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17. ITÔ CHAOS DECOMPOSITION

Here we introduce the iterated Itô integrals as particular form of the higher-order Paley-
Wiener integrals for the white noise associated with the standard Brownian motion.
Then we prove the corresponding form of the chaos expansion.

17.1 Iterated Itô integrals.

An iterated Itô integral is an expression of the form
ª

t

0

⇣ª tn

0

⇣
. . .

⇣ª t2

0
f (t1, . . . , tn)dBt1

⌘
. . .

⌘
dBtn´1

⌘
dBtn

(17.1)

where f : [0, 8)n
Ñ R is a function with suitable integrability properties. To define this

precisely, we start with some notations.
Noting that the integral (17.1) “sees” only the arguments of f where t1 † t2 ¨ ¨ ¨ † tn,

the function really only needs to be defined on the set

Dn :=
 
(t1, . . . , tn) P Rn : 0 § t1 † t2 † ¨ ¨ ¨ † tn

(
(17.2)

We endow Dn with the n-dimensional Lebesgue measure and write L
2,loc(Dn) for the

space of locally square-integrable functions f : Dn Ñ R. For f : Dn Ñ R and t • 0,
let ft : Dn´1 Ñ R denote the function

ft(t1, . . . , tn´1) := 1ttn´1†tu f (t1, . . . , tn´1, t) (17.3)

We will henceforth assume existence of a probability space supporting a Brownian mo-
tion B adapted to the filtration tFtut•0 with F0 containing all P-null sets. Recall also
that VB is the space of adapted, jointly-measurable processes tYs : s • 0u such that
s, w fiÑ Ys(w) is in L

2([0, t] ˆ W) for all t • 0. We then have:

Proposition 17.1 (Iterated Itô integrals) For all n • 1 and all f P L
2,loc(Dn) there exists a

continuous L
2
-martingale tI

(n)
t

( f ) : t • 0u with I
(n)
0 ( f ) = 0 such that

@ f P L
2,loc(D1) @t • 0 : I

(1)
t

( f ) =
ª

t

0
f (s)dBs a.s. (17.4)

and such that for all n • 2 and f P L
2(Dn) there exists Y P VB with the property that

@t • 0 : Yt = I
(n´1)
t

( ft) a.s. (17.5)

and

@t • 0 : I
(n)
t

( f ) =
ª

t

0
Ys dBs a.s. (17.6)

Moreover, for each t • 0, the map f fiÑ I
(n)
t

( f ) obeys

E
�

I
(n)
t

( f )2� =
ª

DnX[0,t]n
f (t1, . . . , tn)

2 dt1 . . . dtn (17.7)

and so defines a linear isometry L
2(Dn X [0, t]n) Ñ L

2(W,F B, P).
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Before we delve into the proof, note that the statements allows us to put
ª

t

0

⇣ª tn

0

⇣
. . .

⇣ª t2

0
f (t1, . . . , tn)dBt1

⌘
. . .

⌘
dBtn´1

⌘
dBtn

:= I
(n)
t

( f ). (17.8)

The conditions (17.5–17.6) express the nesting property of these integrals which is intu-
itive but, since these are not ordinary integrals, has to be handled with care. We state the
nesting this way because we do not want to deal with the regularity of t fiÑ I

(n´1)
t

( f ).
This explanation should be enough for us to get into:
Proof of Proposition 17.1. We proceed as in the construction of the Itô integral. First, let us
call f : Dn Ñ R simple if for some m • n and 0 § s1 † ¨ ¨ ¨ † sm and some collection of
numbers taj1,...,jn : 1 § j1 † j2 † ¨ ¨ ¨ † jn § mu Ñ R,

f (t1, . . . , tn) =
ÿ

1§j1†j2†¨¨¨†jn§m

aj1,...,jn

nπ

k=1

1(sj
k

´1,sj
k
](tk) (17.9)

holds for all (t1, . . . , tn) P Dn. We then define t fiÑ I
(n)
t

( f ) as

I
(n)
t

( f ) :=
ÿ

1§j1†j2†¨¨¨†jn§m

aj1,...,jn

nπ

k=1

�
Bsj

k
^t ´ Bsj

k
´1^t) (17.10)

which requires checking (left to the reader) that the right-hand side does not depend on
the representation of f as above.

