences t fnunPZ and tgnunPZ converge in Vp([0, 2p]). The map f , g fiÑ≥2p

0 f dg is thus not even bounded in } ¨ }p,I-norm, let alone continuous. ⇤
The lack of continuity introduces ambiguity in the interpretation of

≥
h(y)dx which

undermines the notion of y being a solution to the ODE dy = h(y)dx. This is exactly
where the theory of rough paths (to be discussed next) picks up and makes a significant
contribution.
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