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18. SOLVING THE STOCHASTIC HEAT EQUATION

We will now move to applications of the techniques developed in previous chapters,
starting with an elementary example and then moving to our first rough differential
equation called the Stochastic Heat Equation (SHE). Here is the warm-up example:

18.1 A warm-up example.

Let B be the standard Brownian motion started from zero. Consider the SDE

dXt = XtdBt (18.1)

with initial condition X0 = x0 for some number x0 P R. A strong solution is then a
process adapted to the augmented Brownian filtration t rF B

t
u. Assuming also that X is

square integrable, the Itô chaos decomposition gives

Xt = EXt +
ÿ

n•1

I
(n)
t

( fn) (18.2)

for some functions fn P L
2,loc(Dn). Note that, under the assumption of square integra-

bility, X is a martingale and so
EXt = EX0 = x0 (18.3)

Applying the SDE we then get

Xt = x0 +
ª

t

0
x0 dBs +

ÿ

n•1

I
(n+1)
t

( fn1Dn+1) (18.4)

where
fn1Dn+1(t1, . . . , tn+1) := fn(t1, . . . , tn)1ttn†tn+1u. (18.5)

Comparing this with (18.2), the uniqueness of the Itô decomposition implies

f1 = x0 (18.6)

and
@n • 1 : fn+1 = fn1Dn

(18.7)
Using an elementary induction argument, this shows fn = x01Dn

for each n • 1 and so
Corollary 17.6 shows

Xt = x0

✓
1 +

ÿ

n•1

1
n!

t
n/2

hn(Bt/
?

t)

◆
(18.8)

The calculation (16.13) then allows us to write this as

Xt = x0 eBt´ 1
2 t (18.9)

which is of course readily shown to solve the SDE (18.1).
The point of this example was not to solve the SDE (18.1); indeed, the expansion

method will hardly be better than methods for finding explicit solutions. The real point
is that the expansion is capable of writing a solution to an SDE even if no closed form of
the solution exists or can be found using the known methods.
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18.2 Stochastic heat equation.

In order to demonstrate the power of expansion method, we will use it to solve our first
rough differential equation; namely, the stochastic heat equation (SHE)

$
&

%

Bu

Bt
(t, x) = Du(t, x) + Ẇ(t, x), t ° 0, x P Rd,

u(0, x) = u0(x), x P Rd

(18.10)

where u0 : Rd
Ñ R is the initial condition,

Du(t, x) :=
dÿ

i=1

B
2
u

Bx
2
i

(t, x) (18.11)

is the Laplacian in the x variable and Ẇ(t, x) is (the space-time derivative of) space-time
white noise; i.e., a centered Gaussian process with (formal) covariance structure

Cov
�
Ẇ(t, x), Ẇ(t1, x

1)
�
= d(t ´ t

1)d(x ´ x
1) (18.12)

We are interested in the full-space Cauchy problem; i.e., a solution u : R+ ˆ Rd
Ñ R

subject to only the initial condition u(0, x) = u0(x) but otherwise no a priori restriction
on the behavior as |x| Ñ 8.

The above problem is not really well posed due to the fact that Ẇ(t, x) is not (and
cannot be) defined as a function. In addition, an interpretation of what it means to
“solve” the above equation is necessary. Indeed, interpreting the equation in integral
form does not help either because even

≥
t

0 Ẇ(x, s)ds is a singular object. (The integrals
for different x are independent and equidistributed.)

A mathematically meaningful interpretation of (18.10) relies on the concept of a weak
solution. In the present case this amounts to the following:

Definition 18.1 A process tu(t, x) : t • 0, x P Rd
u is a weak solution to (18.10) if

ª ⇣
´

Bh

Bt
(t, x) ´ Dh(t, x)

⌘
u(t, x)dtdx =

ª
h(t, x)W(dtdx) (18.13)

holds a.s. for each C
2-function h : R+

ˆ Rd
Ñ R with compact support.

Here the expression on the left is obtained by integrating the PDE against h and formally
commuting all the derivatives to h. The expression on the right is the rigorous version
of the integral

≥
h(t, x)Ẇ(t, x)dtdx.

