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22. YOUNG INTEGRAL

We will now finally ready to move to the most recent developments in stochastic anal-
ysis. This will require introduction of T. Lyons’ theory of rough paths from 1998 which
in turn extends the theory of so called Young integral, developed by L.C. Young in the
1930s, that we will start with here. Both theories are concerned with integrals of the
form

≥b
a f dg whose treatment dates back to T.J. Stieltjes in 1890s.

22.1 Stieltjes integral.

The Young integral is actually a code word for a criterion for Stieltjes integrability. We
recall the following concepts: Given two reals a † b, a marked partition is the pair
P = (ttiu

n
i=0, tt‹

i u
n
i=1u) such that

t0 = a † t1 † ¨ ¨ ¨ † tn = b (22.1)

and
@i = 1, . . . , n : t‹

i P [ti´1, ti] (22.2)
Given a marked partition P as above and functions f , g : [a, b] Ñ R,

S( f , g, P) :=
nÿ

i=1

f (t‹
i )
⇥
g(ti) ´ g(ti´1)

⇤
(22.3)

then denotes the associated Riemann-Stieltjes sum. We will write

}P} := max
i=1,...,n

|ti ´ ti´1| (22.4)

for the mesh of the partition P. Now recall:

Definition 22.1 (Stieltjes integrability) We say that f is Stietljes integrable with respect
to g on [a, b] if there exists L P R and, for any e ° 0, there exists d ° 0 such that for all
marked partitions P of [a, b],

}P} † d ñ

ˇ̌
S( f , g, P) ´ L

ˇ̌
† e (22.5)

The (necessarily unique) L with this property is then denoted
≥b

a f dg and called the
Riemann-Stieltjes integral of f with respect to g on [a, b].

A standard criterion for Stieltjes integrability is that f is continuous and g is finite first
variation (a.k.a. bounded variation). However, the concept as stated above is symmetric:
f is Riemann-Stieltjes integrable with respect to g if and only if g is Riemann-Stieltjes
integrable with respect to f . Hence, we get integrability also for g continuous and f of
bounded variation.

This “swap” suggests that one can trade increased regularity of one function for de-
creased regularity of the other. As discovered by L.C. Young, the correct way to ex-
pressed this trade-off is using the p-variation. For a given partition P = tt0 = a † t1 †

¨ ¨ ¨ † tn = bu of [a, b], this is defined by

Vp( f , [a, b], P) :=
nÿ

i=1

ˇ̌
f (ti) ´ f (ti´1)

ˇ̌p (22.6)
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We then set
Vp( f , [a, b]) := sup

P
Vp( f , [a, b], P) (22.7)

and say that f is of finite p-variation if Vp( f ) † 8. (To prevent later confusion, note
that P fiÑ Vp( f , [a, b], P) is monotone under refinements of the partition only for p § 1,
which is the less interesting regime.) We then have:

Theorem 22.2 (L.C. Young’s criterion for Stieltjes integrability) Let a † b be reals and
let f , g : [a, b] Ñ R be functions with no common discontinuity points. Assume there exist
reals p, q • 1 with

1
p
+

1
q

° 1 (22.8)

such that
Vp( f , [a, b]) † 8 ^ Vq(g, [a, b]) † 8. (22.9)

Then f is Riemann-Stieltjes integrable with respect to g on [a, b].

Note that this formally interpolates between the case of f continuous (p = 8) and g
of bounded variation (q = 1) and the case of g continuous (q = 8) and f bounded
variation (p = 1). The boundary case 1/p + 1/q = 1 is excluded because the conclusion
actually fails in that case. This is easiest to see when p = q = 2 because then for any
partition P = ttiu

n
i=0 of [a, b] and with P1 denoting the marked partition with t‹

i := ti
and P2 the marked partition with t‹

i := ti´1, we have

S( f , f , P1) ´ S( f , f , P2) = V2( f , [a, b], P) (22.10)

The Riemann-Stieltjes integrability of f with respect to f fails whenever V2( f , [a, b], P)
does not vanish as }P} Ñ 0.

22.2 The Love-Young inequality.

Theorem 22.2 appears in L.C. Young’s paper “An inequality of Hölder type, connected
with Stieltjes integration” published in Acta Mathematica in 1936. A key step is the
following inequality for which he credits (with a different derivation) R.E. Love who
studied it “at [his] suggestion.” (R.E. Love, sometimes misquoted as Loeve in this con-
text, went on to a successful career at University of Melbourne. He seems to have no
joint paper with L.C. Young despite an announcement of one in the paper above.)

