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16. WICK ORDERED PRODUCT

Here we continue the discussion of the Wick ordered product focusing on its action
beyond just polynomials. Recall the concept of higher-order Paley-Wiener integrals with
respect to a white noise that we introduced in Theorem 15.4. Our first observation is that
the higher-order integrals naturally appear under Wick products:

Lemma 16.1 For all n • 1 and all f1, . . . , fn P L
2(X ,G, µ), we have

:
✓ nπ

k=1

ª
fkdW

◆
: =

ª
f1 b ¨ ¨ ¨ b fn d :Wbn : (16.1)

where, for the purpose of this statement, f1 b ¨ ¨ ¨ b fn : X n
Ñ R is defined by

f1 b ¨ ¨ ¨ b fn(x1, . . . , xn) :=
1
n!

ÿ

pPSn

nπ

i=1

fi(xp(i)) (16.2)

with Sn denoting the set of all permutations of t1, . . . , nu.

We leave the easy proof of this lemma to the reader while noting that this expression is
sometimes used as a basis for a definition of the higher-order integrals. The appearance
of the symmetrized tensor product shows again a connection with quantum bosons that
are generally described by functions that are symmetric under any permutation of the
coordinates. (Namely, f1 b ¨ ¨ ¨ b fn describes the “state” in which one boson is in “state”
f1, another one in “state” f2, etc.

The operation of taking Wick-ordered product of monomials leads to a natural prod-
uct of elements in L

2(W,FW , P). This is defined as follows: Given any m, n P N and
X P Hm and Y P Hn, set

X d Y := proj
Hn+m

(XY) (16.3)

In order to give some intuition about this, recall that each such X is a convergent sum of
terms of the form

Xt1 . . . Xtm
+ lower order terms (16.4)

and similarly Y is a convergent sum of terms of the form

Yt1 . . . Ytn
+ lower order terms (16.5)

where the “lower order terms” are then such that the whole expression belongs to Hm,
resp., Hn. It follows that XY is then a convergent sum of terms of the form

Xt1 . . . Xtm
Yt1 . . . Ytn

+ lower order terms (16.6)

but here the lower order terms no longer necessarily put the result into Hm+n and so we
need to invoke the projection as well. All that the product does is to keep track of the
leading order terms; the other terms just “ride along.”

With d defined between any pair of elements in
î

nPN Hn, we now extend the map
linearly to turn it into an bilinear map d of the linear vector space

§

nPN

span(H0 Y ¨ ¨ ¨ Y Hn). (16.7)
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into itself. A natural question is then: Can this bilinear map be extended to all of
L

2(W,FW , P)? The answer to this is two-fold. When we restrict to elements from any of
the linear subspaces span(H0 Y ¨ ¨ ¨ Y Hn), the extension does exists thanks to:

Lemma 16.2 For all m, n P N there exists cm,n such that

@X P Hn @Y P Hm : }X d Y} § cm,n}X}}Y} (16.8)

We leave a proof of this to a homework exercise. Unfortunately, even the best coeffi-
cients cm,n one can choose above grow with m and n so that extension to L

2(W,FW , P)
does not exist. We will demonstrate this by considering an function

f (x) :=
ÿ

nPN

anx
n (16.9)

where we assume that the coefficients are such that
∞

nPN
|an|r

n
† 8 for each r ° 0.

For X P H1 we then set
: f (X): :=

ÿ

nPN

an :Xn : (16.10)

whenever the sum converges in L
2. To check conditions for that, note that then the Wick

pairing formula gives

E
�
[ : f (X: ]2

�
=

ÿ

n•0
|an|

2
E
�

:Xn : :Xn :
�

=
ÿ

n•0
|an|

2
n!}X}

2n
(16.11)

This means that L
2-convergence in (16.10) generally requires that

∞
n•0 |an|

2
n!rn

† 8 for
each r ° 0 which is stronger than

∞
nPN

|an|r
n

† 8 needed for f to be defined by the
series (16.9). (E.g., an := 1/

?

n! would work for (16.9) but not (16.11).)
Some important functions are still accessible, for instance:

Lemma 16.3 For each X P H1, :eX : is well defined and, in fact,

:eX : = eX´ 1
2 }X}2

(16.12)

Proof. Suppose without loss of generality that }X} ° 0. The usual series representation
of the exponential along with the fact that, as shown in Lemma 14.4, :Zn : = hn(Z) for
each Z = N (0, 1) then give

:eX : =
ÿ

n•0

1
n!

:Xn : =
ÿ

n•0

1
n!

}X}
n
hn

⇣
X

}X}

⌘

=
ÿ

n•0

1
n!

}X}
n et

2/2 dn

dtn
e´t

2/2
ˇ̌
ˇ̌
t:= X

}X}

= et
2/2e´(t´}X})2/2 ˇ̌

t:= X

}X}

= exp
"

1
2

⇣
X

}X}

⌘2
´

1
2

⇣
X

}X}
´ }X}

⌘2
*

(16.13)
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where we first invoked the definition of hn and then interpreted the result using the
Taylor series whose convergence is justified by the analyticity of the exponential. A
simple computation now shows that the right-hand side equals eX´ 1

2 }X}2 as desired. ⇤
Note that the above shows that :eX : ° 0 even though the Wick product does not

generally preserve positivity (e.g., :X2: = X
2

´ }X}
2 which can be of both signs.) Note

also that the combination of Lemmas 16.1 and 16.3 gives:

Corollary 16.4 Let f P L
2(X ,G, µ). Then

:e
≥

f dW : = 1 +
ÿ

n•1

1
n!

ª
f b ¨ ¨ ¨ b flooooomooooon

n-times

d :Wbn : (16.14)

We remark that this representation is formally similar to the so called time-ordered

exponential which is perturbative way of writing a solution to the ODE
d
dt

Z(t) = A(t)Z(t) (16.15)

for vector-valued variable Z(t) with initial value Z(0) as follows

Z(t) = Z(0) +
ÿ

n•1

ª

0†t1†¨¨¨†tn§t

A(tn) . . . A(t1)Z(0)dt1 . . . dtn (16.16)

Here there is no n! term because we are only integrating over 1/n!-portion of the mul-
tiinterval [0, t]n. The implicit presence of the 1/n! means that, assuming t fiÑ A(t) not
growing too fast, the infinite series converges along with its derivative with respect to t.
We will come back to this one more time once we have introduced iterated Itô integrals,
where the analogy is even more striking.
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