
5 MATH 285K notes

2. QUADRATIC VARIATION

The goal of this section is to give a construction of a fundamental processes associated
with continuous martingales — their quadratic variation.

2.1 Statement and uniqueness.

Examples of continuous martingales are easy to give once we have defined the standard
Brownian motion tBt : t • 0u. This is a continuous process with independent increments
such that Bt ´ Bs = N (0, t ´ s) and B0 = 0. Then tBt : t • 0u is a martingale but
tB2

t : t • 0u is only a submartingale; i.e., a process with “upward trend.” However, the
process tB2

t ´ t : t • 0u is again a martingale.
As it turns out, the same argument applies to a large class of continuous submartin-

gales leading to well known Doob-Meyer decomposition. We will only state and prove this
for submartingales that arise as squares of continuous martingales. In fact, we only need
to assume local versions of these notions:

Theorem 2.1 Let tMt : t • 0u be a continuous local martingale with respect to filtration
tFtut•0 such that F0 contains all P-null sets. Then there exists an adapted, continuous, non-
decreasing process txMyt : t • 0u such that xMy0 = 0 and

 
M2

t ´ xMyt : t • 0
(

is a local martingale (2.1)

Any two processes with all these properties are indistinguishable.

Let us start with the proof of uniqueness which also enters part of the existence argu-
ment. This relies on:

Lemma 2.2 Let tMt : t • 0u be a continuous local martingale whose a.e. sample path is of
bounded variation on [0, t]. Then

P
�@s § t : Ms = M0

�
= 1 (2.2)

Proof. Given t • 0, p ° 0 and a partition P of [0, t] with partition points 0 = t0 † t1 †
¨ ¨ ¨ † tn = t, denote

V(p)
t (M, P) :=

nÿ

i=1

|Mti ´ Mti´1 |p (2.3)

The first variation of M on [0, t] is then given as V(1)
t (M) := supP V(1)

t (M, P). Since M
is continuous, so is t fiÑ V(1)

t (M). We can thus define the stopping time

tn := inf
 

t • 0 : |Mt| • n ^ V(1)
t (M) • n

(
(2.4)

and observe that, by continuity and elementary facts about first variation, the stopped
local martingale ÄM := Mtn^t is a martingale that is bounded |ÄMt| § n and has bounded
variation V(1)

t (ÄM) § n at all t • 0.
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For each s § t and any partition P of [0, s], the martingale property now shows

E
�|ÄMs ´ ÄM0|2� = E

�
V(2)

s (ÄM, P)
� § E

⇣
oscÄM

�
[0, t], }P}�V(1)

s (ÄM, P)
⌘

§ E
⇣

oscÄM
�
[0, t], }P}�V(1)

s (ÄM)
⌘

§ nE
⇣

oscÄM
�
[0, t], }P}�

⌘ (2.5)

By continuity and boundedness of ÄM, the right-hand side tends to zero as }P} Ñ 0 with
the help of the Bounded Convergence Theorem. This gives P(Ms^tn = M0) = 1 for
each s P [0, 1] and, taking countable unions,

@n • 1 : P
�@s P Q X [0, t ^ tn] : Ms = M0

�
= 1. (2.6)

The assumed continuity allows us to drop the restriction to rational Q. Since tn Ñ 8
a.s. as n Ñ 8 (implied by continuity and the assumption that M is of bounded variation
on [0, t] a.s.), we get (2.2) as desired. ⇤

We note that continuity is essential for the statement as the example of a compensated
homogeneous Poisson process (which is a discontinuous martingale with bounded vari-
ation) shows.
Proof of uniqueness in Theorem 2.1. Suppose X is a continuous process and A, A1 are
adapted non-decreasing continuous processes such that both tXt ´ At : t • 0u and tXt ´
A1

t : t • 0u are local martingales. Then also tAt ´ A1
t : t • 0u is a local martingale whose

every path is of bounded variation on [0, t], for all t • 0. Hence At ´ A1
t = A0 ´ A1

0 for
all t • 0, a.s. In particular, if also A0 = A1

0, then the processes tAt : t • 0u and tA1
t : t • 0u

are indistinguishable. (The claim corresponds to Xt := M2
t .) ⇤

2.2 Key lemmas.

The proof of existence is based on some pretty heavy estimates that we stated in two
lemmas. The starting point is the following bound:

Lemma 2.3 Let t • 0 and let M be a continuous martingale such that, for some K • 0, we
have supt•0 |Mt| § K a.s. Then for any two partitions P and rP of [0, t] with } rP} § }P},

E
✓ˇ̌

ˇV(2)
t (M, rP) ´ V(2)

t (M, P)
ˇ̌
ˇ
2
◆

§ 112 K2


E
⇣

oscM
�
[0, t], }P}�4

⌘�1/2

(2.7)

Proof. Suppose first that rP is a subpartition of P. Specifically, let P have partition points
0 := t1,0 † t2,0 † ¨ ¨ ¨ † tn+1,0 = t and rP has points