In order to produce a weak solution, we will rely on approximation. Specifically, we
replace the ill-defined term Ẇ by a continuous smoothed-out process Ẇe that obeys

ª
h(t, x)Ẇe(t, x)dt dx

P
›Ñ
eÓ0

ª
h(t, x)W(dtdx). (18.14)

for all h bounded, measurable with compact support. This makes the problem (18.10)
meaningful in the classical sense. In particular, as we will show, the smoothed-out prob-
lem admits a unique solution u

e with sub-Gaussian growth as }x} Ñ 8. We then aim to
prove that u

e converges weakly to some u as e Ó 0. This u will obey (18.13).
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The smoothed-out version of the white noise will be defined using a mollifier j. This
is a continuous function j : R+ ˆ Rd

Ñ [0, 8) with compact support subject to integral
constraint

≥
R+ˆRd j(t, x)dtdx = 1. We will scale space and time by e using

je(t, x) :=
1

ed+1 j
�
e´1

t, e´1
x
�

(18.15)

where the normalization ensures that
≥

R+ˆRd je(t, x)dtdx = 1 remains in force for each
e ° 0. Then we set

Ẇe(t, x) = je ˚ Ẇ(t, x) :=
ª

je(t, x)W(dtdx) (18.16)

where the right-hand side is meaningful due to the fact that je P L
2(R+ ˆ Rd).

Lemma 18.2 Suppose that j is g-Hölder continuous for some g P (0, 1]. Then for all e P (0, 1)
and all g1

P (0, g), the process

 
Ẇe(t, x) : t • 0, x P Zd

(
(18.17)

admits a locally g1
-Hölder continuous version such that for all bounded measurable h : R+ ˆ

Rd
Ñ R with compact support

ª
h(t, x)Ẇe(t, x)dtdx =

ª
h ˚ je dW. (18.18)

In particular, (18.14) holds for all bounded measurable h : R+ ˆ Rd
Ñ R with compact support.

Proof. Suppose j is g-Hölder continuous. For x, x
1

P Rd and t, t
1

• 0, the isometry
underlying the definition of the Paley-Wiener integral gives

E

⇣ˇ̌
Ẇe(t, x) ´ Ẇe(t

1, x
1)

ˇ̌2⌘
=

ª ˇ̌
je(x ´ y, t ´ s) ´ je(x

1
´ y, t

1
´ s)

ˇ̌2ds dy. (18.19)

The Hölder continuity along with the fact that the integrand has compact support im-
plies that the right-hand side is bounded by C(e)(|t ´ t

1
|
2g + }x ´ x

1
}

2g) for some e-
dependent constant C(e). Since Ẇe(t, x) ´ Ẇe(t1, x

1) is centered Gaussian, the fact that
the 2n-th moment of a centered Gaussian is bounded by an n-dependent constant times
n-th power of the variance shows

E

⇣ˇ̌
Ẇe(t, x) ´ Ẇe(t

1, x
1)

ˇ̌2n
⌘

§ Cn(e)
�
|t ´ t

1
|
2ng + }x ´ x

1
}

2ng
�

(18.20)

Writing an := 2ng and bn := 2ng ´ (d + 1), the Kolmogorov-Čenstov Theorem tells
us that Ẇe admits a locally g1-Hölder continuous version for each g1

† bn/an. Since
bn/an Ñ g, we get the first part of the claim.

The second part follows from the following Fubini theorem for mixed Paley-Wiener
and ordinary Lebesgue integral:

Lemma 18.3 Let W be white noise on finite measure space (X ,G, µ) and let (Y ,H, n) be a

finite measure space. Then for all f P L
2(X ˆ Y ,G b H, µ b n) bounded measurable the map
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y fiÑ
≥

f (¨, y)dW admits a measurable version and for all g P L
8(Y ,H, n),

ª
g(y)

✓ª
f (¨, y)dW

◆
n(dy) =

ª ✓ª
f (¨, y)g(y)n(dy)

◆
dW (18.21)

holds a.s. with the integral w.r.t. n on the left converging absolutely a.s.

