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15. HIGHER-ORDER CHAOS INTEGRALS

Here we will continue the development of the integrals with respect to higher-order
chaos for Wiener chaos expansion of a white noise. We will later show how this special-
izes to the case of iterated Itô integrals.

15.1 Wick ordered product.

We will start with a concept that was already alluded to in the previous lecture. Consider
a mean-zero Gaussian process tXt : t P Tu, for which we recall H1 = GHS(X). For each
n • 1 and each Y1 . . . , Yn P GHS(X), define the symbol

:Y1 . . . Yn : := proj
Hn

(Y1 . . . Yn). (15.1)

where Hn is the n-th order Wiener chaos space associated with process X. We call
:Y1 . . . Yn : the Wick ordered product, or normal-ordered product, of Y1 . . . Yn.

We will now discuss some basic properties of this object as that is necessary for our
later derivations in the context of the white noise. Throughout, we will need the follow-
ing technical tool, bearing also Wick’s name:

Lemma 15.1 (Wick pairing) Let Z1, . . . , Zn be centered multivariate normal and Q a polyno-

mial in n variables. Writing BkQ for the derivative of Q in the k-th variable,

E
�

Z1Q(Z1, . . . , Zn)
�
=

nÿ

i=1

E(Z1Zk)E

⇣
BQ

Bxk

(Z1, . . . , Zn)
⌘

(15.2)

In particular, for n even,

E

✓ nπ

i=1

Zi

◆
=

ÿ

pPPn

π

(i,j)Pp

E(ZiZj) (15.3)

where Pn is the set of pairings of indices in t1, . . . , nu; i.e., partitions of t1, . . . , nu into sets of

size two that are then written as ordered pairs.

Proof. The first identity is checked readily using Gaussian integration by parts. The
second identity is proved by induction from the first. ⇤

Using the above, for all Y1, Y2, Y3 P H1 we now readily check that
:Y1: = Y1

:Y1Y2: = Y1Y2 ´ Cov(Y1Y2)
(15.4)

and

:Y1Y2Y3: = Y1Y2Y3 ´ Cov(Y1Y2)Y3 ´ Cov(Y1Y3)Y2 ´ Cov(Y2Y3)Y1 (15.5)

(For instance, (15.5) requires checking that the expectation E(U :Y1Y2Y3: ) vanishes for U

a constant, U = Z and U = XT, for any Z, T P H1.) Since, for W a white noise on
(X ,G, µ), the above gives

:W(A)W(B): = W(A)W(B) ´ µ(A X B) (15.6)

the second line above justifies our earlier use of the double colon notation.
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The expression on the right of (15.4–15.5) are composed of terms of the same parity
as is the product, and that the leading order term is the product itself. This is not an
accident, as the next lemma shows:

Lemma 15.2 For all n • 1 and all Y1, . . . , Yn P H1,

:Y1 . . . Yn : =
ÿ

AÑt1,...,nu
|A| even

(´1)|A|/2
 ÿ

pPP(A)

π

(i,j)Pp

E(YiYj)

�π

iRA

Yi (15.7)

where P(A) is the set of all pairings from A; namely, the partitions of A into two-point sets that

are written as ordered pairs.

Proof. Write p(Y1, . . . , Yn) for the right-hand side. Noting that p(Y1, . . . , Yn) ´ Y1 . . . Yn

belongs to the linear span of
î

k†n
Hk, it suffices to show that Ep(Y1, . . . , Yn) = 0 and,

for any k † n and any Z1, . . . , Zk P H1, also E(Z1 . . . Zk p(Y1, . . . , Yn)) = 0. (Indeed, this
implies that the projection of Y1 . . . Yn and p(Y1, . . . , Yn) on Hn are equal.)

We will prove these together. Consider the expectation E(Z1 . . . Zk p(Y1, . . . , Yn)) = 0
where, for k = 0, the Z-terms multiplying p(Y1, . . . , Yn) are absent. Writing out the
explicit form of p(Y1, . . . , Yn) using the Wick pairing lemma, we get

E(Z1 . . . Zk p(Y1, . . . , Yn))

=
ÿ

AÑ[n]
|A| even

(´1)|A|/2
 ÿ

pPP(A)

π

(i,j)Pp

E(YiYj)

�
E

✓⇣π

iPAc

Yi

⌘⇣ kπ

j=1

Zj

⌘◆
. (15.8)

where [n] := t1, . . . , nu and A
c := [n] r A. The term in the square brackets is to be

interpreted as 1 when A = H.
The Wick pairing formula tells us how to compute the last expectation in (15.8) using

pairings. In any pairing, some Y’s in A
c get paired together and others get paired with

the Z’s. Denoting by B the set of Y’s that are ultimately paired with each other, the
pairing of A can then be any subset of the pairing of B. Noting that each pairing of A

has exactly |A|/2 elements, this rewrites (15.8) as

E
�
Z1 . . . Zk p(Y1, . . . , Yn)

�

=
ÿ

BÑ[n]
|B| even
n´|B|§k

 ÿ

pPP(B)

ÿ

p1Ñp

(´1)|p1| π

(i,j)Pp

E(YiYj)

�
X(B, k) (15.9)

where for k = 0 we set X(B, 0) := 1 while for k ‰ 0 we let

X(B, k) :=
ÿ

CÑ[k]
|C|=n´|B|

ÿ

s : CÑB
c

bijection

π

iPC

E(Zi, Ys(i))

 ÿ

pPP([n]rC)

π

(i,j)Pp

E(ZiZj)

�
(15.10)

Here the term in the square brackets equals one if C = [n]. Above C is the set of indices
in [k] of Z’s that get paired with Y’s. The remaining Z’s are paired up with other Z’s.
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We now recall the identity underlying the proof of the Möbius inversion formula:
ÿ

p1Ñp

(´1)|p1| =
�
1 + (´1)