0 := t1,0 † ¨ ¨ ¨ † t1,m1 = t2,0 † ¨ ¨ ¨ † tn´1,mn´1 = tn,0 † ¨ ¨ ¨ † tn,mn = tn+1,0 = t (2.8)

Denoting Zi,j := Mti,j ´ Mti,j´1 we get

V(2)
t (M, rP) =

nÿ

i=1

miÿ

j=1

Z2
i,j (2.9)
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while

V(2)
t (M, P) =

nÿ

i=1

✓ miÿ

j=1

Zi,j

◆2

(2.10)

Hence

V(2)
t (M, P) ´ V(2)

t (M, rP) = 2
nÿ

i=1

ÿ

1§j†j1§mi

Zi,jZi,j1 (2.11)

Next we want to square the expression and take expectation. This leads to the sum
of expectations of the form E(Zi,jZi,j1 Zi1,kZi1,k1), where j † j1 and k † k1. (These are
meaningful because M and thus the Z’s are bounded.) A key observation is that, thanks
to the Z’s being martingale increments, this expectation vanishes unless k = j1 and i = i1.
The expectation on the left of (2.7) thus equals

4
nÿ

i=1

ÿ

1†j1§mi

ÿ

1§j,k†j1
E(Zi,jZi,kZ2

i,j1)

= 4
nÿ

i=1

miÿ

j1=2

E
�
(Mti,j1´1

´ Mti,0)
2(Mti,j1 ´ Mti,j1´1

)2�
(2.12)

We can now bound the first difference on the right by the oscillation oscM([0, t], }P})
and resum the rest. This bounds the expression by

4E
⇣

oscM
�
[0, t], }P}�2V(2)

t (M, rP)
⌘

. (2.13)

We now invoke the Cauchy-Schwarz inequality which leads us to bound the second
moment of V(2)

t (M, rP). Here we relabel the points of rP as 0 = s0 † ¨ ¨ ¨ † sr = t as write

E
�
V(2)

t (M, P)2� = E
�
V(4)

t (M, P)2�+ 2
rÿ

i=1

E
�
(Msi ´ Msi´1)

2(Mt ´ Msi)
2�

§ 4K2E
�
V(2)

t (M, P)2�+ 8K2E
�
V(2)

t (M, P)2�

= 12K2E
�
(Mt ´ M0)

2� § 48K4 § (7K2)2

(2.14)

Plugging this above we get the claim with 28 instead of 112 assuming rP is a refinement
of P. Considering a common refinement of the two partitions and relating each partition
to that using the triangle inequality, this then implies the claim as stated. ⇤

From this we get:

Lemma 2.4 Assume that F0 contains all P-null sets. Under the assumptions of Lemma 2.3,
there exists a non-decreasing continuous adapted process txMyt : t • 0u with xMy0 = 0 such
that for any t • 0 and any sequence tPnun•0 of partitions of [0, t],

}Pn} Ñ 0 ñ V2
t (M, Pn)

L2
›Ñ
nÑ8 xMyt. (2.15)

Moreover, E(xMyt) § 4K2 holds for all t • 0.
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Proof. We start with some general considerations. Let 0 § u § s § t. The fact that M is a
martingale then implies

E
�
(Mt ´ Mu)

2 ˇ̌
Fs

�
= (Ms ´ Mu)

2 + E
�
(Mt ´ Ms)

2 ˇ̌
Fs

�
. (2.16)

It follows that if P is a partition of [0, t] and 0 § s § t, then

E
�
V(2)

t (M, P)
ˇ̌
Fs

�
= V(2)

s (M, P1) + E
�
(Mt ´ Ms)

2 ˇ̌
Fs

�
, (2.17)

where P1 is the restriction of P to [0, s] obtained by inserting s into P and removing all
intervals not included in [0, s]. For any partition P of R+ and with P1 standing for its
restriction to [0, s], set

AP
s := V(2)

s (M, P1). (2.18)
For any two partitions P and rP of R+ and any 0 § s § t we have

AP
s ´ A rP

s = E
�

AP
t ´ A rP

t
ˇ̌
Fs

�
(2.19)

proving that  
AP

s ´ A rP
s : s • 0

(
is a martingale w.r.t. tFsus•0 (2.20)

Moreover, continuity of M implies that s fiÑ AP
s ´ A rP

s is actually continuous as well.
Let P and rP be two partitions of R+. In light of (2.20) and continuity, Doob’s L2-

maximal inequality (1.13) gives

E
⇣

sup
s§t

|AP
s ´ A rP

s |2
⌘

§ 4E
�|AP

t ´ A rP
t |2�. (2.21)

The right-hand side is bounded using (2.7). Let tPnun•0 be a sequence of partitions
of R+ such that n Ñ }Pn} is non-increasing and

E
⇣

oscM
�
[0, n], }Pn}�4

⌘
§ 64´n (2.22)

(This is possible because the E(oscM
�
[0, n], d

�4
) Ñ 0 tends to zero as d Ñ 0 by the

Bounded Convergence Theorem.) The Chebyshev inequality then gives

P
⇣

sup
t§n

|AP
t ´ A rP

t | ° 2´n
⌘

§ 4 ¨ 112 K22´n (2.23)

Denoting
W‹ := W r

!
sup
t§n

|AP
t ´ A rP

t | ° 2´n i.o.
)

(2.24)

Borel-Cantelli lemma gives P(W‹) = 1 and

@t • 0 : At := lim
nÑ8 APn

t exists on W‹ (2.25)

with the limit locally uniform. On W r W‹, we set At := 0 for t • 0. Since AP is
continuous, the fact that the limit is uniform implies that A is continuous.