Leaving the proof of this lemma to homework exercise, we now move the last part of
the claim. Fix a bounded measurable function h : R+ ˆ Rd

Ñ R with compact support.
Then (18.18) along with the Paley-Wiener isometry give

E

✓ˇ̌
ˇ
ª

h(t, x)Ẇe(t, x)dt dx ´

ª
h dW

ˇ̌
ˇ
2
◆

= E

✓ˇ̌
ˇ
ª

h ˚ je(t, x)dW ´

ª
h dW

ˇ̌
ˇ
2
◆
=

ª ˇ̌
h ˚ je(t, x) ´ h(t, x)

ˇ̌2dt dx.
(18.22)

Since h is locally integrable, the Lebesgue differentiation theorem shows h ˚ je Ñ h a.e.
as e Ó 0. The boundedness of h gives uniform boundedness of h ˚ je and if h is supported
in [´n, n]d then h ˚ je is supported in [´n ´ k, n + k] where k is such that j is supported
in [´k, k]d for all e P (0, 1). The right-hand side of (18.22) thus tends to zero as e Ó 0 by
the Bounded Convergence Theorem, proving (18.14). ⇤

18.3 Solving the SHE perturbatively.

With the noise smoothed-out, we now invoke the following general fact:

Lemma 18.4 Let f : R+ ˆ Rd
Ñ R be continuous and let u0 : Rd

Ñ R be continuous such

that, for some h P (0, 2) and all t • 0,

sup
xPRd

log(|u0(x)| _ 1)
1 + }x}h † 8 ^ sup

s§t

sup
xPRd

log(| f (s, x)| _ 1)
1 + }x}h † 8 (18.23)

Denote gt(x) := 1[0,8)(t)(4pt)´d/2e´ }x}2
4t . Then

u(t, x) := gt ˚ u0(x) +
ª

[0,t]ˆRd

gt´s(x ´ y) f (s, y)ds dy (18.24)

is well defined, is of type C
1/C

2
and solves

$
&

%

Bu

Bt
(t, x) = Du(t, x) + f (t, x), t ° 0, x P Rd,

u(0, x) = u0(x), x P Rd.
(18.25)

Moreover, u obeys

sup
s§t

sup
xPRd

log(|u(s, x)| _ 1)
1 + }x}h † 8 (18.26)

for some h P (0, 2) and all t • 0 and the unique function in the class of C
1/C

2
-functions

satisfying (18.25–18.26).
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Proof (key steps). That (18.24) is well defined follows from the subgaussian growth of u0
and f . This allows us to even differentiate under the integrals and check (using that
t, x fiÑ gt(x) is the fundamental solution of the heat equation) that u solves (18.25).

For uniqueness we note that if u is a solution, then (for B the standard Brownian
motion) the Itô formula shows that

Ms := u(t ´ s,
?

2 Bs) +
ª

s

0
f (t ´ r,

?

2 Br)dr (18.27)

is a local martingale. The bound (18.26) now gives that

|Ms| § (1 + t) exp
!

C(t) sup
s§t

(1 + |Bs|
h)

)
(18.28)

for C(t) being the supremum in (18.26) and that on the right of (18.23) which using the
fact that sup

s§t
|Bs| has a Gaussian tail is enough to prove that M is a martingale. But

then Fubini-Tonelli gives

u(t, x) = E
x
M0 = E

x
Mt = E

x
u(0,

?

2 Bt) +
ª

t

0
E

x
�

f (t ´ r,
?

2 Br)
�
dr (18.29)

which by writing the expectation using the probability density of
?

2 Br reduces to the
right-hand side of (18.24). ⇤

In order to apply this to the smoothed-out PDE (18.10), we need:

Lemma 18.5 For all k • 1, all e ° 0 and all t • 0,

sup
s§t

sup
xPRd

|Ẇe(s, x)|

1 + }x}k
† 8 a.s. (18.30)

Proof (sketch). The argument in the proof of existence of a continuous version via the
Kolmogorov-Čenstov Theorem actually shows that max

xP[0,1]d sup
s§t

|Ẇe(s, x)| has all
moments. Since the law of this random variable is invariant under the shifts, the usual
argument shows that s, x fiÑ |Ẇe(s, x)| grows slower than any polynomial. ⇤

Assume that u0 obeys the condition in (18.23). On the event that the inequality (18.30)
holds, Lemma 18.4 shows existence of a unique function u

e : R+ ˆ Rd
Ñ R of type

C
1/C

2, subject to the growth restriction (18.26) and solving
$
&

%

Bu
e

Bt
(t, x) = Du

e(t, x) + Ẇe(t, x), t ° 0, x P Rd,

u
e(0, x) = u0(x), x P Rd.

