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11. GAUSSIAN HILBERT SPACE AND THE CAMERON-MARTIN SPACE

We will now move to a more abstract level and present parts of a rich theory of Gaussian
processes over arbitrary index sets. Much of what we do actually applies to general
square integrable processes but, as we will see in the forthcoming lectures, the Gaussian
case adds a structure that will ultimately make these particularly elegant.

11.1 Gaussian Hilbert space.

We recall the following definition:

Definition 11.1 Given a set T, a Gaussian process on T is a family tXt : t P Tu of R-
valued random variables on a probability space such that, for any finite S Ñ T and any
l : S Ñ R, the random variable

∞
tPS

l(t)Xt has normal law.

Note that the above means that, in particular, every Xt is normal. We will focus on
mean zero processes which are those for which @t P T : EXt = 0. The standard Brownian
motion and white noise are examples of such a family. Next we put forward:

Definition 11.2 Given a mean-zero Gaussian process tXt : t P Tu on (W,F , P), the as-
sociated Gaussian Hilbert space GHS(X) is defined by

GHS(X) := spantXt : t P Tu L
2(W,F ,P)

(11.1)

Here we noted that any linear combination of random variables from tXt : t P Tu lies
in L

2 and so we can close the set in L
2-topology. We now observe:

Lemma 11.3 Under the topology of L
2
-convergence, GHS(X) is a closed linear vector space of

random variables with mean-zero (multivariate) Gaussian law.

Proof. Linearity and closedness in L
2 are consequence of the definition. The fact that

the joint law is multivariate Gaussian follows from this property being preserved under
linear combinations and L

2-limits. ⇤
We note that the properties listed in Lemma 11.3 define the notion of a Gaussian

Hilbert space H regardless of an underlying Gaussian process. If we index such an H by
itself, it becomes a Gaussian process with an additional additivity/continuity structure.
On the other hand, the linear span of any square-integrable random variables lies in L

2

and so the above can be considered whenever tXt : t P Tu Ñ L
2(W,F , P).

Let us check some elementary examples:

Lemma 11.4 Let T = t1, . . . , nu and assume a mean-zero Gaussian vector tXk : k P Tu is

given with covariance C = tCov(Xi, Xj)un

i,j=1. Then GHS(X) is the set of Rn
-valued mean-

zero Gaussian random vectors taking values in Ran(C) = Ker(C)K
.

Leaving a proof of this to homework exercise, we move on to:
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Lemma 11.5 Let B = tBs : s § tu be a standard Brownian motion on [0, t]. Then

GHS(B) =
! ª

t

0
f (s)dBs : f P L

2([0, t])
)

(11.2)

where L
2([0, t]) is the space of (equivalence classes of) Borel functions f : [0, t] Ñ R that are

square integrable w.r.t. the Lebesgue measure on [0, t].

Proof. Let H denote the set on the right of (11.2). Linearity of the integral along with Itô
isometry ensure that H is a closed linear subspace of L

2. Since Bu =
≥

t

0 1[0,u](s)dBs, we
have tBs : s § tu Ñ H and so GHS(B) Ñ H. On the other hand, write H0 for the subset
of H associated with piecewise constant f — i.e., those of the form f (s) =

∞
n

i=1 ai1[0,ti)(s)
for some a1, . . . , an and t1, . . . , tn • 0. Such functions are dense L

2([0, t]) and so, using
Itô isometry again, H0 is dense H. The observation

ª
t

0

⇣ nÿ

i=1

ai1[0,ti)(s)
⌘

dBs =
nÿ

i=1

aiBti^t (11.3)

shows H0 Ñ GHS(B) and, since GHS(B) is closed, we get H Ñ GHS(B) as desired. ⇤
The previous lemma is actually a special instance of the next lemma whose proof is

executed very much the same way and is thus left to an exercise:

Lemma 11.6 Given a measure space (X ,G, µ) with µ finite, let W = tW(A) : A P Gu be a

Gaussian white noise. Then

GHS(W) =
! ª

f dW : f P L
2(X ,G, µ)

)
(11.4)

where
≥

f dW is the Paley-Wiener integral.

11.2 Cameron-Martin space.

Moving on with general theory, we now observe that a Gaussian process is naturally
associated with a function space over the underlying index set by way of the autocorre-
lation map t fiÑ ft(Y) where

ft(Y) := E(XtY) (11.5)
A key starting observation in this is that this map is injective:

Lemma 11.7 We have

@Y, rY P GHS(X) : f(Y) = f(rY) ñ Y = rY (11.6)

Proof. Suppose that f(Y) = f(rY), which means that @t P T : ft(Y) = ft(rY). This implies
that E(Xt(Y ´ rY)) = 0 for all t P T and, by linearity and continuity in L

2,

@Z P GHS(X) : E
�
Z(Y ´ rY)

�
= 0 (11.7)

Taking Z := Y ´ rY shows E((Y ´ rY)2) = 0 and thus Y = rY. ⇤
We collect the set of functions obtained via (11.5) into one object:
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Definition 11.8 Given a zero-mean Gaussian process X = tXt : t P Tu,

CMS(X) :=
 

f(Y) : Y P GHS(X)
(

(11.8)

is the Cameron-Martin space associated with X.