Note that for n = 1 this is exactly the definition of the Itô integral of a simple function.
Observe also that, for n • 2, we have

I
(n´1)
t

( ft) =
ÿ

1§j1†j2†¨¨¨†jn§m

aj1,...,jn 1(sjn´1,sjn
](t)

n´1π

k=1

�
Bsj

k
^t ´ Bsj

k
´1^t) (17.11)

which is checked to be adapted and piecewise constant (as a process indexed by t). Set-
ting Yt := I

(n´1)
t

( ft) we observe that Y is simple (i.e., Y P V0) and that (17.6) is in force.
The isometry and the continuous-martingale property are then checked readily as well.

The claim thus holds for f simple so the main piece of work is to extend it to all f P

L
2,loc(Dn). For this we observe:

Lemma 17.2 Simple functions of the form (17.9) are dense in L
2,loc(Dn).

Proof. It suffices to show that if h P L
2(Dn) with compact support is orthogonal to all

simple functions, then h = 0. Given 0 § a1 † b1 § a2 † b2 § ¨ ¨ ¨ § an † bn, the function

f (t1, . . . , tn) :=
nπ

i=1

1(ai ,bi ](ti) (17.12)

is simple. The orthogonality of h to f then shows that the integral of h vanishes on all
sets of the form

ë
n

i=1(ai, bi] for tai, biu
n

i=1 as above. But these sets form a semialgebra
(and thus a p-system) that generates all Borel subsets of Dn. Fix any t • 0. Since the
class of Borel subsets of Dn X [0, t]n on which the integral of h vanishes forms a l-system,

Preliminary version (subject to change anytime!) Typeset: May 9, 2024



MATH 285K notes 82

Dynkin’s p/l-Theorem shows that the integral of h vanishes on all Borel subsets of Dn X

[0, t]n. This implies h = 0 Lebesgue a.e. as desired. ⇤
Continuing the proof of Proposition 17.1, Lemma 17.2 allows us to approximate any

f P L
2,loc(Dn) by a sequence of simple functions t f

(k)
uk•1 so that

} f ´ f
(k)

}
L2,loc(Dn) § 4´k (17.13)

for each k • 1. Noting that (17.7) for n ´ 1 instead of n gives
ª

t

0
E

⇣⇥
I
(n´1)
s ( f

(k+1)
s ) ´ I

(n´1)
s ( f

(k)
s )

⇤2
⌘

ds § } f
(k+1)

´ f
(k)

}
2
L2,loc(Dn)

§ 161´k (17.14)

the Markov inequality shows

P

✓
l
⇣ 

s P [0, t] : |I
(n´1)
s ( f

(k+1)
s ) ´ I

(n´1)
s ( f

(k)
s )| ° 2´k

(⌘
° 2´k

◆
§ 8k161´k (17.15)

Write W‹ for the event that the event that the event in the probability occurs only for
finitely-many k. Setting

Yt := lim sup
kÑ8

I
(n´1)
t

( f
(k)
t

)1tlim sup
kÑ8 I

(n´1)
t

( f
(k)
t

)PRu (17.16)

on W‹ and Yt := 0 on W r W‹, then the limit in

Yt := lim
kÑ8

I
(n´1)
t

( f
(k)
t

) (17.17)

exists and equality holds for Lebesgue a.e. t P [0, 8) on W‹.
The Borel-Cantelli lemma implies that P(W‹) = 1 and the fact F0 contains all P-null

sets gives W‹
P F0. The process Y is then jointly measurable and adapted. The inequality

