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23. FUNCTIONS OF FINITE p-VARIATION

As an application of the Young integral, here we develop tools for proving existence of
solutions to differential equation driven by moderately rough force terms.

23.1 Spaces of finite p-variation.

Young’s criterion of Stieltjes integrability opens up new avenues to prove existence of
solutions to ordinary differential equations of the form

dyt = h(t, yt)dxt + g(t, xt)dt. (23.1)

which we take as a shorthand for the corresponding integral form

yt = y0 +
ª t

0
h(s, ys)dxs +

ª t

0
g(s, xs)ds (23.2)

for y0 denoting the initial value. The function x should be understood as a driving force
that, in general, has no reasons to be smooth. Note that both x and y are generally
normed vector space-valued, with the integral interpreted as in Remark 22.9. By stan-
dard tricks, this allows us to include also higher order differential equations and, quite
conveniently, absorb the second integral into the first.

It turns out that the regularity of the Stietljes integral is, whenever it exists, deter-
mined by the regularity of the driving term. Specifically, for driving force process x such
that Vp(x, [0, t]) † 8, the best we can expect that Vp(y, [0, t]) † 8. Assuming h to be
Lipschitz, this translates into Vp(h(¨, y), [0, t]) † 8 which means that the integral will
make sense as soon as 1

p + 1
p ° 1, i.e., p † 2. The question is whether this is also the

condition under which a solution to above ODE exists. In order to answer that we need
to delve deeper into the theory of spaces of finite p-variation.

We start with some definitions: Given a closed interval I Ñ R, let C(I) denote the
space of continuous functions f : I Ñ R and let C0(I) be the set of functions that vanish
at the left endpoint of I. Given p ° 0, set

V
p(I) :=

 
f P C(I) : Vp( f , I) † 8

(
(23.3)

and let
V

p
0 (I) :=

 
f P C0(I) : Vp( f , I) † 8

(
(23.4)

Clearly, these are linear vector space with respect to pointwise addition and scalar mul-
tiplication. For a function f : I Ñ R, denote

} f }p,I := Vp( f , I)1/p (23.5)

and
} f }V p(I) := sup

tPI

ˇ̌
f (t)

ˇ̌
+ Vp( f , I)1/p (23.6)

We now claim:

Lemma 23.1 Let p • 1. Then the map f fiÑ } f }p,I is non-negative, homogeneous and subad-
ditive. Moreover, } f }p,I = 0 is equivalent to f being constant on I. In particular, } ¨ }p,I is a
norm on V

p
0 (I) and } ¨ }V p(I) is a norm on V

p(I).
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Proof. The homogeneity and non-negativity is immediate from the definition. For sub-
additivity we note that, given any partition P of I, the Minkowski inequality gives

Vp( f + g, I, P)1/p
§ Vp( f , I, P)1/p + Vp(g, I, P)1/p (23.7)

Bounding the right-hand side by the suprema with respect to P yields } f + g}p,I §

} f }p,I + }g}p,I . The approximation using finite partitions also shows that } f }p,I = 0
implies that f is constant.

The first term on the right of (23.6) is the usual supremum norm which is also non-
negative, homogeneous and subadditive. The sum of the two vanishes only if the func-
tion vanishes and so } ¨ }V p(I) is a norm on V

p(I). Noting that a constant function that
vanishes at an endpoint of I vanishes everywhere, } ¨ }p,I itself is a norm on V

p
0 (I). ⇤

Next we observe the following properties of the norm } ¨ }p,I :

Lemma 23.2 Let I Ñ R be a closed bounded interval and let f : I Ñ R be a function. Then
(1) @1 § p † q : } f }p,I • } f }q,I
(2) p fiÑ log Vp( f , I) is convex and continuous on the interior of tp • 1 : Vp( f , I) † 8u

(3) @p • 1 : osc( f , I) § } f }p,I

(4) @1 § p † q : } f }q,I § osc( f , I)1´p/q
} f }

q/p
p,I

Proof. To get (1), recall that
∞n

i=1 xi § (
∞n

i=1 xa
i )

1/a whenever n • 1, x1, . . . , xn • 0
and a P (0, 1]. Then observe that, for any p † q and any partition P of I, this gives
Vq( f , I, P) § Vp( f , I, P)q/p. Taking suprema then shows } f }q,I § } f }q,I .

For (2) we similarly observe that p fiÑ log Vp( f , I, P) is finite whenever f is not con-
stant on the partition points and convex by Hölder’s inequality. As the supremum of any
collection of continuous convex functions is continuous and upper-semicontinuous on
the set it is finite, so is p fiÑ log Vp( f , I). Now recall that a convex function is necessarily
continuous on the interior of its domain.

