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13. CAMERON-MARTIN THEOREM

We will now use the structure of the Gaussian Hilbert space to generalize Theorem 10.4
that dealt with the special case of standard Brownian motion.

13.1 The statement and easy direction of proof.

A natural way to generalize the question asked and answered by Cameron and Martin
for the case of the standard Brownian motion is as follows:

Given a sample of a Gaussian process tXt : t P Tu, for what functions f : T Ñ R is its
“shift by f ” — meaning, the sample tXt + f (t) : t P Tu — indistinguishable from X?

As we have only one sample to compare to, we posit that this occurs exactly when the
laws of the two processes are mutually absolutely continuous with respect to each other.
A necessary and sufficient conditions for exactly that comes in:

Theorem 13.1 (Cameron-Martin Theorem, general form) Let tXt : t P Tu be a mean-zero

Gaussian process. Then, with the laws taken on the product space (RT,B(R)bT),

@ f P RT : Law(X + f ) ! Law(X) ô f P CMS(X). (13.1)

Moreover, for all f P CMS(X),

@A P B(R)bT : P(X + f P A) = E
�
1A(X) eY´ 1

2 E(Y2)�, (13.2)

where Y = f´1( f ). The absolute continuity “!” in (13.1) can be replaced by equivalence “„.”

A few remarks are in order. First, the restriction to mean-zero processes is not merely
a convenience; indeed, the result implies:

Corollary 13.2 Let tXt : t P Tu be a Gaussian process, not necessarily mean zero. Then

Law(X ´ EX) and Law(X) are mutually absolutely continuous if and only if t fiÑ E(Xt)
lies in CMS(X), and they are mutually singular otherwise.

Second, note also that we are not assuming any kind of regularity of X. This forces
us to work with laws interpreted in the coarsest possible way; namely, on the product
space (RT,B(R)bT). The advantage of that is that one only needs the finite-dimensional
distributions to determine the whole law. This is enough to compare the laws of con-
tinuous processes over separable metric spaces as there the projection of the process on
any countable dense subsets determines the law.

As in Theorem 10.4, the proof of one direction of the implication is easy and the other
one is considerably more laborious. The easy direction comes in:
Proof of Theorem 13.1, “” in (13.1). Let f P CMS(X) and Y := f´1( f ). Set

rP(A) := E
�
1A eY´ 1

2 E(Y2)� (13.3)
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and write rE for expectation with respect to rP. Then, repeating the argument form the
proof of Girsanov’s Theorem, for any t1, . . . , tn P R, l1, . . . , ln P R,

rE
✓

exp
! nÿ

j=1

lj

�
Xtj

´ f (tj)
� ´ 1

2
Var

⇣ nÿ

j=1

ljXtj

⌘)◆

= E

✓
exp

!⇣
Y +

nÿ

j=1

ljXtj

⌘
´ 1

2
Var

⇣
Y +

nÿ

j=1

ljXtj

⌘)◆
= 1

(13.4)

where we used that Cov(Y, Xtj
) = f (tj) to complete the square. Since the finite-dimensional

distributions determine the law on RT, it follows that

Law(X ´ f ) under rP = Law(X) under P (13.5)

thus proving (13.2) via a deterministic shift, and the direction “” in (13.1), by the fact
that rP ! P. (In fact, we get P ! rP as well, since the exponential is positive a.s.) ⇤

13.2 Proof of the harder direction.

We will now move to the opposite direction. In the proof, we will make use of the fact,
stated and proved as Lemma 8.2 earlier, that the result is for finite T proved easily with
the help of linear algebra. For the extension to infinite T, we need first to set up the
necessary notation.

Assume that X is realized on a probability space (W,F , P). For each S Ñ T, denote

FS := s(Xt : t P S). (13.6)

We start by processing the assumption that the law of X + f is absolutely continuous
with respect to that of X:

Lemma 13.3 Let f : T Ñ R be such that Law(X + f ) ! Law(X) on (RT,B(R)bT). Then

there exists M P L
1(W,FT, P) such that

M • 0 ^ @A P B(R)bT : P(X + f P A) = E
�
1A(X)M

�
. (13.7)

Proof. Write µ(A) := P(X + f P A), resp., n(A) := P(X P A) for the distributions
of X + f , resp., X on (RT,B(R)bT). The assumption µ ! n implies the existence of the
Radon-Nikodym derivative F P L

1(RT,B(R)bT, n) such that F • 0 and

@A P B(R)bT : µ(A) =
ª

A

F dn. (13.8)

Denote M := F ˝ X and note that M is a random variable on (W,F , P). Since each A P FT

takes the form A = tX P Bu for some B P B(R)bT, we then get M P L
1(W,FT, P) as well

as (13.7) by the standard change-of-variables formula for measures and integrals. ⇤
Recall that, despite using the term Hilbert space for GHS(X), we will henceforth re-

gard that as a space of random variables rather than equivalence classes thereof. With
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that in mind, consider the collection of sets

L :=
"

S Ñ T :
⇣

DYS P GHS(X) : FS-measurable ^ E(M|FS) = eYS´ 1
2 E(Y2

S
) a.s.

