2. QUADRATIC VARIATION

The goal of this section is to give a construction of a fundamental processes associated with continuous martingales — their quadratic variation.

2.1 Statement and uniqueness.

Examples of continuous martingales are easy to give once we have defined the standard Brownian motion $\{B_t : t \ge 0\}$. This is a continuous process with independent increments such that $B_t - B_s = \mathcal{N}(0, t - s)$ and $B_0 = 0$. Then $\{B_t : t \ge 0\}$ is a martingale but $\{B_t^2 : t \ge 0\}$ is only a submartingale; i.e., a process with "upward trend." However, the process $\{B_t^2 - t : t \ge 0\}$ is again a martingale.

As it turns out, the same argument applies to a large class of continuous submartingales leading to well known *Doob-Meyer decomposition*. We will only state and prove this for submartingales that arise as squares of continuous martingales. In fact, we only need to assume local versions of these notions:

Theorem 2.1 Let $\{M_t: t \ge 0\}$ be a continuous local martingale with respect to filtration $\{\mathcal{F}_t\}_{t\ge 0}$ such that \mathcal{F}_0 contains all P-null sets. Then there exists an adapted, continuous, nondecreasing process $\{\langle M \rangle_t: t \ge 0\}$ such that $\langle M \rangle_0 = 0$ and

$$\{M_t^2 - \langle M \rangle_t \colon t \ge 0\} \text{ is a local martingale}$$
(2.1)

Any two processes with all these properties are indistinguishable.

Let us start with the proof of uniqueness which also enters part of the existence argument. This relies on:

Lemma 2.2 Let $\{M_t: t \ge 0\}$ be a continuous local martingale whose a.e. sample path is of bounded variation on [0, t]. Then

$$P(\forall s \leqslant t \colon M_s = M_0) = 1 \tag{2.2}$$

Proof. Given $t \ge 0$, p > 0 and a partition Π of [0, t] with partition points $0 = t_0 < t_1 < \cdots < t_n = t$, denote

$$V_t^{(p)}(M,\Pi) := \sum_{i=1}^n |M_{t_i} - M_{t_{i-1}}|^p$$
(2.3)

The first variation of M on [0, t] is then given as $V_t^{(1)}(M) := \sup_{\Pi} V_t^{(1)}(M, \Pi)$. Since M is continuous, so is $t \mapsto V_t^{(1)}(M)$. We can thus define the stopping time

$$\tau_n := \inf\{t \ge 0 \colon |M_t| \ge n \land V_t^{(1)}(M) \ge n\}$$
(2.4)

and observe that, by continuity and elementary facts about first variation, the stopped local martingale $\widetilde{M} := M_{\tau_n \wedge t}$ is a martingale that is bounded $|\widetilde{M}_t| \leq n$ and has bounded variation $V_t^{(1)}(\widetilde{M}) \leq n$ at all $t \geq 0$.

Preliminary version (subject to change anytime!)

For each $s \leq t$ and any partition Π of [0, s], the martingale property now shows

$$E(|\widetilde{M}_{s} - \widetilde{M}_{0}|^{2}) = E(V_{s}^{(2)}(\widetilde{M}, \Pi)) \leq E\left(\operatorname{osc}_{\widetilde{M}}([0, t], \|\Pi\|) V_{s}^{(1)}(\widetilde{M}, \Pi)\right)$$

$$\leq E\left(\operatorname{osc}_{\widetilde{M}}([0, t], \|\Pi\|) V_{s}^{(1)}(\widetilde{M})\right) \leq nE\left(\operatorname{osc}_{\widetilde{M}}([0, t], \|\Pi\|)\right)$$
(2.5)

By continuity and boundedness of \widetilde{M} , the right-hand side tends to zero as $\|\Pi\| \to 0$ with the help of the Bounded Convergence Theorem. This gives $P(M_{s \wedge \tau_n} = M_0) = 1$ for each $s \in [0, 1]$ and, taking countable unions,

$$\forall n \ge 1: \ P(\forall s \in \mathbb{Q} \cap [0, t \wedge \tau_n]: M_s = M_0) = 1.$$
(2.6)

The assumed continuity allows us to drop the restriction to rational \mathbb{Q} . Since $\tau_n \to \infty$ a.s. as $n \to \infty$ (implied by continuity and the assumption that *M* is of bounded variation on [0, t] a.s.), we get (2.2) as desired.

