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12. KARHUNEN-LOÈVE EXPANSIONS

In this chapter we address expansions that are naturally induced by the Hilbert space
structure of the Cameron-Martin space. These expansions bear the name of K. Karhunen
and M. Loève, who developed these in the context of mathematical statistics.

12.1 Hilbert space expansion.

The Hilbert space structure of the Cameron-Martin space naturally induces a represen-
tation of the underlying Gaussian process as a convergent infinite series:

Lemma 12.1 (Karhunen-Loève expansion) Let X = tXt : t P Tu be a mean-zero Gaussian

process and let tea : a P Iu be an orthonormal basis in CMS(X). Set Za := f´1(ea). Then

tZa : a P Iu are i.i.d. N (0, 1) (12.1)

and

@t P T :
ÿ

aPI
ea(t)

2 † 8. (12.2)

In particular, the set ta P I : |ea(t)| ° eu is finite for each e ° 0 and at most countably infinite

for e = 0. Moreover,

@t P T : Xt =
ÿ

aPI
ea(t)Za in L

2 (12.3)

and

Xt = lim
eÓ0

ÿ

a : |ea(t)|°e

ea(t)Za a.s. (12.4)

Proof. The fact that f is a bijective isometry of GHS(X) onto CMS(X) implies that
tZa : a P Iu is an orthonormal basis in GHS(X). This gives (12.1) and also that

@Y P GHS(X) :
ÿ

aPI

⇥
E(YZa)

⇤2 † 8 ^ Y =
ÿ

aPI
E(YZa)Za in L

2. (12.5)

In particular, the set ta P I : |E(YZa)| ° eu is finite for all e ° 0 and, by taking unions,
at most countably finite for e = 0. Ordering the countable set ta P I : |E(YZa)| ° 0u
decreasingly by element size, the resulting infinite series converges also a.s. by Kol-
mogorov’s Three-Series Theorem thanks to

∞
aPI [E(YZa)]2 † 8.

For the case Y := Xt, we get

E(XtZa) = ft(Za) = ea(t) (12.6)

and so (12.5) implies (12.2–12.3). ⇤
The formulas (12.3) and (12.4) give us a representation of X at a single point but this

may not be sufficient for many applications. A natural question arises whether more can
be said when X is assumed to be continuous. This is the case provided we also assume
that T is compact (if not, then restrict to compact subsets of T):
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Lemma 12.2 Suppose X is a continuous mean-zero Gaussian process on a compact space T.

Let tea : a P Iu be an orthonormal basis in CMS(X). Then each ea is a bounded function, I is

at most countable and, enumerating I = takuk•1,

lim
nÑ8 sup

tPT

ÿ

k°n

eak
(t)2 = 0 (12.7)

In particular, the infinite series (12.2) converges uniformly in t.

Proof. Since X is continuous and T is separable, GHS(X) is separable and so I is neces-
sarily at most countable. As t fiÑ E(X

2
t
) is continuous the compactness of T implies that

sup
tPT

E(X
2
t
) † 8. The same then applies to ea(t) = E(XtZa). Parseval’s Theorem reads

ÿ

k•1

eak
(t)2 = E(X

2
t ) † 8. (12.8)

Denoting jn(t) :=
∞

k•n
eak

(t)2, we thus have jn(t) Ó 0 for each t P T. Since jn is also
continuous, the convergence is uniform by Dini’s Theorem. ⇤

As a consequence in Lemma 12.2 and the representation (12.3) we get:

Corollary 12.3 For X a continuous mean-zero Gaussian process on a compact index sets T,

sup
tPT

E

✓ˇ̌
ˇXt ´

nÿ

k=0

eak
(t)Zak

ˇ̌
ˇ
2
!

›Ñ
nÑ8 0 (12.9)

In short, the convergence in (12.3) is uniform in L
2
.

Proof. The Plancherel formula along with (12.3) gives

E

✓ˇ̌
ˇXt ´

nÿ

k=0

eak
(t)Zak

ˇ̌
ˇ
2
!

=
ÿ

k°n

eak
(t)2 (12.10)

This tends to zero uniformly in t by above lemma. ⇤

12.2 Convergence in C(T).

While it is tempting to think of (12.3) as an expansion of X into the basis tea : a P Iu,
this is valid only when I (and thus, effectively, T) is finite. Indeed, for I infinite we
get

∞
aPI Z

2
a = 8 a.s. and so one cannot think of tZa : a P Iu as (random) coefficients

in `2(I). As we show later , this can be mended by noting that tea : a P Iu are naturally
members of a Banach space B that embeds CMS(X) as a dense subset and for which∞

aPI Zaea converges in B, a.s. While this procedure can be applied to any Gaussian
Hilbert space, for us the typical choice of B will be the space C(T).

To demonstrate the above on an example, consider the Lévy construction of Brown-
ian motion. There we took the Haar basis t fkukPN of functions in L

2([0, t]) and defined
tBu : u § tu as the a.s.-uniform limit

Bu := lim
nÑ8

nÿ

k=1

⇣ª
u

0
fk(s)ds

⌘
Zk (12.11)
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for tZk : k • 1u i.i.d. N (0, 1). The functions hn(u) :=
≥

u

0 fn(s)ds form an orthonormal ba-
sis — the so called Schauder functions — in the Cameron-Martin space CMS(B), which
is a dense subset of the Banach space B := C([0, t]) endowed with the supremum norm.
The convergence in (12.11) is then uniform a.s. and Zn thus aquires the meaning of the
coefficient associated with the basis element hn in C([0, t]).