Lemma 22.3 (Love-Young inequality) Let a † b be reals and f , g : [a, b] Ñ R functions.
Let p, q ° 0 obey 1/p + 1/q ° 1. Then for any n • 1, any marked partition (ttiu

n
i=0, tt‹

i u
n
i=1)

of [a, b] and any t‹
P [a, b],

ˇ̌
ˇ̌ f (t‹)

⇥
g(b) ´ g(a)

⇤
´

nÿ

i=1

f (t‹
i )
⇥
g(ti) ´ g(ti´1)

⇤ˇ̌ˇ̌

§

⇣
1 + zn

�
1/p + 1/q)

⌘
Vp� f , [a, b])1/p Vq�g, [a, b]

�1/q,

(22.11)

where zn(s) :=
∞n´1

k=1 k´s.
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As in L.C. Young’s paper, we start by the following simple observation:

Lemma 22.4 For all reals p, q ° 0, an integer n • 1 and reals a1, . . . , an, b1, . . . , bn • 0,

min
i=1,...,n

aibi §

⇣ nπ

i=1

ap
i

⌘ 1
np
⇣ nπ

i=1

bq
i

⌘ 1
nq

§

✓
1
n

nÿ

i=1

ap
i

◆1/p✓ 1
n

nÿ

i=1

bq
i

◆1/q

(22.12)

Proof. The first inequality is immediate and the second one follows by the so called
AMGM inequality (a1 . . . an)1/n

§
1
n (a1 + ¨ ¨ ¨ + an) which is readily proved from the

concavity of the logarithm function. ⇤
This now gives:

Proof of Lemma 22.3. We will prove this by induction in the number of points of the
partition. The initial (n = 1) step is simple:

ˇ̌
ˇ f (t‹)

⇥
g(b) ´ g(a)

⇤
´ f (s‹)

⇥
g(b) ´ g(a)

⇤ˇ̌
ˇ

§

ˇ̌
f (t‹) ´ f (s‹)

ˇ̌ˇ̌
g(b) ´ g(a)

ˇ̌
§ Vp� f , [a, b])1/p Vq�g, [a, b]

�1/q
(22.13)

For the induction step, let us assume that the bound holds for partitions into n ´ 1 in-
tervals and consider a marked partition (ttiu

n
i=0, tt‹

i u
n
i=1) of [a, b] into n intervals. Given

any k = 1, . . . , n ´ 1, let (tsiu
n´1
i=0 , ts‹

i u
n´1
i=1 ) be defined by

(si, s‹
i ) :=

#
(ti, t‹

i ), if i † k,
(ti+1, t‹

i+1), if i • k,
(22.14)

with s0 := 0. This “new” partition simply leaves out the point tk, combines [tk´1, tk]
and [tk, tk+1] into one interval and puts t‹

k+1 as its marked point. Consequently we get

n´1ÿ

i=1

f (s‹
i )
⇥
g(si) ´ g(si´1)

⇤
´

nÿ

i=1

f (t‹
i )
⇥
g(ti) ´ g(ti´1)

⇤

= f (t‹
k+1)

⇥
g(tk+1) ´ g(tk´1)

⇤

´ f (t‹
k)
⇥
g(tk) ´ g(tk´1)

⇤
´ f (t‹

k+1)
⇥
g(tk+1) ´ g(tk)

⇤

=
⇥

f (t‹
k+1) ´ f (t‹

k)
⇤⇥

g(tk) ´ g(tk´1)
⇤

(22.15)

With (22.12) in sight, this now suggests to pick k as the index minimizing the absolute
value of the product. The inequality (22.12) then shows

ˇ̌
ˇ̌

n´1ÿ

i=1

f (s‹
i )
⇥
g(si) ´ g(si´1)

⇤
´

nÿ

i=1

f (t‹
i )
⇥
g(ti) ´ g(ti´1)

⇤ˇ̌ˇ̌

§ (n ´ 1)´1/p´1/q Vp� f , [a, b], P‹)1/p Vq�g, [a, b], P)1/q

(22.16)

where we first noted that k can take only n ´ 1 values and then bounded the sums of
differences of f ’s and g’s arising from (22.12) in terms of variations for the unmarked
partitions P = ttiu

n
i=0 and P‹ := tt‹

i u
n+1
i=0 in which t‹

0 := a and t‹
n+1 := b.
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Bounding the variations by their suprema and invoking the induction assumption
that reads

ˇ̌
ˇ̌ f (t‹)

⇥
g(b) ´ g(a)

⇤
´

n´1ÿ

i=1

f (s‹
i )
⇥
g(si) ´ g(si´1)

⇤ˇ̌ˇ̌

§

⇣
1 + zn´1

�
1/p + 1/q)

⌘
Vp� f , [a, b])1/p Vq�g, [a, b]

�1/q
(22.17)

we get (22.11) using the triangle inequality for the absolute value along with the fact that
zn(s) = zn´1(s) + (n ´ 1)´s. ⇤