We note that continuity is essential for the statement as the example of a compensated homogeneous Poisson process (which is a discontinuous martingale with bounded variation) shows.

Proof of uniqueness in Theorem 2.1. Suppose *X* is a continuous process and *A*, *A'* are adapted non-decreasing continuous processes such that both $\{X_t - A_t : t \ge 0\}$ and $\{X_t - A'_t : t \ge 0\}$ are local martingales. Then also $\{A_t - A'_t : t \ge 0\}$ is a local martingale whose every path is of bounded variation on [0, t], for all $t \ge 0$. Hence $A_t - A'_t = A_0 - A'_0$ for all $t \ge 0$, a.s. In particular, if also $A_0 = A'_0$, then the processes $\{A_t : t \ge 0\}$ and $\{A'_t : t \ge 0\}$ are indistinguishable. (The claim corresponds to $X_t := M_t^2$.)

2.2 Key lemmas.

The proof of existence is based on some pretty heavy estimates that we stated in two lemmas. The starting point is the following bound:

Lemma 2.3 Let $t \ge 0$ and let M be a continuous martingale such that, for some $K \ge 0$, we have $\sup_{t\ge 0} |M_t| \le K$ a.s. Then for any two partitions Π and $\widetilde{\Pi}$ of [0, t] with $\|\widetilde{\Pi}\| \le \|\Pi\|$,

$$E\left(\left|V_{t}^{(2)}(M,\widetilde{\Pi}) - V_{t}^{(2)}(M,\Pi)\right|^{2}\right) \leq 112 K^{2} \left[E\left(\operatorname{osc}_{M}\left([0,t], \|\Pi\|\right)^{4}\right)\right]^{1/2}$$
(2.7)

Proof. Suppose first that Π is a subpartition of Π . Specifically, let Π have partition points $0 := t_{1,0} < t_{2,0} < \cdots < t_{n+1,0} = t$ and Π has points

$$0 := t_{1,0} < \dots < t_{1,m_1} = t_{2,0} < \dots < t_{n-1,m_{n-1}} = t_{n,0} < \dots < t_{n,m_n} = t_{n+1,0} = t$$
(2.8)

Denoting $Z_{i,j} := M_{t_{i,j}} - M_{t_{i,j-1}}$ we get

$$V_t^{(2)}(M, \tilde{\Pi}) = \sum_{i=1}^n \sum_{j=1}^{m_i} Z_{i,j}^2$$
(2.9)

Preliminary version (subject to change anytime!)

Typeset: April 12, 2024

while

$$V_t^{(2)}(M,\Pi) = \sum_{i=1}^n \left(\sum_{j=1}^{m_i} Z_{i,j}\right)^2$$
(2.10)

Hence

ท

$$V_t^{(2)}(M,\Pi) - V_t^{(2)}(M,\widetilde{\Pi}) = 2\sum_{i=1}^n \sum_{1 \le j < j' \le m_i} Z_{i,j} Z_{i,j'}$$
(2.11)

Next we want to square the expression and take expectation. This leads to the sum of expectations of the form $E(Z_{i,j}Z_{i,j'}Z_{i',k}Z_{i',k'})$, where j < j' and k < k'. (These are meaningful because *M* and thus the *Z*'s are bounded.) A key observation is that, thanks to the *Z*'s being martingale increments, this expectation vanishes unless k = j' and i = i'. The expectation on the left of (2.7) thus equals

$$4\sum_{i=1}^{n}\sum_{1< j' \leqslant m_{i}}\sum_{1 \leqslant j,k < j'} E(Z_{i,j}Z_{i,k}Z_{i,j'}^{2})$$

$$= 4\sum_{i=1}^{n}\sum_{j'=2}^{m_{i}} E((M_{t_{i,j'-1}} - M_{t_{i,0}})^{2}(M_{t_{i,j'}} - M_{t_{i,j'-1}})^{2})$$
(2.12)