⌘*
(13.9)

Note that YS is, if it exists, determined uniquely up to modifications on a FS-measurable
P-null set. Our ultimate goal is to show that T P L but that will have to be proved
gradually. We start from:

Lemma 13.4 @S Ñ T : S finite ñ S P L

Proof. Abbreviate rP(A) := E(1A M). Let S Ñ T be finite and denote by C the covariance
of tXt : t P Su. The restriction of rP to S is absolutely continuous with respect to the same
restriction of P and so, by Lemma 8.2,

d rP|FS

dP|FS

= exp
" ÿ

tPS

h(t)Xt ´ 1
2

ÿ

t,t1PS

h(t)h(t1)C(t, t
1)

*
(13.10)

for h := C
´1

f where the existence of the right-hand side is part of the conclusion of
Lemma 8.2. Denoting YS :=

∞
tPS

h(t)Xt, we then have

@A P FS : rP(A) = E
�
1AeYS´ 1

2 E(Y2
S
)� (13.11)

In light of uniqueness of the conditional expectation, this gives E(M|FS) = eYS´ 1
2 E(Y2

S
)

a.s. Since YS is also FS-measurable, we have S P L as claimed. ⇤
We will naturally aim to approximate infinite S by sequences of finite sets. For that

we need to compare YS and YrS for sets such that S Ñ rS:

Lemma 13.5 For all S, rS P L,

S Ñ rS ñ (YrS ´ YS) KK YS ^ E(Y2
S
) § E(Y2

rS) (13.12)

Proof. The explicit form of E(M|FS) whenever S P L along with the “smaller always
wins” principle for conditional expectation give

E(M|FS) = E
�
E(M|FrS)

ˇ̌
FS

�

= E

⇣
E(M|FS)e

YrS´YS´ 1
2 [E(Y

2
rS
)´E(Y2

S
)]

ˇ̌
ˇFS

⌘

= E(M|FS)E

⇣
eYrS´YS´ 1

2 [E(Y
2
rS
)´E(Y2

S
)]

ˇ̌
ˇFS

⌘
(13.13)

where we used that E(M|FS) is FS-measurable to take it out of the last conditional
expectation. Since E(M|FS) ° 0 by S P L, we can cancel E(M|FS) on both sides. Taking
expectation then shows

1 = E

⇣
eYrS´YS´ 1

2 [E(Y
2
rS
)´E(Y2

S
)]
⌘
= e

1
2 E((YS´YrS)

2)´ 1
2 [E(Y

2
rS
)´E(Y2

S
)] (13.14)

which then gives

E
�
(YS ´ YrS)

2� ´ 1
2
⇥
E(Y2

rS) ´ E(Y2
S
)
⇤
= 0 (13.15)
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Cancelling repeated terms and rearranging the rest, this becomes

E
�
YS(YS ´ YrS)

�
= 0 (13.16)

thus implying (YS ´ YrS) K YS and, by the fact that non-correlation implies independence
for Gaussian random variables, (YS ´ YrS) KK YS. The inequality for second moments then
follows readily from this. ⇤

Our next aim is to see what happens when we take a limit:

Lemma 13.6 For all tSnunPN P L
N

and all S Ñ T,

Sn Ò S ñ sup
n•1

E(Y2
Sn
) † 8 ^ S P L ^ YSn

Ñ YS in L
2 (13.17)

Proof. Assume Sn Ò S. Since FS = s(
î

n•1 FSn
), the Lévy Forward Theorem then gives

E(M|FSn
) ›Ñ

nÑ8 E(M|FS) a.s. (13.18)

If we had E(Y2
Sn
) Ñ 8, then Chebyshev’s inequality would give

P
�
YSn

° 1
4 E(Y2

Sn
)
� § 16

E(Y2
Sn
)

›Ñ
nÑ8 0 (13.19)

The explicit form E(M|FSn
) = exptYSn

´ E(Y2
Sn
)u would then imply E(M|FSn

) Ñ 0 in
probability. But that would force E(M|FS) = 0 a.s. via (13.18), in contradiction with
E(E(M|FS)) = EM = 1. Hence, we must have sup

n•1 E(Y2
Sn
) † 8.