�|p| (15.11)

As |p| = |B|/2 this shows that the square bracket in (15.9) equals zero unless B = H

which means that |C| = n in (15.13). But that is impossible as C Ñ [k] and k † n. Hence
E(Z1 . . . Zk p(Y1, . . . , Yn)) = 0 for all k = 0, . . . , n ´ 1, proving the claim. ⇤

The previous proof has one additional important consequence:

Lemma 15.3 For all n • 1 and all Y1, . . . , Yn, Z1, . . . , Zn P H1,

E
�

:Y1 . . . Yn : :Z1 . . . Zn :
�
=

ÿ

pPSn

nπ

i=1

E(YiZp(i)), (15.12)

where Sn is the set of all permutations of t1, . . . , nu.

Proof. By the fact that :Y1 . . . Yn : and :Z1 . . . Zn : are both orthogonal projections on Hn,
the expectation equals E( :Y1 . . . Yn : Z1 . . . Zn). The calculation in the previous proof then
equates this with X(H, n) in which C = [n] and so the bracket term on the right of (15.10)
is one. Representing bijections as permutations gives the claim. ⇤

Note that the above can be summarized by saying that, under expectation, the terms
in a Wick-ordered product are not paired up with one another when the Wick pairing
formula is invoked.

15.2 Higher order Paley-Wiener integrals.

Let us go back to the discussion we had in the previous lecture, but now done for gen-
eral Hn. Using the above notation

Hn = span
!

:W(A1) . . . W(An): : A1, . . . , An P G

)L
2(W,FW ,P)

(15.13)

Every term in the linear span takes the form
ª

f d :Wbn : :=
mÿ

i1,...,in=1

ai1,...,in
:W(Ai1) . . . W(Ain

): (15.14)

for some simple function f : X n
Ñ R of the form

f =
mÿ

i1,...,in=1

ai1,...,in
1Ai1 ˆ¨¨¨ˆAtn

(15.15)

Thanks to the additivity of A1, . . . , An fiÑ :W(Ai1) . . . W(Ain
): , the expression on the

right of (15.14) does not depend on the representation of f . For reasons explained earlier,
we will restrict f to functions that are symmetric under permutations of the indices, i.e.,
such that

@p P Sn @x1, . . . , xn P X : f (xp(1), . . . , xp(n)) = f (x1, . . . , xn) (15.16)
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The restriction to such functions does not have an effect on the integral, as the antisym-
metric part drops out anyway.

We will write L
2
sym(X n,Gbn, µbn) for the closed linear subspace of L

2
sym(X n,Gbn, µbn)

consisting of functions satisfying (15.16). We are now ready for:

Theorem 15.4 Let n • 1. For each simple f : X n
Ñ R satisfying (15.16),

E

✓⇣ª
f d :Wbn :

⌘2
◆
= n!

ª
f

2dµbn (15.17)

In particular, f fiÑ
≥

f d :Wbn : extends uniquely to a continuous linear map

L
2
sym(X n,Gbn, µbn) Ñ L

2(W,FW , P) (15.18)

that is an isometry modulo the prefactor n! in (15.17). In particular, we have

Hn =

"ª
f d :Wbn : : f P L

2
sym(X n,Gbn, µbn)

*
(15.19)

and for each Y P L
2(W,FW , P) and n • 1 there exists fn P L

2
sym(X n,Gbn, µbn) such that

Y = EY +
8ÿ

n=1

ª
fn d :Wbn : (15.20)

where the sum converges in L
2
.

Proof. Write f in the form (15.15) where A1, . . . , An are without loss of generality disjoint
and (i1, . . . , in) fiÑ ai1,...,in

is symmetric under permutations. Lemma 15.3 then gives

E

✓⇣ª
f d :Wbn :

⌘2
◆

=
ÿ

i1,...,in

ÿ

j1,...,jn

ai1,...,in
aj1,...,jn E

⇣
:W(Ai1) . . . W(Ain

): :W(Aj1) . . . W(Ajn
):

⌘

=
ÿ

i1,...,in

ÿ

j1,...,jn

ÿ

pPSn

ai1,...,in
aj1,...,jn

nπ

i=1

µ
�

Aik
X Ajp(k)

�

=
ÿ

i1,...,in

ÿ

j1,...,jn

ÿ

pPSn

ai1,...,in
ajp(1),...,jp(n)

nπ

i=1

µ
�

Aik
X Ajk

�

(15.21)

where in the last step we first wrote p´1 instead of p and then transferred the permu-
tation to the indices j1, . . . , jn. The disjointness forces µ(Aik

X Ajk
) = dik ,jk µ(Aik

) which
using that the coefficients are permutation symmetric yields

E

✓⇣ª
f d :Wbn :

⌘2
◆
=

ÿ

pPSn

ÿ

i1,...,in

(ai1,...,in
)2

nπ

i=1

µ(Ai1) (15.22)

The sum over permutation results in the factor n!; the rest of the expression is then
identified with the integral of f

2 against µbn.
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The isometry (up to n!) proves existence of the unique extension to a map (15.18).
Using (15.13) we then get (15.19). This with the help of Corollary 14.3 gives (15.20). ⇤

We remark that the above gives L
2(W,FW , P) the representation as the so called Fock

space. Indeed, f P L
2
sym(X n,Gbnµbn) can be thought of as a test function in n-variables

of particles that are indistinguishable, which is what is represented by the permutation
symmetry. (In quantum mechanics, permutations can still produce complex-modulus
one multiples of f but do not for particles that are called bosons.) The subspace Hn is
thus a subspace corresponding to states with n bosons.
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