We can now bound the first difference on the right by the oscillation $osc_M([0, t], ||\Pi||)$ and resum the rest. This bounds the expression by

$$4E\Big(\operatorname{osc}_{M}([0,t],\|\Pi\|)^{2}V_{t}^{(2)}(M,\widetilde{\Pi})\Big).$$
(2.13)

We now invoke the Cauchy-Schwarz inequality which leads us to bound the second moment of $V_t^{(2)}(M, \tilde{\Pi})$. Here we relabel the points of $\tilde{\Pi}$ as $0 = s_0 < \cdots < s_r = t$ as write

$$E(V_t^{(2)}(M,\Pi)^2) = E(V_t^{(4)}(M,\Pi)^2) + 2\sum_{i=1}^r E((M_{s_i} - M_{s_{i-1}})^2(M_t - M_{s_i})^2)$$

$$\leq 4K^2 E(V_t^{(2)}(M,\Pi)^2) + 8K^2 E(V_t^{(2)}(M,\Pi)^2)$$

$$= 12K^2 E((M_t - M_0)^2) \leq 48K^4 \leq (7K^2)^2$$
(2.14)

Plugging this above we get the claim with 28 instead of 112 assuming Π is a refinement of Π . Considering a common refinement of the two partitions and relating each partition to that using the triangle inequality, this then implies the claim as stated.

From this we get:

Lemma 2.4 Assume that \mathcal{F}_0 contains all P-null sets. Under the assumptions of Lemma 2.3, there exists a non-decreasing continuous adapted process $\{\langle M \rangle_t : t \ge 0\}$ with $\langle M \rangle_0 = 0$ such that for any $t \ge 0$ and any sequence $\{\Pi_n\}_{n\ge 0}$ of partitions of [0, t],

$$\|\Pi_n\| \to 0 \quad \Rightarrow \quad V_t^2(M, \Pi_n) \xrightarrow[n \to \infty]{L^2} \langle M \rangle_t. \tag{2.15}$$

Moreover, $E(\langle M \rangle_t) \leq 4K^2$ holds for all $t \geq 0$.

Preliminary version (subject to change anytime!)

Typeset: April 12, 2024

MATH 285K notes

Proof. We start with some general considerations. Let $0 \le u \le s \le t$. The fact that *M* is a martingale then implies

$$E((M_t - M_u)^2 | \mathcal{F}_s) = (M_s - M_u)^2 + E((M_t - M_s)^2 | \mathcal{F}_s).$$
(2.16)

It follows that if Π is a partition of [0, t] and $0 \le s \le t$, then

$$E(V_t^{(2)}(M,\Pi) | \mathcal{F}_s) = V_s^{(2)}(M,\Pi') + E((M_t - M_s)^2 | \mathcal{F}_s),$$
(2.17)

where Π' is the restriction of Π to [0, s] obtained by inserting *s* into Π and removing all intervals not included in [0, s]. For any partition Π of \mathbb{R}_+ and with Π' standing for its restriction to [0, s], set

$$A_s^{\Pi} := V_s^{(2)}(M, \Pi').$$
(2.18)

For any two partitions Π and $\widetilde{\Pi}$ of \mathbb{R}_+ and any $0 \leq s \leq t$ we have

$$A_s^{\Pi} - A_s^{\Pi} = E\left(A_t^{\Pi} - A_t^{\Pi} \,\middle|\, \mathcal{F}_s\right) \tag{2.19}$$

proving that

$$\{A_s^{\Pi} - A_s^{\Pi} : s \ge 0\} \text{ is a martingale w.r.t. } \{\mathcal{F}_s\}_{s \ge 0}$$
(2.20)

Moreover, continuity of *M* implies that $s \mapsto A_s^{\Pi} - A_s^{\Pi}$ is actually continuous as well.

