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2. QUADRATIC VARIATION

The goal of this section is to give a construction of a fundamental processes associated
with continuous martingales — their quadratic variation.

2.1 Statement and uniqueness.

Examples of continuous martingales are easy to give once we have defined the standard
Brownian motion {B;: t > 0}. This is a continuous process with independent increments
such that B — B; = N(0,t —s) and By = 0. Then {B;: t > 0} is a martingale but
{B%: t > 0} is only a submartingale; i.e., a process with “upward trend.” However, the
process {B? — t: t > 0} is again a martingale.

As it turns out, the same argument applies to a large class of continuous submartin-
gales leading to well known Doob-Meyer decomposition. We will only state and prove this
for submartingales that arise as squares of continuous martingales. In fact, we only need
to assume local versions of these notions:

Theorem 2.1 Let {M;: t > 0} be a continuous local martingale with respect to filtration
{Fi}i=0 such that Fy contains all P-null sets. Then there exists an adapted, continuous, non-
decreasing process {{My;: t = 0} such that (M) = 0 and

{Mt2 — (M);: t > 0} is a local martingale (2.1)

Any two processes with all these properties are indistinguishable.

Let us start with the proof of uniqueness which also enters part of the existence argu-
ment. This relies on:

Lemma 2.2 Let {M;: t > 0} be a continuous local martingale whose a.e. sample path is of
bounded variation on [0, t|. Then

P(Vs <t: My = M) =1 (2.2)

Proof. Givent > 0, p > 0 and a partition IT of [0, t] with partition points 0 =ty < #; <
- < t, = t, denote

v (ML) = Y My, — My, ) (2.3)

The first variation of M on [0, t] is then given as Vt(l) (M) := supy; Vt(l) (M,II). Since M

is continuous, so is t — Vt(l) (M). We can thus define the stopping time
=inf{t > 0: |My| = n A V(M) > n} (2.4)

and observe that, by continuity and elementary facts about first variation, the stopped
local martingale M = Mz, A+ is a martingale that is bounded |Mt| n and has bounded
variation Vt( )(M) <natallt>0.
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For each s < t and any partition IT of [0, s], the martingale property now shows

E(|M, — MyP) = E(V (M, 11)) < E(osc~([0 1, i) v (M 1)) -
< E(osegy ([0, 1) V" (D)) < nE (oscgs (0,1, 1))

By continuity and boundedness of M, the right-hand side tends to zero as |I1| — 0 with
the help of the Bounded Convergence Theorem. This gives P(M;s.r, = Mp) = 1 for
each s € [0,1] and, taking countable unions,

Vn=1: P(Vs€e Qn [0t A Ty): My = My) = 1. (2.6)

The assumed continuity allows us to drop the restriction to rational Q. Since 7, — ©
a.s.asn — oo (implied by continuity and the assumption that M is of bounded variation
on [0,t] a.s.), we get (2.2) as desired. O

We note that continuity is essential for the statement as the example of a compensated
homogeneous Poisson process (which is a discontinuous martingale with bounded vari-
ation) shows.

Proof of uniqueness in Theorem 2.1. Suppose X is a continuous process and A, A’ are
adapted non-decreasing continuous processes such that both {X; — A;: t > 0} and {X; —
Aj: t > 0} are local martingales. Then also {A; — A}: t > 0} is a local martingale whose
every path is of bounded variation on [0, t], for all # > 0. Hence A; — A} = Ay — A[ for
allt > 0, a.s. In particular, if also Ag = Aj, then the processes {A;: t > 0} and {A}: t > 0}
are indistinguishable. (The claim corresponds to X; := M?.) g

2.2 Key lemmas.

The proof of existence is based on some pretty heavy estimates that we stated in two
lemmas. The starting point is the following bound:

Lemma 2.3 Let t > 0 and let M be a continuous martingale such that, for some K > 0, we
have sup,-, [M;| < K a.s. Then for any two partitions IT and T1 of [0, t] with |TT|| < |IT],

1/2
E (‘V}Z)(M,ﬁ) v (M, H)‘z) <112 K> [E (oscM([O, f], \H\)4>] 2.7)