A natural question arising in the Lévy construction is whether the uniform conver-
gence is special to the Haar/Schauder basis or whether the same applies more generally.
We will settle this with the help of:

Theorem 12.4 Let tXt : t P Tu be a continuous mean-zero Gaussian process with T compact.

Then for any orthonormal basis ten : n • 1u in CMS(X) and Zn := f´1(en),

lim
nÑ8 sup

tPT

ˇ̌
ˇXt ´

nÿ

k=1

ek(t)Zk

ˇ̌
ˇ = 0 a.s. (12.12)

In short, the convergence in (12.3) is uniform in t P T a.s.

The proof hinges on a rather non-trivial theorem from convergence theory of Banach-
space valued random series:

Theorem 12.5 (Itô-Nishio Theorem) Let B be a Banach space and let tXnun•1 be indepen-

dent B-valued random variables with Xn

law
= ´Xn for all n • 1. Writing B

‹
for the space of

continuous linear functionals on B, the following are equivalent:

(1) t∞
n

k=1 Xkun•1 converges as n Ñ 8 in norm of B a.s.,

(2) @j P B
‹ : tj(

∞
n

k=1 Xk)un•1 converges in law.

While we will not prove this theorem here, let us recall that it generalizes the following
result due to P. Lévy:

Lemma 12.6 Let tXnun•1 be independent and let Sn := X1 + ¨ ¨ ¨ + Xn. Then

(1) Sn converges a.s.,

(2) Sn converges in probability,

(3) Sn converges in law.

are all equivalent.

We also note that this lemma immediately generalizes to Rd-valued random variables.
Indeed, thanks to the Cramér-Wold device, Sn converging in law is equivalent to v ¨ Sn

converging in law for each v P Rd. The lemma then makes it equivalent to v ¨ Sn con-
verging a.s. for each v P Rd. Specializing to v in coordinate directions, each coordinate
of Sn then converges a.s., proving a.s. convergence of Sn. Since j(x) := v ¨ x is a general
form of a linear functional on Rd, this gives Theorem 12.5 for any B with dim(B) † 8.
The case of infinite dimension is harder to prove and, moreover, requires the additional
assumption of symmetry.

We will now move to the proof of uniform convergence of the Karhunen-Loève ex-
pansion to the underlying Gaussian process:
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Proof of Theorem 12.4 assuming the Itô-Nishio Theorem. By Theorem 12.5 it suffices to show

@j P C(T)‹ : j

✓ÿ

k°n

ekZk

◆
L

1
›Ñ
nÑ8 0. (12.13)

Indeed, the continuity and additivity of j then implies that j(X ´ ∞
n

k=1 ekZk) converges
in law and so X ´ ∞

n

k=1 ekZk converges in the supremum norm a.s.
To get (12.13), we note that the Riesz representation theorem shows that each j P

C(T)‹ takes the form j( f ) =
≥

f dµ for a finite signed (Borel) measure µ on T. The
Cauchy-Schwarz inequality then gives

E

ˇ̌
ˇ̌
ˇj
✓ ÿ

k°n

ekZk

◆ˇ̌
ˇ̌
ˇ §

ª

T

E

ˇ̌
ˇ̌
ÿ

k°n

ek(t)Zk

ˇ̌
ˇ̌ |µ|(dt) §

ª

T

d ÿ

k°n

ek(t)2 |µ|(dt). (12.14)

By (12.7), the square root tends to zero as n Ñ 8 uniformly in t and, since |µ| is a
finite measure, we get (12.13) by the Bounded Convergence Theorem. (We actually only
used that sup

k•1
∞

k•1 ek(t)2 † 8 and that
∞

k°n
ek(t)2 Ñ 0 pointwise. But compactness,

which implies uniform convergence, is used in other places in this proof as well.) ⇤
As a corollary, we answer the question posed above:

Corollary 12.7 Given any t ° 0, let t fkukPN be any orthonormal basis in L
2([0, t]) and let

tZnunPN be i.i.d. N (0, 1). Then
8ÿ

k=0

⇣ª
u

0
fk(s)ds

⌘
Zk (12.15)

converges uniformly in u P [0, t], a.s. The limit function has the law of standard Brownian

motion on [0, t], modulo a modification on a null set.

Proof. Consider a standard Brownian motion tBu : u § tu and realize the sequence
tZkukPN by Zk :=

≥
t

0 fk(s)dBs. Indeed, Itô isometry shows that tZk : k P Nu are i.i.d.
N (0, 1) and, as shown earlier, ek(u) :=

≥
u

0 fk(s)ds defines an ONB in CMS(B). Theo-
rem 12.4 then gives

∞
n

k=0 ek(u)Zk Ñ Bu uniformly in u P [0, t] a.s., as desired. ⇤
We note that the corollary seems hard to prove “by hand” given how the specific

properties of the Haar functions enter the original Lévy construction. On the other hand,
the proof does use that the limit has a continuous version in at least one basis. (We need
this because Theorem 12.4 is formulated for continuous processes.)
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