Let Π and $\widetilde{\Pi}$ be two partitions of \mathbb{R}_+ . In light of (2.20) and continuity, Doob's L^2 -maximal inequality (1.13) gives

$$E\left(\sup_{s\leqslant t}|A_s^{\Pi}-A_s^{\widetilde{\Pi}}|^2\right)\leqslant 4E\left(|A_t^{\Pi}-A_t^{\widetilde{\Pi}}|^2\right).$$
(2.21)

The right-hand side is bounded using (2.7). Let $\{\Pi_n\}_{n\geq 0}$ be a sequence of partitions of \mathbb{R}_+ such that $n \to ||\Pi_n||$ is non-increasing and

$$E\left(\operatorname{osc}_{M}([0,n], \|\Pi_{n}\|)^{4}\right) \leq 64^{-n}$$
(2.22)

(This is possible because the $E(\operatorname{osc}_M([0,n],\delta)^4) \to 0$ tends to zero as $\delta \to 0$ by the Bounded Convergence Theorem.) The Chebyshev inequality then gives

$$P\left(\sup_{t\leqslant n}|A_t^{\Pi} - A_t^{\widetilde{\Pi}}| > 2^{-n}\right) \leqslant 4 \cdot 112 \, K^2 2^{-n} \tag{2.23}$$

Denoting

$$\Omega^{\star} := \Omega \setminus \left\{ \sup_{t \leq n} |A_t^{\Pi} - A_t^{\widetilde{\Pi}}| > 2^{-n} \text{ i.o.} \right\}$$
(2.24)

Borel-Cantelli lemma gives $P(\Omega^*) = 1$ and

$$\forall t \ge 0: \ A_t := \lim_{n \to \infty} A_t^{\Pi_n} \text{ exists on } \Omega^*$$
(2.25)

with the limit locally uniform. On $\Omega \setminus \Omega^*$, we set $A_t := 0$ for $t \ge 0$. Since A^{Π} is continuous, the fact that the limit is uniform implies that A is continuous.

The inequality (2.7) shows that $V_t^{(2)}(M, \Pi_n) \to A_t$ in probability and L^2 for any sequence $\{\Pi_n\}_{n\geq 0}$ of partitions of [0, t] with $\|\Pi_n\| \to 0$. The bound $E(A_t) \leq 4K^2$ follows from

$$E(V_t^{(2)}(M,\Pi)) = E((M_t - M_0)^2) \le 4K^2$$
(2.26)

Preliminary version (subject to change anytime!)

Typeset: April 12, 2024

and Fatou's lemma. Since \mathcal{F}_0 contains all *P*-null sets, the construction implies that the process *A* is adapted. For a partition Π of [0, t] containing *s*, we also have

$$A_t^{\Pi} - A_s^{\Pi} = V_t^{(2)}(M, \Pi) - V_s^{(2)}(M, \Pi') \ge 0$$
(2.27)

It follows that, for $s \leq t$ we have $A_s \leq A_t$ a.s. Denoting $\Omega_0 := \bigcap_{s,t \in Q, s < t} \{A_s \leq A_t\}$, for each $t \geq 0$ we now set

$$\langle M \rangle_t := \begin{cases} A_t, & \text{on } \Omega_0, \\ 0, & \text{else.} \end{cases}$$
(2.28)

Then $\langle M \rangle$ is continuous and non-decreasing on rationals and so non-decreasing everywhere. Since $P(\Omega_0) = 1$, the process is $\langle M \rangle$ also adapted and (2.15) remains in force.

