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24. SOLVING MODERATELY ROUGH ODES: PEANO THEOREM

The Young integral opens up a possibility to prove existence of a solution to an ODE
that could not be analyzed within Riemann’s and even Lebesgue’s integration theory.
Here we provide a first such result that, as it turns out, is restricted to driving signals of
variation p † 2. ODEs with such signals are sometimes referred to as moderately rough.

24.1 Peano’s theorem.

Recall the ODE (23.1–23.2). There x and y generally take values in possibly different
normed-vector spaces X and Y and h and g are functions that make the expressions
meaningful. This generality allows us to absorb the second integral into the first and
consider integral equations of the form

y(t) = y0 +
ª t

0
h(y)dx (24.1)

where h(y) is a bounded linear operator X Ñ Y . (Hence h is a map Y Ñ L(X , Y ),
where L(X , Y ) is the space of bounded linear operators X Ñ Y .) We will for simplic-
ity ignore this level of generality in what follows and treat the case when both x and y
are real valued and h(y) is thus a multiplication by a scalar. (Still, we will use norm
notation on various quantities in the proof to indicate where norms are needed.)

In the ODE literature, any discussion of existence of solution to ODEs usually starts
with Peano’s theorem, sometimes called also the Cauchy-Peano theorem, proved by
Peano in 1886 (incorrect proof) and 1890 (correct proof). We will do the same albeit
with a proof that allows for generalizations later:

Theorem 24.1 (Peano’s theorem) Let h P C(R), y0 P R and x P V
1([0, t]) for each t ° 0.

Then there exists T ° 0 and a function y P V
1([0, T]) such that

@t P [0, T] : y(t) = y0 +
ª t

0
h ˝ y dx (24.2)

Proof. Fix any r ° 0 and let K := supt}h(z)} : }z ´ y0} § ru, which we assume to be
non-zero for otherwise there is nothing to prove. Let T ° 0 be such that V1(x, JT) § r/K
for JT := [0, T]. For any y P C(JT) let F(y) be the function defined by

F(y)(t) := y0 +
ª t

0
h ˝ y dx (24.3)

Then }y ´ y0}8,JT § r gives

}F(y) ´ y0}8,JT § KV1(x, JT) § r. (24.4)

The fact that F(y)(t) ´ F(y)(s) =
≥t

s h ˝ y dx implies |F(y)(t) ´ F(y)(s)| § KV1(x, [s, t]).
Hence we get

@I Ñ JT : }F(y)}1,I § KV1(x, I) (24.5)
The map F thus preserves the set

KT :=
!

y P C(JT) X V1(JT) : y(0) = y0 ^ }y ´ y0}8,JT § r ^ (24.5) holds
)

(24.6)
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This set is bounded and, by the lower-semicontituity of the first variation shown in
Lemma 23.4, closed in the supremum norm. Moreover, it is equicontinuous by the con-
tinuity of the variation of x. The Arzelà-Ascoli theorem now implies that KT is compact
in the topology of the uniform convergence on JT.

We now claim that F is continuous on KT with respect to the uniform convergence.
Indeed, if y P KT and ty(n)unPN P K

N
T are such that }y(n) ´ y}8,JT Ñ 0, then the continuity

of h on tz P R : |z ´ y0| § ru implies }h ˝ y(n) ´ h ˝ y}8,JT Ñ 0. But that gives

}F(y(n)) ´ F(y)}8,JT § }h ˝ y(n) ´ h ˝ y}8,JT V1(x, JT) ›Ñ
nÑ8 0. (24.7)

So F is a continuous map of a compact subset of a Banach space into itself. By Schauder’s
fixed point theorem, F admits a fixed point; i.e., Dy P KT : F(y) = y. ⇤

Remark 24.2 If x and y are general valued, the reliance on Arzelà-Ascoli’s theorem re-
quires that the space Y be finitely dimensional or that h(y) is a compact operator.

24.2 Generalized Peano theorem.

Let us now think of how to generalize the above proof with the help of the Young inte-
gral. First, by Lemma 23.8 we cannot expect the function y to be more regular than x,
i.e., y is at best of finite p-variation if x is of finite p-variation. For the Young integral to
exist we then need that h ˝ y is of finite q-variation for some q • 1 with 1/q + 1/p ° 1.
This shows that assuming just continuity for h is then not sufficient; we need more reg-
ularity than that. For this we observe:

Lemma 24.3 Let f P V
p(I) and let h : R Ñ R be a-Hölder on Ran( f ); explicitly, there

exists K • 0 and a P (0, 1] such that

@x, y P Ran( f ) : |h(x) ´ h(y)| § K|x ´ y|
a (24.8)

Then h ˝ f P V
p/a(I) and

}h ˝ f }p/a,I § K} f }
a
p,I (24.9)

Proof. Let s, t P I. Then
ˇ̌
h ˝ f (t) ´ h ˝ f (s)

ˇ̌p/a
§ Kp/a

ˇ̌
f (t) ´ f (s)

ˇ̌p (24.10)

and so
Vp/a(h ˝ f , I, P) § Kp/aVpa( f , I, P) (24.11)

holds for any partition P of I. This shows Vp/a( f , I) § Kp/aVp( f , I). The claim follows
from the definition of the norms. ⇤