Lemma 13.5 shows that tYSn+1 ´ YSn
un•0, with YS0 := 0, are independent centered with

ÿ

n•1

E
�
(YSn+1 ´ YSn

)2� = sup
n•1

E(Y2
Sn
) † 8 (13.20)

By the Kolmogorov inequality, there exists W‹ P FS with P(W‹) = 1 such that

YSn
= YS1 +

nÿ

k=1

(YSk+1 ´ YSk
) ›Ñ

nÑ8 YS := YS1 +
8ÿ

n=1

(YSn+1 ´ YSn
) (13.21)

on W‹. Setting YS := 0 on W r W‹ yields an FS-measurable random variable such that
YSn

Ñ YS a.s. Thanks to the Gaussian nature of these random variables, the convergence
is also in L

2 and E(Y2
S
) = limnÑ8 E(Y2

Sn
). As YS P GHS(X) and

E(M|FS)
a.s.
= lim

nÑ8 eYSn
´ 1

2 E(Y2
Sn
) = eYS´ 1

2 E(Y2
S
) (13.22)

we conclude S P L as desired. ⇤
We record another simple consequence of the above:

Corollary 13.7 For all S
1 Ñ T countable, we have E(Y2

S1) † 8 and S
1 P L. Moreover, there

exists S Ñ T such that

S countable ^ E(Y2
S
) = sup

 
E(Y2

S1) : S
1 P L countable

(
(13.23)

where the supremum is thus finite.
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Proof. That E(Y2
S1) † 8 and S

1 P L for S
1 Ñ T is proved by combining Lemma 13.4 with

Lemma 13.6 and an approximation of S
1 by an increasing sequence of finite sets. For the

second part of the claim, let tSnunPN be non-decreasing and such that E(Y2
Sn
) tends to the

supremum, whether finite or not. Lemma 13.6 allows us to find finite sets S
1
n Ñ Sn, with

tS
1
nunPN still increasing, such that E(Y2

Sn
) § E(YS1

n
) + 2´n. But then Sn Ò S :=

î
nPN Sn

and S
1
n Ò S, proving that S P L and E(Y2

S
) † 8. Clearly, E(Y2

S
) equals the supremum,

which is then necessarily finite. ⇤
We are now ready to give:

Proof of Theorem 13.1, “ñ” in (13.1). Corollary 13.7 gives us existence of a countable set
S Ñ T such that

S P L ^ E(Y2
S
) = sup

 
E(Y2

S1) : S
1 P L countable

(
(13.24)

We claim that YS serves as YT, and thus L contains all subsets of T. Indeed, let A P
s(Xt : t P T). By the “countability curse” there exists rS Ñ T countable such that A P FrS.
Without loss of generality we may assume that S Ñ rS. Lemma 13.5 gives

E(Y2
S
) § E(Y2

rS) § sup
 

E(Y2
S1) : S

1 P L countable
(
= E(Y2

S
) (13.25)

and, using E(YS(YrS ´ YS)) = 0,

E
�
(YS ´ YrS)

2� = 0. (13.26)

Hence YrS = YS a.s. and
E
�
1A M) = E

�
1AeYS´ 1

2 E(Y2
S
)�. (13.27)

As this holds for all A P FT and as YS and M are FT-measurable, we get

M = E(M|FT) = eYS´ 1
2 E(Y2

S
) a.s. (13.28)

It follows that T P L as desired.
To complete the proof, let rP(A) := E(1A M) and recall that X under rP has the law

of X + f under P. Writing rE for the expectation with respect to rP,

@t P T : f (t) = rE(Xt) = E(Xt M) = E

⇣
Xt eYS´ 1

2 E(Y2
S
)
⌘

(13.29)

For centered Gaussians, the Gaussian integration by parts formula reads E(X f (Y)) =
Cov(X, Y)E( f

1(Y)) whenever f
1(Y) P L

1. Hence we get f (t) = Cov(Xt, YS) = ft(YS).
This proves f P CMS(X) and YS = f´1( f ) as claimed. ⇤

We leave it to the reader to check that Theorem 13.1 subsumes Theorem 10.4 pro-
vided we supplement this with the characterization of the Gaussian Hilbert Space of
standard Brownian motion in Lemma 11.5 and the associated Cameron-Martin space in
Lemma 11.10. The Cameron-Martin theorem is a spring board to a theory that studies
Gaussian measures on Banach spaces using the geometric properties of the Banach space
while employing methods of infinite-dimensional vector calculus.
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