2.3 Proof of existence.

Equipped with above observations, we are now ready to give:

Proof of Theorem 2.1, *existence*. Let us first assume that $\{M_t: t \ge 0\}$ is a bounded martingale, meaning there exists $K \ge 0$ such that $\sup_{t\ge 0} |M_t| \le K$ a.s. Let $\{\langle M \rangle_t: t \ge 0\}$ be the process constructed in Lemma 2.4. Then for each $0 \le s \le t$ and any partition Π containing *s*,

$$E(M_t^2|\mathcal{F}_s) - M_s^2 = E((M_t - M_s)^2|\mathcal{F}_s) = E(V_t^{(2)}(M,\Pi) - V_s^{(2)}(M,\Pi') | \mathcal{F}_s)$$
(2.29)

where Π' is the restriction of Π to [0, s]. Taking $\{\Pi_n\}_{n \ge 0}$ with $\|\Pi_n\| \to 0$, the convergence from Corollary 2.4 shows

$$E(M_t^2|\mathcal{F}_s) - M_s^2 = E(\langle M \rangle_t - \langle M \rangle_s | \mathcal{F}_s)$$
(2.30)

which using that $\langle M \rangle$ is adapted shows that $\{M_t^2 - \langle M \rangle_t \colon t \ge 0\}$ is a martingale.

Next assume only that $\{M_t : t \ge 0\}$ is a local martingale. Define

$$\tau_K := \inf\{t \ge 0 \colon |M_t| \ge K\}$$
(2.31)

and let $\langle M \rangle^{(K)}$ be the unique non-decreasing, continuous and adapted process with $\langle M \rangle_0^{(K)} = 0$ such that $\{M_{\tau_K \wedge t}^2 - \langle M \rangle_t^{(K)} : t \ge 0\}$ is a martingale. Then for $L \ge K$, the process $\{\langle M \rangle_{\tau_K \wedge t}^{(K)} - \langle M \rangle_{\tau_K \wedge t}^{(L)} : t \ge 0\}$ is a continuous martingale of bounded variation, implying that it is constant a.s. by Lemma 2.2. Denote

$$\Omega_0 := \{\tau_K \to \infty\} \cap \bigcap_{L \ge K} \{\forall t \in [0, \tau_K] : \langle M \rangle_t^{(K)} = \langle M \rangle_t^{(L)} \}$$
(2.32)

and observe that $\lim_{K\to\infty} \langle M \rangle_t^{(K)}$ exists on Ω_0 due to the fact that the sequence is constant once $\tau_K \ge t$. We may thus define

$$\langle M \rangle_t := \begin{cases} \lim_{K \to \infty} \langle M \rangle_t^{(K)}, & \text{on } \Omega_0, \\ 0, & \text{else,} \end{cases}$$
(2.33)

and observe that $\langle M \rangle$ is non-decreasing and continuous with $\langle M \rangle_0 = 0$.

Since $\tau_n \to \infty$ a.s. by continuity of M, the above observations imply that $P(\Omega_0) = 1$ and so $\langle M \rangle$ is also adapted. The fact that $\langle M \rangle_{\tau_K \wedge t} = \langle M \rangle_t^{(K)}$ for all $t \ge 0$ on Ω_0 now

Preliminary version (subject to change anytime!)

shows that $\{M^2_{\tau_K \wedge t} - \langle M \rangle_{\tau_K \wedge t} : t \ge 0\}$ a martingale for each $K \ge 1$. Using $\tau_K \to \infty$ a.s. we conclude that $\{M^2_t - \langle M \rangle_t : t \ge 0\}$ is a local martingale, as desired.

Here are some examples of quadratic variation processes. For M being the standard Brownian motion B, we have $\langle B \rangle_t = t$. Since the Brownian motion is a Gaussian process that has all moments, we conclude that $\{B_t^2 - t : t \ge 0\}$ is martingale. For the quadratic variation of this martingale, recall that for $M_t := \int_0^t Y_s dB_s$ we get $\langle M \rangle_t = \int_0^t Y_s^2 ds$. Hence $\langle B^2 - id \rangle_t = 4 \int_0^t B_s^2 ds$. Yet another class of examples arises by taking a deterministic continuous strictly increasing function $\phi : \mathbb{R}_+ \to \mathbb{R}_+$ and noting that $\{B_{\phi(t)} : t \ge 0\}$ is a continuous martingale with $\langle B_{\phi} \rangle_t = \phi(t)$. The point of this example is that neither the martingale nor the quadratic variation process may arise from integrals (which would be the case here only if ϕ is an AC function).

Further reading: Chapter 1 of Karatzas-Shreve