An a-Hölder continuous h thus takes function y of finite p-variation and turns it into
a function of finite p/a-variation. We thus seem to need that x is of finite p-variation for
some p • 1 with 1/p + 1/(p/a) = (1 + a)/p ° 1, i.e., p † 1 + a. This is exactly the
regime in which we will prove the result:
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Theorem 24.4 (Generalized Peano’s theorem) Let h : R Ñ R be locally a-Hölder contin-
uous for some a P (0, 1] and let y0 P R and x P V

p([0, t]) for all t ° 0 with some p † 1 + a.
Then there exists T ° 0 and a function y P Vp([0, T]) such that

@t P [0, T] : y(t) = y0 +
ª t

0
h ˝ y dx, (24.12)

where the integral exists thanks to h ˝ y P Vp/a([0, T]) and thanks to 1
p +

a
p1 ° 1.

We start with:

Lemma 24.5 Let p • 1 and suppose K Ñ V
p(I) is bounded in } ¨ }V p(I)-norm and uniformly

equicontinuous. Then
@q ° p : K is precompact in V

q(I) (24.13)

Proof. Let ty(n)unPN P K
N. The boundedness in } ¨ }V p(I)-norm implies boundedness

in the supremum norm. As K is assumed uniformly equcontinuous, the Arzelà-Ascoli
theorem gives existence of a strictly increasing sequence tnkukPN P NN such that y(nk)

converges in supremum norm. But the oscillation bound from Lemma 23.2(4) then gives

}y(nk) ´ y(n`)}V q(I) § }y(nk) ´ y(n`)}
1´p/q
8,I

⇣
1 + }y(nk) ´ y(n`)}

q/p
p,I

⌘
›Ñ

k,`Ñ8
0 (24.14)

proving that ty(nk)ukPN is Cauchy in V
q(I). Hence K has compact closure in V

q(I). ⇤
Proof of Theorem 24.4. We will follow the blueprint of the previous proof. Fix any r ° 0
and abbreviate B(y0, r) := tz P R : |z ´ y0| § ru. Let K be such that

@z, z̃ P B(y0, r) :
ˇ̌
h(z)

ˇ̌
§ ^

ˇ̌
h(z) ´ h(z̃)

ˇ̌
§ K|z ´ z̃|

a (24.15)

Now pick T ° 0 be such that
�
K + Cp,p/aKra

�
}x}p,JT § r (24.16)

where, as before, JT := [0, T]. By Theorem 22.2, the fact that 1
p +

a
p ° 1 implies that F in

(24.3) is well defined for all y P V
p(J).

Assuming }y ´ y0}8,JT § r and }y}p,JT § r, using (24.16) we now get

}F(y) ´ y0}8,JT §

ˇ̌
h(y0)

ˇ̌
}x}p,JT + Cp,p/aK}x}p,J}y}

a
p,JT

§ r (24.17)

and, similarly, for all intervals I Ñ JT,

}F(y)}p,I § }h ˝ y}8,I}x}p,I + Cp,p/aK}x}p,I}y}
a
p,J §

r
}x}p,JT

}x}p,I (24.18)

The function F thus maps

KT :=

$
’’’&

’’’%
y P Vp(J) :

y(0) = y0, }y ´ y0}8,JT § r
}y}p,JT § r,

@I Ñ J : }y}p,I §
r

}x}p,JT

}x}p,I

,
///.

///-
(24.19)

into itself.
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Now pick p1
P (p, 1 + a) and note that, by Lemma 24.5, KT is precompact in V

p1
(JT).

The lower-semicontinuity of the p-variation norms under pointwise convergence then
shows that, in fact, KT is closed and thus compact in V

p1
(I). We thus have to show that F

is continous on KT with respect to } ¨ }p1,JT .
Let ty(n)unPN P K

N
T and y P KT be such that }y(n) ´ y}p1,JT Ñ 0. The fact that y(n)(0) =

y0 = y(0) then gives uniform convergence }y(n) ´ y}8,JT Ñ 0. In light of the Hölder
continuity of h, that also implies the uniform convergence under composition with h,
i.e., }h ˝ y(n) ´ h ˝ y}8,JT Ñ 0. By the fact that

}h ˝ y(n) ´ h ˝ y}p/a,JT § }h ˝ y(n)}p/a,JT + }h ˝ y}p/a,JT

§ K
�
}y(n)}a

p,JT
+ }h ˝ y}

a
p,JT

�
§ 2Kra

(24.20)

the oscillation bound implies

}h ˝ y(n) ´ h ˝ y}p1/a,JT § }h ˝ y(n) ´ h ˝ y}
1´p/p1
8,JT

(2Kra)p1/p
›Ñ
nÑ8 0 (24.21)

As 1
p + a

p1 ° 1, we get }F(y(n)) ´ F(y)}p,I Ñ 0 and thus also }F(y(n)) ´ F(y)}p1,I Ñ 0.
Since F is a continuous function on a compact subset of a Banach space, the Schauder
fixed point theorem implies existence of y P KT such that F(y) = y. ⇤

Note that the above theorems prove existence of a local solution; one has to patch
such local solutions together to obtain a maximal (i.e., not further extendable) solution.
A more significant drawback of Peano’s approach is that there is no uniqueness.
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