The bounds (3) and (4) follow from the corresponding bounds for Vq( f , I, P) and
Vp( f , I, P) whose details we leave to the reader. ⇤

Note that (3) above can be supplemented by the limit statement

osc( f , I) = lim
pÑ8 } f }p,I whenever r.h.s. finite (23.8)

which permits us to think of C0(I) as the space V
8
0 (I) with the corresponding norm

played by f fiÑ osc( f , I) which is equivalent to the supremum norm. As a consequence
of the above lemma, we get:

Corollary 23.3 For all bounded closed intervals I Ñ R and all 1 § p † q † 8,

BV(I) = V
1
0 (I) Ñ V

p
0 (I) Ñ V

q
0 (I) Ñ C0(I) (23.9)

with the embeddings continuous with respect to the corresponding norms.

We refer to V
p(I) and V

p
0 (I) as the spaces of finite p-variation. In order to understand

their metric structure better, we note:
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Lemma 23.4 (Lower semicontinuity of } ¨ }p,I) Let f and t fnunPN be functions I Ñ R such
that fn Ñ f pointwise. Then

} f }p,I § lim inf
nÑ8 } fn}p,I (23.10)

Proof. Suppose first that } f }p,I . Given e ° 0 there is a partition P such that Vp( f , I, P) •

} f }
p
p,I ´ e. The pointwise convergence then gives

lim inf
nÑ8 } fn}

p
p,I • lim inf

nÑ8 Vp( fn, I, P) = Vp( f , I, P) • } f }
p
p,I ´ e (23.11)

proving the statement in this case by taking e Ó 0. If instead } f }p,I = 8, then given
any M ° 0 there exists a partition P such that Vp( f , I, P) • M. The same inequality
then shows lim infnÑ8 } fn}p,I • M proving the claim by taking M Ñ 8. ⇤

Hereby we get:

Lemma 23.5 For each bounded closed interval I Ñ R and each p • 1, the normed spaces
(V p(I), } ¨ }V p(I)) and (V p

0 (I), } ¨ }p,I) are Banach spaces.

Proof. Fix p • 1 and let t fnunPN be a Cauchy sequence from V
p
0 (I). This means that

supm,n•N } fn ´ fm}p,I Ñ 0 as N Ñ 8 which by the oscillation bound in Lemma 23.2(3)
implies existence of f (t) := limnÑ8 fn(t) that, by Lemma 23.4 and supnPN } fn}p,I † 8,
obeys f P V

p
0 (I). Invoking Lemma 23.4 one more time, the fact that fn ´ fm Ñ fn ´ f

pointwise as m Ñ 8 shows

} fn ´ f }p,I § lim inf
mÑ8 } fn ´ fm}p,I ›Ñ

nÑ8 0, (23.12)

where the limit on the right follows from the Cauchy property of t fnunPN. It follows
that (V p

0 (I), } ¨ }p,I) is complete and so is a Banach space. The proof for (V p(I), } ¨ }V p(I)) is
analogous except that the presence of the supremum norm gives pointwise convergence
fn Ñ f without the need to call on the oscillation bound in Lemma 23.2(3). ⇤

23.2 Examples.

The reader may wonder at this point whether simple examples of functions exist that
are members of V p(I) for some p ° 1 but not of V q(I) for any q † p. A simple criterion
for containment in V

p(I) is given in:

Lemma 23.6 Suppose that f : I Ñ R is a-Hölder continuous for some a P (0, 1] in the sense
that DK • 0 @t, s P I : | f (t) ´ f (s)| § K|t ´ s|

a. Then f P V
1/a(I) with } f }1/a,I § K|I|

1/a.

Proof. For p := 1/a the Hölder continuity translates to | f (t) ´ f (s)|p
§ Kp

|t ´ s| which
shows that Vp( f , I, P) § Kp

|I| for any partition P of I. Hence } f }1/a,I § K|I|
1/a. ⇤

A deterministic example of a function with non-trivial p-variation is the Weierstrass
function that we write in the form

Wa(t) :=
ÿ

n•0
b´an cos(2pbnt) (23.13)
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where b ° 1 and a ° 0. As it turns out that, for a P (0, 1), the function Wa is uniformly
a-Hölder continuous. To see this, note that | cos(t) ´ cos(s)| § mint2, |t ´ s|u. Denoting
n0 = n0(t, s) := tlogb(1/|t ´ s|)u, a calculation shows

ˇ̌
Wa(t)´Wa(s)

ˇ̌
§

n0ÿ

n=0
b(1´a)n

|t ´ s| + 2
ÿ

n°n0

b´na

§
1

1 ´ b´(1´a)
b(1´a)n0 |t ´ s| +

2
1 ´ b´a

b´a(n0+1)
§ K|t ´ s|

a

(23.14)

for K := 3(1 ´ b´ minta,1´au)´1. It follows that Wa P V1/a(I) for any bounded closed
interval I Ñ R. (The situation for a = 1 is already more complicated.)