(18.31)

In light of (18.24) and (18.18), the function also admits the representation

u
e(t, x) = gt ˚ u0(x) +

ª ✓ª
gt´s(x ´ y)je(s ´ r, y ´ z)dsdy

◆
W(drdz). (18.32)

Preliminary version (subject to change anytime!) Typeset: May 13, 2024



91 MATH 285K notes

We will now examine the limit of this expression as e Ó 0. First note that, by the definition
of je and the continuity of t, x fiÑ gt(x), we have

@t ° r ° 0 @x, z P Rd :
ª

gt´s(x ´ y)je(s ´ r, y ´ z)dsdy ›Ñ
eÓ0

gt´r(x ´ z) (18.33)

The right-hand side is singular at a single point; namely, (t, x) = (r, z) where the left-
hand side equals zero while the right-hand size diverges. That being said, what is rele-
vant for (18.32) is L

2-convergence and the question whether the function on the right is
in L

2. Here we observe:

Lemma 18.6 For all t ° 0 and all x P Rd
,

ª
gt´r(x ´ z)2drdz

#
† 8, if d = 1,
= 8, if d • 2.

(18.34)

Proof. The explicit nature of gt gives

ª
gt(x ´ z)2dz =

1
(4pt)d

ª
e´ }x´z}2

2t =
(2pt)d/2

(4pt)d
= (8p)´d/2

t
´d/2 (18.35)

The function t fiÑ t
´d/2 is integrable in d = 1 and non-integrable in d • 2. ⇤

We are now ready to state and prove:

Theorem 18.7 (Solution of SHE in d = 1) Suppose d = 1 and let u0 : Rd
Ñ R be such that

the first inequality in (18.23) holds. Then

u(t, x) := gt ˚ u0(x) +
ª

gt´r(x ´ z)W(drdz) (18.36)

is well defined and admits a continuous version that is a weak solution to (18.10) in the sense

of Definition 18.1. Moreover, any other continuous solution satisfying (18.23) a.s. is equal to u

except on an event of zero probability.

Proof. Suppose d = 1. The existence of the Paley-Wiener integral follows from Lemma 18.6
so the key issue is to prove existence of a continuous version. Denote the integral by
ū(t, x) and observe that tū(t, x) : t • 0, x P Ru is a mean-zero Gaussian process with

Cov
�
ū(t, x), ū(t1, x

1)
�
=

ª
t^t

1

0
dr

ª

R

dzgt´r(x ´ z)gt´r1(x
1
´ z)

=
1

4p

ª
t^t

1

0
dr

ª

R

dz
1

?
t ´ r

?
t1 ´ r

e´ |x´z|2
4(t´r) ´ |x

1´z|2
4(t1´r) .

(18.37)
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For the exponent we get

|x ´ z|
2

t ´ r
+

|x
1
´ z|

2

t1 ´ r

=
⇣ 1

t ´ r
+

1
t1 ´ r

⌘
|z|

2
´ 2
⇣

x

t ´ r
+

x
1

t1 ´ r

⌘
z +

⇣
|x|

2

t ´ r
+

|x
1
|
2

t1 ´ r

⌘

=
⇣ 1

t ´ r
+

1
t1 ´ r

⌘ 
z ´

x

t´r
+ x

1
t1´r

1
t´r

+ 1
t1´r

!2

+
|x ´ x

1
|
2

t + t1 ´ 2r
.

(18.38)

The integral with respect to z is now performed with the result

Cov
�
ū(t, x), ū(t1, x

1)
�
=

1
?

4p

ª
t^t

1

0

1
?

t + t1 ´ 2r
e´ 1

4
|x´x

1|2
t+t1´2r dr

=
1

2
?