(17.14) with the help of Fatou’s lemma also shows that
ª

t

0
E

⇣⇥
I
(n´1)
s ( f

(k)
s ) ´ Ys

⇤2
⌘

›Ñ
kÑ8

0 (17.18)

giving us (17.5). The convergence also implies Y P VB and the Itô integral in (17.6) is
well defined and equal to the L

2-limit of the integrals in

I
(n)
t

( f
(k)) =

ª
t

0
I
(n´1)
s ( f

(k)
s )dBs. (17.19)

Using again that F0 contains all P-null set, we now define tI
(n)
t

( f ) : t • 0u to be a con-
tinuous version of t

≥
t

0 YsdBs : t • 0u. Then (17.6) holds and the process is a continuous
L

2-martingale as claimed. Validating also the isometry (17.7) by extension from simple
functions, the proof is finished. ⇤

17.2 Chaos decomposition.

In order to connect with the topic discussed above, we now observe:
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Theorem 17.3 Let B = tBs : s P [0, t]u be a standard Brownian motion on a probability

space (W,F , P). Fix t • 0 and let rF B

t
:= s(N Y s(Bs : s § t)) for N being the P-null sets.

Let tHnun•0 be the closed linear subspaces of L
2(W, rF B

t
, P) constructed via (14.9–14.10). Then

@n • 1 : Hn =
!

I
(n)
t

( f ) : f P L
2(Dn X [0, t]n)

)
(17.20)

Proof. Let rHn denote the set on the right of (17.20). Thanks to the isometry (17.7) (and the
construction of iterated Itô integrals by L

2-limits of those of simple processes), rHn is a
closed linear subspace of L

2(W, rF B

t
, P). Next note that (17.6) along with the Itô isometry

give, for any f P L
2(Dn X [0, t]n) and g P L

2(Dm X [0, t]m), that

E

⇣
I
(n)
t

( f )I
(m)
t

(g)
⌘
=

ª
t

0
E

⇣
I
(n´1)
s ( fs)I

(m´1)
s (gs)

⌘
ds (17.21)

The right-hand side vanishes for the case n ° 1 and m = 1 by the fact that Itô integral is
centered. By induction, rHn K rHm whenever m ‰ n.

Denote rH0 := H0. In light of the closedness of
À

n

k=0 Hk and the integrals of simple
functions being linear combinations of products of n Brownian increments, see (17.10),
we have I

(n)
t

( f ) P
À

n

i=0 Hk for each f P L
2(Dn X [0, t]n). Hence,

À
n

k=0
rHk Ñ

À
n

k=0 Hk. It
now suffices to show

@n • 0 :
nà

k=0
Hk Ñ

nà

k=0

rHk (17.22)

because the orthogonality proved above then gives rHn = Hn for all n • 0.
By Lemma 11.6 and H1 = GHS(B), (17.22) holds (with equality) for n = 1. For n • 2

we will prove (17.22) by induction. Suppose (17.22) holds up to and including index n.
We then claim

@n • 0 @ f P L
2(Dn X [0, t]n) @s P [0, t] : Bs I

(n)
t

( f ) P

n+1à

k=0

rHk (17.23)

Then, assuming (17.22) holds for n, the fact that
À

n

k=0 Hk contains all products of the
form Bs1 . . . Bsk

for 0 § s1, . . . , sk P [0, t] and k = 1, . . . , n then implies that
À

n+1
k=0

rHk

contains all such products for k = 1, . . . , n + 1. Hence,
À

n+1
k=0 Hk Ñ

À
n+1
k=0

rHk and the
induction can proceed.

