
MATH 285K notes 48

10. SHIFTED BROWNIAN PATHS

In this section we change the point of view somewhat and discuss the celebrated Came-
ron-Martin theorem in the context of the Wiener measure. The main result will be ar-
rived at organically and is stated at the very end of this chapter.

10.1 The Cameron-Martin problem and sufficient conditions.

While we introduced the Wiener measure as the canonical law of the standard Brownian
motion, from the perspective of integration theory it is just a probability measure on the
space C[0, 8). A natural notion there is that of a shift, which is a map w fiÑ w f that
takes w P C[0, 8) and assigns it w f (t) := w(t) + f (t), for some f : [0, 8) Ñ R.

In 1944, R.H. Cameron and W.T. Martin asked the following question: For what func-
tions f is the push forward of the Wiener measure by w fiÑ w f absolutely continuous
with respect to the Wiener measure? They characterized the class of functions for which
this is the case and even computed the Radon-Nikodym derivative.

It is clear that we need to make f continuous so that the image of w fiÑ w f even lies
in C[0, 8). Since the Wiener measure concentrates on functions that vanish at zero, we
also need f (0) = 0. But what other kinds of regularity may be needed? The follow-
ing lemma, drawing heavily on Girsanov’s theorem (which did not exist at the time
Cameron and Martin did their work), gives a sufficient condition:

Lemma 10.1 (Sufficient condition for absolute continuity) Let B be the standard Brownian

motion with B0 = 0 realized by canonical coordinate projections on C[0, 8). Fix t ° 0 and set

F
B

t
:= s(Bs : s § t). Then for all functions f P C[0, 8) with f (0) = 0,

f P AC[0, t] ^ f
1 P L

2([0, t]) (10.1)

implies

P(B + f P ¨)|
F B

t

! P(B P ¨)|
F B

t

(10.2)
and

dP(B + f P ¨)|
F B

t

dP(B P ¨)|
F B

t

= exp
"ª

t

0
f

1(s)dBs ´ 1
2

ª
t

0
f

1(s)2ds

*
a.s. (10.3)

The measures in (10.2) are actually equivalent.

Proof. The assumption f P AC[0, t] along with f (0) = 0 implies that f (u) =
≥

u

0 h(s)ds

for some h P L
1[0, t]. The Lebesgue differentiation theorem then shows that f is actually

a.e. differentiable with f
1 = h a.e. Thanks to Novikov’s condition (in fact, even just

Lemma 9.2 suffices), the condition f
1 P L

2[0, t] ensures that

Mu := exp
"ª

u^t

0
f

1(s)dBs ´ 1
2

ª
u^t

0
f

1(s)2ds

*
(10.4)

is a martingale and so, in particular, EMt = 1. Setting rP(A) := E(1A Mt) for A P F
B

t
, we

get a probability measure rP for which Girsanov’s theorem gives
!

Bu ´
ª

u

0
f

1(s)ds : u P [0, t]
)

under rP law
=

 
Bu : u P [0, t]

(
under P. (10.5)
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Since
≥

u

0 f
1(s)ds = f (u), we can write this shortly as

@A P F
B

t : rP(B ´ f P A) = P(B P A). (10.6)

Replacing A by tw ´ f : w P Au converts this into

@A P F
B

t : rP(B P A) = P(B + f P A). (10.7)

Using the explicit form of rP, we thus get

@A P F
B

t : P(B + f P A) = E
�
1tBPAuMt

�
. (10.8)

But this gives P(B+ f P A) = 0 whenever P(B P A) = 0, proving (10.2), with the Radon-
Nikodym derivative of the two measures equal to Mt a.s, proving also (10.38). Since the
Radon-Nikodym derivative is non-vanishing a.s., the measures are equivalent. ⇤

A subtle step of the proof is the conversion from (10.6) to (10.7). This is exactly what
precludes direct extension of the statement beyond shifts by deterministic functions. To
demonstrate what changes when we attempt to proceed along that argument anyway,
we notice the following corollary of Girsanov’s theorem:

Lemma 10.2 Consider the Wiener space with the standard Brownian motion B obtained by the

coordinate projection. Let a : R+ ˆ R Ñ R be Borel measurable such that the SDE

dXt = ´a(t, Xt)dt + dBt (10.9)

admits a unique strong solution on the Wiener space. Let t ° 0 and suppose the solution obeys

the Novikov condition

E

✓
exp

!1
2

ª
t

0
a(s, Xs)

2ds

)◆
† 8 (10.10)

Then ta(s ^ t, Bs^t) : s • 0u P V
loc
B

and Wu := Bu +
≥

u^t

0 a(s, Bs)ds obeys

P(W P ¨)|
F B

t

! P(B P ¨)|
F B

t

(10.11)

and

dP(W P ¨)|
F B

t

dP(B P ¨)|
F B

t

= exp
"ª

t

0
a(s, Xs)dBs ´ 1

2

ª
t

0
a(s, Xs)

2ds

*
a.s. (10.12)

The right-hand side is meaningful as a function on Wiener space because, by strong uniqueness,

the solution X is a measurable function of the Brownian path via the solution map.