Proof. Suppose first that [Tisa subpartition of I. Specifically, let IT have partition points
0:=t10 <tro<:--<tyy10 =t and IThas points

Oi=to< - <tym =to< - <bptm_, =to < <tbpm, =tnt10=1 (2.8)

Denoting Z; ; :== M;,, — My, , we get

n m;

=7 (2.9)

i=1j=1
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while
n mj 2
Vt(Z) (M,II) = Z ( Z Zi,j> (2.10)
Hence
n
Vt(Z)(M’ IT) — Vt(z)(M, ﬁ) =2 Z Z Zi,jZi,j’ (2.11)

i=11<j<j/'<m;

Next we want to square the expression and take expectation. This leads to the sum
of expectations of the form E(Z;;Z; ZyxZy ), where j < j' and k < kK'. (These are
meaningful because M and thus the Z’s are bounded.) A key observation is that, thanks
to the Z’s being martingale increments, this expectation vanishes unless k = j' and i = 7'.
The expectation on the left of (2.7) thus equals

n
4> > > E(ZijZixZiy)
i=11<j'<m; 1<) k<j’

(2.12)

n m;
- 42 Z E((Mfz;j'—l - Mti,o)z(Mfi,j/ - Mti,j’—l)z)
i=1=2

We can now bound the first difference on the right by the oscillation oscy ([0, ¢], | TI])
and resum the rest. This bounds the expression by

AE (oscM ([0, £], |T1)) V2 (M, ﬁ)). (2.13)

We now invoke the Cauchy-Schwarz inequality which leads us to bound the second
moment of Vt(z) (M, ﬁ) Here we relabel the points of [Tas0=sy < --- <S5, = tas write

E(V2 (M 11)%) = E(V\Y (M, 11)?) + 2§ E((M;, — My, )2(M; — M,)?)
i=1

2.14
< 4K2E(V,? (M, T1)?) 4 8K*E (V¥ (M, T1)?) 219

= 12K?E((M; — My)?) < 48K* < (7K?)?
Plugging this above we get the claim with 28 instead of 112 assuming ITis a refinement

of I'l. Considering a common refinement of the two partitions and relating each partition
to that using the triangle inequality, this then implies the claim as stated. g

From this we get:

Lemma 2.4 Assume that Fo contains all P-null sets. Under the assumptions of Lemma 2.3,
there exists a non-decreasing continuous adapted process {{M)i: t = 0} with (M)y = 0 such
that for any t > 0 and any sequence {I1,},=0 of partitions of [0, t],

2
Tl -0 = VtZ(M/ IT,) nLjo)o (M. (2.15)
Moreover, E((M);) < 4K? holds for all t > 0.
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Proof. We start with some general considerations. Let 0 < u < s < t. The fact that M is a
martingale then implies

E((M;— My)* | Fs) = (Ms — My)* + E((M — M;)? | Fs). (2.16)
It follows that if IT is a partition of [0,¢] and 0 < s < ¢, then
E(VP (M) | F) = VI (M,IT) + E((M; — M,)? | ), (2.17)

where IT is the restriction of IT to [0, s] obtained by inserting s into I'T and removing all
intervals not included in [0, s]. For any partition IT of R and with IT standing for its
restriction to [0, s], set

A= v (M, 1T). (2.18)
For any two partitions I'T and ITof R, and any 0 < s < t we have
AT AT E(AT - Al ) (2.19)
proving that
{A' = Al s > 0} is a martingale w.r.t. {F}s>0 (2.20)

Moreover, continuity of M implies that s — Al — ASr~I is actually continuous as well.
Let IT and IT be two partitions of R;. In light of (2.20) and continuity, Doob’s L?-
maximal inequality (1.13) gives
E(sup Al - A} < 4E(jA} - AlTP). (2.21)
s<t
The right-hand side is bounded using (2.7). Let {I1,},>0 be a sequence of partitions
of R} such that n — ||I1,| is non-increasing and

E(oscM([O, 1, HHnH)4> <647 (2.22)

(This is possible because the E (OSCM([O,n],5)4) — 0 tends to zero as 6 — 0 by the
Bounded Convergence Theorem.) The Chebyshev inequality then gives

P(sup AT ATl > 2‘”) <4-112K%27" (2.23)
t<n
Denoting
O =0~ {sup AT Al = o i.o.} (2.24)
t<n

Borel-Cantelli lemma gives P(Q)*) = 1 and

Vi>0: A;:= lim AtH” exists on O* (2.25)
n—oo

with the limit locally uniform. On Q \ )%, we set A; := 0 for t > 0. Since Al i

continuous, the fact that the limit is uniform implies that A is continuous.