4p

ª
t+t

1

|t´t1|

1
?

s
e´ |x´x

1|2
4s ds,

(18.39)

where in the second line we substituted s := t + t
1
´ 2r. This now shows

E
�
|ū(t, x) ´ ū(t1, x)|2

�
=

1
4
?

p

⇣ª 2t

0

ds
?

s
+
ª 2t

1

0

ds
?

s
´ 2

ª
t+t

1

|t´t1|

ds
?

s

⌘

=
1

2
?

p

ª |t´t
1|

0

ds
?

s
+

1
2
?

p

ª
t_t

1

t^t1

ds
?

s
§

1
?

p

ª |t´t
1|

0

ds
?

s
=

2
?

p
|t ´ t

1
|
1/2,

(18.40)

where we used that s fiÑ
1?
s

is decreasing to merge the two integrals into one, as a bound.
A very similar calculation shows

E
�
|ū(t, x) ´ ū(t, x

1)|2
�
=

1
2
?

p

ª 2t

0

1
?

s

⇣
1 ´ e´ |x´x

1|2
4s

⌘
ds

§
1

2
?

p

ª |x´x
1|2

0

ds
?

s
+

1
2

?
p

ª

|x´x1|2
ds

s3/2 |x ´ x
1
|
2 =

2
?

p
|x ´ x

1
|.

(18.41)

This gives that, as far as second moments are concerned, the process behaves as 1/4-
Hölder in time and 1/2-Hölder is space. Being Gaussian, the corresponding bounds
extend to all moments which, following the argument used in Lemma 18.2, proves the
existence of a continuous version that is locally g1-Hölder in t for each g1

† 1/4 and
locally g2-Hölder in x, for each g2

† 1/2.
It remains to prove that u is the unique weak solution. Let h P C

2(R+ ˆ Rd) have
compact support. Then Lemma 18.3 gives
ª ⇣

´
Bh

Bt
(t, x) ´ Dh(t, x)

⌘
u(t, x)dtdx =

ª ⇣
´

Bh

Bt
(t, x) ´ Dh(t, x)

⌘
gt ˚ u0(x)dtdx

+
ª ✓ª ⇣

´
Bh

Bt
(t, x) ´ Dh(t, x)

⌘
gt´s(x ´ y)dtdx

◆
W(dsdy)

(18.42)

The fact that gt is the fundamental solution and thus that t, x fiÑ gt(x) solves the heat
equation implies the first integral on the right vanishes. Commuting the derivatives in
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the inner integral in the second term shows
ª ⇣

´
Bh

Bt
(t, x) ´ Dh(t, x)

⌘
gt´s(x ´ y)dtdx = h(x, y) (18.43)

proving that (18.13) holds. For uniqueness, note that if ũ is another weak solution, then
u ´ ũ is a weak solution to the heat equation with zero initial data. But this is known
to vanish in the class of functions with subgaussian growth using similar arguments as
invoked above. ⇤

The reader may wonder why we have not shown that u
e actually converges to u. This

is true albeit requires computations that we prefer to defer to a homework assignment
at this point. What is perhaps more interesting is the question what happens in d • 2.
Here the following applies:

Theorem 18.8 Let d • 1 and let u
e

is the solution to (18.10) with smoothed-out noise and

initial date subject to (18.23). Then there exists a Gaussian process tXh : h P Cc(R+ ˆ Rd)u
with mean zero and

Cov(Xg, Xh) =
ª

Cd(t, x, t
1, x

1)g(t, x)h(t1, x
1)dtdxdt

1dx
1, (18.44)

where

Cd(t, x, t
1, x

1) :=
1

2(4p)d/2

ª
t+t

1

|t´t1|

1
sd/2 e´ }x´x

1}2
4s ds, (18.45)

such that

@h P Cc(R+ ˆ Rd) :
ª

h(t, x)ue(t, x)dtdx
P

›Ñ
eÓ0

Xh (18.46)

Moreover, h fiÑ Xh is linear.

We leave the proof of this to the reader while noting that (18.45) is a refinement of
(18.39) in d • 2. The limit process is thus no longer a function but rather a linear func-

tional on the space of continuous functions with compact support. (The functional is
actually continuous albeit with respect to a topology that does not permit interpreting it
as a function in d • 2.) To understand the covariances, note that

Cd(t, x, t, x
1) „

#
log }x ´ x

1
}, if d = 2,

}x ´ x
1
}

2´d, if d • 3,
(18.47)

This is the behavior known from a process called Gaussian Free Field. The time-correlations
are actually quite bad already in d = 1 where they lead to a process that is not even 1/4-
Hölder continuous. This is much rougher than anything we have seen so far; indeed, all
diffusions are g-Hölder for g † 1/2. This is our first encounter with limitations of Itô’s
approach to stochastic processes.

Preliminary version (subject to change anytime!) Typeset: May 13, 2024