To find the optimal p for which Wa P V
p(I) we note the following partial reversal of

the above criterion:

Lemma 23.7 Suppose that f : I Ñ R, a P (0, 1], and c ° 0 are such that the set J of non-
degenrate intervals [s, t] Ñ I for which there exists [s1, t1] Ñ [s, t] with | f (t1)´ f (s1)| • c|t ´ s|

a

has the Cousin property: namely, for each x P I there exists d ° 0 such that all subintervals of I
of length at most d containing x belong to J . Then f R V

p(I) for p † 1/a.

Proof. As is well known from the theory of Henstock-Kurzweil integral, the Cousin prop-
erty ensures existence of a sequence of partitions tPnunPN of I with }Pn} Ñ 0 such that
the intervals of Pn belong to J . Writing Pn = ttiu

mn
i=0, for each i = 1, . . . , mn let [s1

i, t1
i] Ñ

[ti´1, ti] be such that | f (t1
i)´ f (s1

i)| • c|ti ´ ti´1|
a. Adding the points s1

1, t1
1, . . . , s1

n, t1
n to Pn

defines a partition P1
n such that

Vp( f , I, P1
n) • cp

nÿ

i=1

|ti ´ ti´1|
pa

• cp
}Pn}

pa´1
|I|, (23.15)

where we used that |ti ´ ti´1|
pa´1

• }Pn}
pa´1 thanks to pa † 1. The right-hand side

diverges as n Ñ 8. ⇤
Building on the argument from (23.14), the difference Wa(t) ´ Wa(s) equals

b´an02 sin
� 1

2 bn0(t ´ s)
�

sin
� 1

2 bn0(t + s)
�

(23.16)

plus a quantity bounded by Kb´ minta,1´au
|t ´ s|

a. Varying t, s through [x ´ d, x + d] sub-
ject to |t ´ s| = d/p then shows

inf
xPR

lim inf
dÓ0

osc(Wa, [x ´ d, x + d])
da

° 0 (23.17)

once b • b0 for some constant b0 depending on a. This now readily implies that Wa

satisfies the premise of Lemma 23.7 which is enough to conclude that Wa R V
p([0, 2p))

for p † 1/a. We leave the details to the reader.
The above deterministic example is nice because it allows for explicit calculations, but

as probabilists, we are interested in random examples as well. The standard Brownian
motion tBt : t • 0u is a simplest example because, as discussed earlier in this course, it is
not of of finite p-variation on any interval for p ° 2 but not for p § 2. This can in fact be
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iterated to generate more singular examples: Let tBn
t : t • 0u be samples of independent

two-sided standard Brownian motions and define tW(n)
t : t • 0u recursively by

W(1)
t := B(1)

t ^ @n • 1 : W(n+1)
t := W(n)

B(n+1)
t

(23.18)

Then, by a similar reasoning as for the Weierstrass function above, we have W(n)
P V

p(I)
for p ° 2n but not for p § 2n.

Perhaps more natural is the following generalization of the standard Brownian mo-
tion called the Fractional Brownian Motion: Consider a stochastic process tXt : t • 0u that
is multivariate Gaussian with mean zero and covariance given by

Cov(Xt, Xs) =
1
2

⇣
s2H + t2H

´ |t ´ s|
2H

⌘
(23.19)

where H P (0, 1) is a parameter called the Hurst index. (The function on the right
is positive definite and so the process exists by the Kolmogorov Extension Theorem.
For H = 1/2 the right-hand side equals mints, tu and so X is a standard Brownian mo-
tion in this case.) A calculation shows that

Var(Xt ´ Xs) = |t ´ s|
2H (23.20)

and so the process has stationary increments. The same argument as for the standard
Brownian motion shows that X admits a version that is a-Hölder continuous for each a †

H, and so the process is of finite p-variation for all p ° 1/H. A more subtle argument
then shows that it is not of finite p-variation for p § 1/H.

Examples of functions of finite p-variation naturally arise from the Young integral
involving such functions. This is shown in:

Lemma 23.8 Let f P V
p([a, b]) and g P V

q([a, b]) for p, q • 1 with 1/p + 1/q ° 1. Define
h(t) :=

≥t
a gd f for t P [a, b]. Then h P V

p(I) and

}h}p,I § Cp,q }g}V q(I) } f }p,I (23.21)

holds with Cp,q = 1 + z(1/p + 1/q).