The inequality (2.7) shows that Vt(z) (M,I1,) — Ay in probability and L? for any se-
quence {I1,},>o of partitions of [0, t] with |IT,| — 0. The bound E(A;) < 4K? follows
from

E(V® (M,IT)) = E((M; — Mp)?) < 4K (2.26)
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and Fatou’s lemma. Since F( contains all P-null sets, the construction implies that the
process A is adapted. For a partition IT of [0, f| containing s, we also have

Al Al — v (M, 1) - VP (M, TT) = 0 (2.27)

It follows that, for s < t we have A; < At a.s. Denoting Qg 1= () ;cqs<t1As < At}, for
each t > 0 we now set

(M) = {At’ on (o, (2.28)

0, else.

Then (M) is continuous and non-decreasing on rationals and so non-decreasing every-
where. Since P(Q)) = 1, the process is (M) also adapted and (2.15) remains in force. [

2.3 Proof of existence.

Equipped with above observations, we are now ready to give:

Proof of Theorem 2.1, existence. Let us first assume that {M;: t > 0} is a bounded mar-
tingale, meaning there exists K > 0 such that sup,_, [M;| < K a.s. Let {{(M);: t > 0}
be the process constructed in Lemma 2.4. Then for each 0 < s < t and any partition IT
containing s,

E(M?|F;) — M2 = E((M; — My)?|Fs) = E(Vt(z)(M,H) ~v¥(Mm,11)

fs> (2.29)

where IT is the restriction of IT to [0, s]. Taking {I1,},>0 with |[I,|| — 0, the convergence
from Corollary 2.4 shows
E(MF|F5) = Mg = E((Mpy = (M), | F) (230)
which using that (M) is adapted shows that {M? — (M);: t > 0} is a martingale.
Next assume only that {M;: t > 0} is a local martingale. Define
Tx = inf{t > 0: |[M;| > K} (2.31)
and let (M)K) be the unique non-decreasing, continuous and adapted process with
<M>(()K) = 0 such that {M%KM - <M>§K): t > 0} is a martingale. Then for L > K, the

process {<M>(TIK<)M - <M>(r?m3 t > 0} is a continuous martingale of bounded variation,
implying that it is constant a.s. by Lemma 2.2. Denote

Qo = {1x —> 0} N ﬂ {vte 0,7« <M>§K) _ <M>§L)} (2.32)
L>K

and observe that limK_,oo<M>§K) exists on (g due to the fact that the sequence is constant
once Tk > t. We may thus define

limKH@<M>£K), on (),

2.33
0, else, 233

<M>t = {

and observe that (M) is non-decreasing and continuous with (M)y = 0.
Since T, — o a.s. by continuity of M, the above observations imply that P(Q)) = 1

and so (M) is also adapted. The fact that (M) ¢+ = <M>§K) forall t = 0 on Oy now
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shows that {MZ_,; —(M)yA¢: t > 0} a martingale for each K > 1. Using tx — o a.s. we
conclude that {Mt2 — (M);: t = 0} is a local martingale, as desired. O

Here are some examples of quadratic variation processes. For M being the standard
Brownian motion B, we have (B); = t. Since the Brownian motion is a Gaussian process
that has all moments, we conclude that {B? —t: t > 0} is martingale. For the quadratic
variation of this martingale, recall that for M; := Sé Y;dBs we get (M) = S(t) des. Hence
(B? —id); = 4 S(t) B2ds. Yet another class of examples arises by taking a deterministic
continuous strictly increasing function ¢: Ry — R, and noting that {By): t > 0} is a
continuous martingale with (By); = ¢(t). The point of this example is that neither the
martingale nor the quadratic variation process may arise from integrals (which would
be the case here only if ¢ is an AC function).

Further reading: Chapter 1 of Karatzas-Shreve
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