The inequality (2.7) shows that V(2)
t (M, Pn) Ñ At in probability and L2 for any se-

quence tPnun•0 of partitions of [0, t] with }Pn} Ñ 0. The bound E(At) § 4K2 follows
from

E
�
V(2)

t (M, P)
�
= E

�
(Mt ´ M0)

2� § 4K2 (2.26)
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and Fatou’s lemma. Since F0 contains all P-null sets, the construction implies that the
process A is adapted. For a partition P of [0, t] containing s, we also have

AP
t ´ AP

s = V(2)
t (M, P) ´ V(2)

s (M, P1) • 0 (2.27)

It follows that, for s § t we have As § At a.s. Denoting W0 :=
ì

s,tPQ,s†ttAs § Atu, for
each t • 0 we now set

xMyt :=

#
At, on W0,
0, else.

(2.28)

Then xMy is continuous and non-decreasing on rationals and so non-decreasing every-
where. Since P(W0) = 1, the process is xMy also adapted and (2.15) remains in force. ⇤

2.3 Proof of existence.

Equipped with above observations, we are now ready to give:
Proof of Theorem 2.1, existence. Let us first assume that tMt : t • 0u is a bounded mar-
tingale, meaning there exists K • 0 such that supt•0 |Mt| § K a.s. Let txMyt : t • 0u
be the process constructed in Lemma 2.4. Then for each 0 § s § t and any partition P
containing s,

E(M2
t |Fs) ´ M2

s = E
�
(Mt ´ Ms)

2 ˇ̌
Fs

�
= E

⇣
V(2)

t (M, P) ´ V(2)
s (M, P1)

ˇ̌
ˇFs

⌘
(2.29)

where P1 is the restriction of P to [0, s]. Taking tPnun•0 with }Pn} Ñ 0, the convergence
from Corollary 2.4 shows

E(M2
t |Fs) ´ M2

s = E
�xMyt ´ xMys

ˇ̌
Fs

�
(2.30)

which using that xMy is adapted shows that tM2
t ´ xMyt : t • 0u is a martingale.

Next assume only that tMt : t • 0u is a local martingale. Define

tK := inftt • 0 : |Mt| • Ku (2.31)

and let xMy(K) be the unique non-decreasing, continuous and adapted process with
xMy(K)0 = 0 such that tM2

tK^t ´ xMy(K)t : t • 0u is a martingale. Then for L • K, the
process txMy(K)tK^t ´ xMy(L)

tK^t : t • 0u is a continuous martingale of bounded variation,
implying that it is constant a.s. by Lemma 2.2. Denote

W0 := ttK Ñ 8u X
£

L•K

 
@t P [0, tK] : xMy(K)t = xMy(L)

t
(

(2.32)

and observe that limKÑ8xMy(K)t exists on W0 due to the fact that the sequence is constant
once tK • t. We may thus define

xMyt :=

#
limKÑ8xMy(K)t , on W0,
0, else,

(2.33)

and observe that xMy is non-decreasing and continuous with xMy0 = 0.
Since tn Ñ 8 a.s. by continuity of M, the above observations imply that P(W0) = 1

and so xMy is also adapted. The fact that xMytK^t = xMy(K)t for all t • 0 on W0 now
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shows that tM2
tK^t ´ xMytK^t : t • 0u a martingale for each K • 1. Using tK Ñ 8 a.s. we

conclude that tM2
t ´ xMyt : t • 0u is a local martingale, as desired. ⇤

Here are some examples of quadratic variation processes. For M being the standard
Brownian motion B, we have xByt = t. Since the Brownian motion is a Gaussian process
that has all moments, we conclude that tB2

t ´ t : t • 0u is martingale. For the quadratic
variation of this martingale, recall that for Mt :=

≥t
0 YsdBs we get xMyt =

≥t
0 Y2

s ds. Hence
xB2 ´ idyt = 4

≥t
0 B2

s ds. Yet another class of examples arises by taking a deterministic
continuous strictly increasing function f : R+ Ñ R+ and noting that tBf(t) : t • 0u is a
continuous martingale with xBfyt = f(t). The point of this example is that neither the
martingale nor the quadratic variation process may arise from integrals (which would
be the case here only if f is an AC function).

Further reading: Chapter 1 of Karatzas-Shreve

Preliminary version (subject to change anytime!) Typeset: April 12, 2024