Proof. It is well known that the Stieltjes integral of g with respect to f is continuous in
the limits whenever f is continuous. The inequality in Corollary 22.7 shows that, for all
s, t P I with s § t,

ˇ̌
h(t) ´ h(s)

ˇ̌
§ sup

uP[s,t]

ˇ̌
g(u)

ˇ̌ ˇ̌
f (t) ´ f (s)

ˇ̌
+ Cp,qVq�g, [s, t]

�1/q Vp� f , [s, t]
�1/p

§ Cp,q}g}V q(I) Vp� f , [s, t]
�1/p

(23.22)

where we used that Cp,q • 1. For any partition P = ttiu
n
i=0 of I, we thus get

Vp(h, I, P) §
�
Cp,q}g}V q(I)

�p
nÿ

i=1

Vp� f , [ti´1, ti]
�

(23.23)

The sum on the right is bounded by Vp( f , I) which then gives the claim. ⇤
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23.3 Invariance under reparametrization.

Unlike Hölder continuity, the concept of p-variation has the following property:

Lemma 23.9 (Invariance under reparametrization) Let j : I Ñ I be continuous, strictly
increasing and bijective. Then for all p • 1 and all f : I Ñ R,

Vp( f ˝ j, I) = Vp( f , I) (23.24)

In particular, f P V
p(I) is equivalent to f ˝ j P V

p(I) and } f ˝ j}p,I = } f }p,I .

Proof. The properties of j ensure that j maps the endpoints of I onto themselves.
Let P = ttiu

n
i=0 be a partition of I. Then P1 := tj(ti)un

i=0 is a partition as well and
Vp( f ˝ j, I, P) = Vp( f , I, P1). This readily implies Vp( f , ˝j, I) • Vp( f , I). The opposite
inequality follows from the fact that j is invertible. ⇤

The above allows us to make the link with Hölder continuity even more tight. First
observe that the p-variation of a continuous function is continuous:

Lemma 23.10 Let a † b and p • 1 be reals. Given f : [a, b] Ñ R such that Vp( f , [a, b]) † 8,
let v f : [a, b] Ñ R+ be defined by v f (t) := Vp([a, t]) for t ° a and v f (a) := 0. Then v f obeys

@a § s † t § b : Vp� f , [s, t]
�

§ v f (t) ´ v f (s) (23.25)

and, in particular, v f is non-decreasing. Moreover,

f P C[a, b] ô v f P C[a, b] (23.26)

We leave the proof of this to homework. The quantity v f can actually be used to
control the regularity of f . Indeed, the definition implies that, for all t, s P I with s § t,

v f (t) ´ v f (s) • Vp� f , [s, t]
�

•

ˇ̌
f (t) ´ f (s)

ˇ̌p (23.27)

Using that we now get:

Lemma 23.11 Let p • 1 and f P V
p(I) be such that f is not constant on any non-degenerate

closed subinterval of I. Then there exists a continuous bijection j : I Ñ I such that f ˝ j is
1/p-Hölder continuous. In fact,

@t, s P I :
ˇ̌
f ˝ j(t) ´ f ˝ j(s)

ˇ̌
§

⇣Vp( f , I)
|I|

⌘1/p
|t ´ s|

1/p (23.28)

Proof. Write I = [a, b] and let j : [a, b] Ñ [a, b] be the inverse of the continuous, strictly
increasing bijection t fiÑ a + b´a

Vp( f ,[a,b])v f (t) of [a, b] onto itself. Then for all a § s † t § b,

ˇ̌
f ˝ j(t) ´ f ˝ j(s)

ˇ̌p
§ v f ˝ j(t) ´ v f ˝ j(s) =

Vp( f , [a, b])
b ´ a

(t ´ s) (23.29)

which now implies the claim. ⇤
Note that the resulting constant in the Hölder estimate (23.28) depends only on the

norm } f }p,I . In particular, the constant is uniform over bounded subsets of V p(I).
The invariance under reparametrization has one negative consequence: Unlike C(I),

the spaces V p(I) for p P [1, 8) are not separable. This is easiest to see for p = 1 where for
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each finite Borel measure µ on [a, b], the function fµ(t) := µ([a, t]) belongs to V
1([a, b]).

Given two such measures µ and n, we have } fµ ´ fn}1,[a,b] = |µ ´ n|([a, b]) which, if µ
and n are mutually singular, equals µ([a, b]) + n([a, b]). Now we just need to find an
uncountable family of mutually singular Borel probability supported in [a, b], a task that
we will leave to the reader.
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