It remains to prove (17.23). By linearity and L
2-continuity of f fiÑ I

(n)
t

( f ), it suffices to
do this for f simple and, in fact, f of the form (17.12). Writing Bs as sum of the differences
of the form Bbk

´ Bak
, Bak+1 ´ Bbk

and, possibly, Bs ´ Bak
or Bs ´ Bbk

, the quantity Bs I
(n)
t

( f )

is then the sum of terms of the form I
(n+1)
t

(g), for g as in (17.12), plus terms of the form

(Bbk^t ´ Bak^t)
2

π

i=1,...,n
i‰k

(Bbi^t ´ Bai^t) (17.24)
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for some k P t1, . . . , nu. Abbreviate xm(i) := ak + (bk ´ ak)i2´m. Writing

(Bbk^t ´ Bak^t)
2 = (bk ^ t ´ ak ^ t)

+ lim
mÑ8

ÿ

1§i†j§2m

2
�

Bxm(i)^t ´ Bxm(i´1)^t

��
Bxm(j)^t ´ Bxm(j´1)^t

�
(17.25)

then shows that (17.24) is a limit of expressions of the form I
(n+1)(g) + I

(n´1)(h) for g

and h simple (of appropriate dimensionality), thus proving (17.23). ⇤
The statement now gives different proofs of results we already established earlier

using the “single-variable” stochastic calculus. Indeed, the following already appeared
as Theorem 7.1:

Corollary 17.4 Let B = tBs : s § tu be a standard Brownian motion on (W,F , P). Then for

any t • 0 and any X P L
2(W, rF B

t
, P), where rF B

t
is as above, there is Y P VB so that

X = EX +
ª

t

0
Ys dBs (17.26)

Proof. By Corollary 14.3 and Theorem 17.3, for any X P L
2(W,F B, P) there are t fnun•0

with f0 a constant and fn P L
2,loc(Dn) for all n • 1 such that

X = f0 +
ÿ

n•1

I
(n)
t

( fn) (17.27)

with the sum convergent in L
2. Taking expectations shows f0 = EX while Proposi-

tion 17.1 in turn guarantees that, for each n • 1, there is Y
(n)

P V such that

I
(n)
t

( fn) =
ª

t

0
Y
(n)
s dBs (17.28)

Noting that }Y
(n)

}L2([0,t]bW) = }I
(n)
t

( fn)}L2 , the sum in

Ys :=
ÿ

n•1

Y
(n)
s (17.29)

converges in L
2([0, t] b W) and yields Y P V so that (17.26) holds. ⇤

Similarly, the following appeared as Theorem 7.2:

Corollary 17.5 (Itô representation theorem) Let B = tBt : t • 0u be a standard Brownian

motion and let M = tMt : t • 0u be a continuous L
2
-martingale adapted to t rF B

t
ut•0 for rF B

t
as

above. Then there is Y P VB so that

@t • 0 : Mt = M0 +
ª

t

0
Ys dBs a.s. (17.30)

Proof. Thanks to Corollary 17.4, for each t • 0 there is Y
(t)

P V so that

Mt = M0 +
ª

t

0
Y
(t)
s dBs a.s. (17.31)
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We thus need to show that the t-dependence of the integrand can be ruled out. To this
end, the fact that the stochastic integral is a martingale then shows, for each u § t,

Mu = E(Mt|F
B

u ) = M0 +
ª

u

0
Y
(t)
s dBs a.s. (17.32)

Comparing with (17.31) for t := u gives
ª

u

0

�
Y
(t)
s ´ Y

(u)
s

�
dBs = 0 (17.33)

thus implying that Y
(t) = Y

(u) as elements of L
2([0, u] ˆ W). We now define

@n • 1 @s P [n ´ 1, n) : Ys := Y
(n)
s (17.34)

and note that Y = Y
(n) as elements of L

2([0, n] ˆ W) by above reasoning. In particular,
Y P V and (17.30) holds, as desired. ⇤

The connection between Itô and Wiener approaches are best exhibited in the cele-
brated formula:

Corollary 17.6 Writing hn for the n-th Hermit polynomial normalized so that hn(x) ´ x
n

is a

polynomial of degree less than n, we have

@n • 1 : n!
ª 1

0

⇣ª tn

0

⇣
. . .

⇣ª t2

0
dBt1

⌘
. . .

⌘
dBtn´1

⌘
dBtn

= hn(B1) (17.35)

We leave a proof of this to the reader. We will see some application of the above expan-
sions in the forthcoming lectures.
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