22.3 Proof of Theorem 22.2.

We will now move to the proof of Young’s criterion for Stieltjes integrability. In order to
deal with an estimate in the forthcoming proof, we first note:

Lemma 22.5 Let f , g : [a, b] Ñ R be such that Vp( f , [a, b]) † 8 and Vq(g, [a, b]) † 8 for
some p, q • 1 and denote, for a partition P = tt0 = a † t1 † ¨ ¨ ¨ † tn = bu of [a, b],

O( f , g, P) := max
i=1,...,n

✓
osc

�
f , [ti´1, ti]

�
osc

�
g, [ti´1, ti]

�◆
. (22.18)

Then both f and g have only discontinuities of the first kind and, if f and g have no common
discontinuities, then for each e ° 0 there is d ° 0 such that

}P} † d ñ O( f , g, P) † e. (22.19)

Proof (sketch). The existence of finite variations implies that both f and g are bounded
and have only discontinuities of the first kind. Assume there is a sequence tPnunPN of
partitions with mesh tending to zero yet O( f , g, Pn) • e for all n P N. Writing xn for the
left end-point in the maximizing interval, compactness of [a, b] implies that txnunPN has
at least one accumulation point x P [a, b]. But, in light of boundedness of f and g, both f
and g have a discontinuity at x, contradicting our assumption. ⇤

We also note the following fact:

Lemma 22.6 (Extended Hölder inequality) For all p1, q1
• 1 with 1/p1 + 1/q1

• 1, all
n • 1 and all a1, . . . , an, b1, . . . , bn • 0,

nÿ

i=1

aibi §

✓ nÿ

i=1

ap1
i

◆1/p1✓ nÿ

i=1

bq1
i

◆1/q1

(22.20)

Proof. By continuity we may assume that p1, q1
° 1. Denote by p2 := (1 ´ 1/q1)´1 the

Hölder conjugate of q1. Then the standard Hölder inequality gives
nÿ

i=1

aibi §

✓ nÿ

i=1

ap2
i

◆1/p2✓ nÿ

i=1

bq1
i

◆1/q1

. (22.21)

Denoting a := p1/p2
† 1, the concavity of x fiÑ xa implies subadditivity (x + y)a

§

xa + ya for all x, y • 0 and, by iteration, (
∞n

i=1 xi)a
§

∞n
i=1 xa

i for all x1, . . . , xn • 0.
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Using this for xi := ap2
i for which xa

i = ap1
i now bounds the right-hand side of (22.21) by

that of (22.20). (Incidentally, L.C. Young derives (22.20) directly from (22.12).) ⇤
We are now ready to show:

Proof of Theorem 22.2. First use that 1/p + 1/q ° 1 to infer existence of p1
° p and q1

° q
such that 1/p1 + 1/q1

° 1 and p1/p = q1/q. Next let P and P1 be marked partitions
such that every interval of P is a union of intervals from P1. (The marked points in
the two partitions can be completely unrelated.) Denoting C := 1 + z(1/p1 + 1/q1)
where z(s) :=

∞
n•1 n´s is the Riemann zeta function, Lemma 22.3 gives

ˇ̌
S( f , g, P) ´ S( f , g, P1)

ˇ̌
§ C

nÿ

i=1

Vp1�
f , [ti´1, ti]

�1/p1
Vq1�

g, [ti´1, ti]
�1/q1

(22.22)

where t0 = a † t1 † ¨ ¨ ¨ † tn = b are the partition points of P. Noting that

Vp1�
f , [ti´1, ti]

�
§ osc

�
f , [ti´1, ti]

�p1´p Vp� f , [ti´1, ti]
�

(22.23)

we then use (22.20) to bound
nÿ

i=1

Vp1�
f , [ti´1, ti]

�1/p1
Vq1�

g, [ti´1, ti]
�1/q1

§ O( f , g, P)1´p/p1
✓ nÿ

i=1

Vp� f , [ti´1, ti]
�◆1/p1✓ nÿ

i=1

Vq�q, [ti´1, ti]
�◆1/q1 (22.24)

where we used that 1 ´ q/q1 = 1 ´ p/p1. The definition of the p-variation gives
nÿ

i=1

Vp� f , [ti´1, ti]
�

§ Vp� f , [a, b]
�

(22.25)

with a similar bound for the second sum on the right of (22.24). Lemma 22.5 thus bounds
the difference in (22.22) by a constant times e1´p/p1 once }P} † d.

Iterating (22.22) we get a similar observation with P1 any partition with }P1
} † d.

Using a standard reasoning it follows that f is Riemann-Stieltjes integrable with respect
to g on [a, b], as desired. ⇤

Preliminary version (subject to change anytime!) Typeset: May 29, 2024