Another key observation is then:

Lemma 11.9 Define x¨, ¨y : CMS(X) ˆ CMS(X) Ñ R by

@ f , g P CMS(X) : x f , gy := E
�
f´1( f ), f´1

g
�

(11.9)

Then f , g fiÑ x f , gy is an inner product on CMS(X) and, using the norm topology associated

therewith, the map f is an isometric bijection of GHS(X) onto CMS(X).

Proof. That f is injective was checked in Lemma 11.7 and that it is onto is a consequence
of the definition (11.8). The space GHS(X) inherits the natural inner product Y, Z fiÑ
E(YZ) from L

2 and f preserves it by definition. It follows that f is an isometry. ⇤
We again remark that the above works equally well when tXt : t P Tu is just a subset

of L
2(W,F , P). In this case we would not attach the names of Cameron and Martin to

the resulting function space.
Moving to examples, we note:

Lemma 11.10 Let B = tBs : s § tu be a standard Brownian motion on [0, t]. Then

CMS(B) =
!

F P AC([0, t]) : F(0) = 0 ^ F
1 P L

2([0, t])
)

(11.10)

where AC([0, t]) is the space of absolutely-continuous functions [0, t] Ñ R. The canonical inner

product then takes the form

@F, G P CMS(B) : xF, Gy =
ª

t

0
F

1(s)G1(s)ds (11.11)

Proof. From Lemma 11.5 we know that elements of GHS(B) are Paley-Wiener integrals
of the form

≥
t

0 f (s)dBs. The Itô isometry and polarization identity show

fu

⇣ª t

0
f (s)dBs

⌘
= E

✓
Bu

ª
t

0
f (s)dBs

◆

= E

✓⇣ª t

0
1[0,u](s)ds

⌘⇣ª t

0
f (s)dBs

⌘◆

=
ª

t

0
1[0,u](s) f (s)ds =

ª
u

0
f (s)ds

(11.12)

This shows that

CMS(B) =
!

u fiÑ
ª

u

0
f (s)ds : f P L

2([0, t])
)

(11.13)

As, by the Vitali-Lebesgue theorem, F P AC([0, t]) is equivalent to F
1 being defined a.e.

and F(u) ´ F(0) =
≥

u

0 F
1(s)ds, this gives (11.10).
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For the second part, notice that (11.12) applied inside (11.9) gives

xF, Gy =
Bª ¨

0
F

1(s)ds,
ª ¨

0
G

1(s)ds

F

= E

✓⇣ª t

0
F

1(s)dBs

⌘⇣ª t

0
G

1(s)dBs

⌘◆
=

ª
t

0
F

1(s)G1(s)ds,
(11.14)

where the Itô isometry along with polarization identity was used in the last step. ⇤
Again, a very similar argument applies to the white noise process as well:

Lemma 11.11 Denote by M(X ,G) the set of finite signed measures on a measurable space (X ,G)
with µ finite. Then for a white noise W = tW(A) : A P Gu over (X ,G, µ), we have

CMS(W) =

"
n P M(X ,G) : n ! µ ^ dn

dµ
P L

2(X ,G, µ)

*
(11.15)

with

@n, ñ P CMS(W) : xn, ñy =
ª

dn

dµ

dñ

dµ
dµ. (11.16)

Proof. Lemma 11.6 gives that elements of GHS(W) are Paley-Wiener integrals of the form≥
f dW where f P L

2(µ). Hence

fA

✓ª
f dW

◆
:= E

✓
W(A)

ª
f dW

◆
=

ª

A

f dµ (11.17)

by the isometry defining the Paley-Wiener integral. As L
2(µ) Ñ L

1(µ) due to µ being
finite, it follows that A fiÑ fA is a finite signed measure on (X ,G).

Writing n(A) :=
≥

A
f dµ shows “Ö” in (11.15). For the opposite inclusion we pick a

measure n with n ! µ, denote the Radon-Nikodym derivative by f and use f P L
2 to

infer
≥

f dW P GHS(X). Now apply (11.17) one more time. The identity (11.16) is proved
exactly the same way as (11.11); we leave the details to the reader. ⇤

In both of the examples above, the Cameron-Martin space consisted of continuous
functions. (For measures, the continuity is w.r.t. pseudometric A, B fiÑ µ(A4B).) This is
not a coincidence, as our next lemma shows:

Lemma 11.12 Suppose T is a metric space and the sample paths of a mean-zero Gaussian

process tXt : t P Tu are continuous a.s. or at least continuous in L
2
. Then

CMS(X) Ñ C(T) (11.18)

Proof. Let Y P GHS(X). We need to show that if tn Ñ in T then ftn
(Y) Ñ ft(Y). That

will follow if Xtn
Ñ Xt in L

2 which is either assumed directly in the statement or is
derived from the assumption of a.s.-continuity X by noting that, by the Gaussian nature
of the random variables, Xtn

´ Xt Ñ 0 in distribution implies Var(Xtn
´ Xt) Ñ 0 which

is equivalent to Xtn
Ñ Xt in L

2. ⇤
We remark that, as noted earlier, even here the assumption that X is Gaussian is not

strictly used. All that we need is that tXt : t P Tu Ñ L
2(W,F , P).
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