Proof. Given the strong solution as above, let

Mu := exp
"ª

u^t

0
a(s, Xs)dBs ´ 1

2

ª
u^t

0
a(s, Xs)

2ds

*
(10.13)

The condition (10.10) with the help of Theorem 9.3 ensures that M is a martingale and rP
defined for A P F

B

t
by rP(A) := E(1A Mt) is a probability measure. Moreover, since Xu =

Bu ´ ≥
u

0 a(s, Xs)ds for u P [0, t], Girsanov’s theorem tells us that tXu : u § tu is a standard
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Brownian motion under rP. Since
≥

t

0 a(s, Xs)2ds † 8 P-a.s., the absolute continuity rP ! P

on F
B

t
implies

≥
t

0 a(s, Bs)2ds † 8 P-a.s. and so W is well defined. Moreover, we get

@A P F
B

t : P(W P A) = P

 
B +

ª ¨

0
a(s, Bs)ds P A

!

= rP
 

X +
ª ¨

0
a(s, Xs)ds P A

!
= rP(B P A) = E

�
1tBPAuMt

�
.

(10.14)

This now readily implies (10.11–10.12). ⇤
The above naturally subsumes the claim in Lemma 10.1 by putting a(s, x) := f

1(s) and
noting that then W = B + f . The statement also hightlights what is different once the
integrand depends on the process itself: The change of measure replaces the Brownian
motion inside the argument by the solution to an SDE. This seems to suggest that, if the
integrand depends on more than just the instantaneous value of the process, e.g., if takes
the form of a function of the form s fiÑ a(s, tBu : u § su), then we need to solve

dXt = a
�
t, tXu : u § tu�dt + dBt. (10.15)

This is hard to do directly due to non-locality of the dependence but we may later show
a way to do this using the Itô chaos decomposition.

10.2 Necessary condition and the Cameron-Martin theorem.

As it turns out, the sufficient condition expressed in Lemma 10.1 is actually necessary.
This is easy to state but the proof is more involved:

Lemma 10.3 Let f : [0, 8) Ñ R be such that f (0) = 0 and let t ° 0. Then

P(B + f P ¨)|
F B

t

! P(B P ¨)|
F B

t

(10.16)

implies

f P AC[0, t] ^ f
1 P L

2([0, t]). (10.17)

Proof. Suppose that (10.16) holds for some t ° 0 and let F denote the Radon-Nikodym
derivative of the two measures. Given any partition P := t0 = t0 † ¨ ¨ ¨ † tn = tu,
observe that then

E
�

F | s(Bt1 , . . . , Btn
)
�
=

dP((Bt1 + f (t1), . . . , Btn
+ f (tn)) P ¨)

dP((Bt1 , . . . , Btn
) P ¨) (10.18)

Since P((Bt1 , . . . , Btn
) P ¨) has density

f (x1, . . . , xn) =

 
nπ

i=1

1a
2p(ti ´ ti´1)

!
exp

"
´1

2

nÿ

i=1

(xti
´ xti´1)

2

ti ´ ti´1

*
(10.19)
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with respect to the Lebesgue measure, a direct calculation shows that

E
�

F | s(Bt1 , . . . , Btn
)
�

= exp

#
nÿ

i=1

f (ti) ´ f (ti´1)
ti ´ ti´1

(Bti
´ Bti´1) ´ 1

2

nÿ

i=1

[ f (ti) ´ f (ti´1)]2

ti ´ ti´1

+
(10.20)

Denoting, for the given partition P,

gP(s) :=
nÿ

i=1

f (ti) ´ f (ti´1)
ti ´ ti´1

1(ti´1,ti ](s) (10.21)

we then have

E
�

F | s(Bt1 , . . . , Btn
)
�
= exp

"ª
t

0
gP(s)dBs ´ 1

2

ª
t

0
gP(s)

2ds

*
(10.22)

i.e., the Radon-Nikodym derivative has the form of the exponential martingale albeit
only with respect to a piece-wise constant function.

Next, consider the dyadic partitions Pn := ttk2´n : k = 0, . . . , 2nu of [0, t] and observe
that these are nested. The corresponding s-algebras ts(Bu : u P Pn)u are thus increasing
and, since s(

î
n•1 s(Bu : u P Pn)) = s(Bu : u § t) by sample path continuity, the Lévy

Forward theorem shows

E
�

F | s(Bt1 , . . . , Btn
)
� ›Ñ

nÑ8 F a.s. (10.23)

This means that

sup
n•1

exp
"ª

t

0
gPn

(s)dBs ´ 1
2

ª
t

0
gPn

(s)2ds

*
† 8 a.s. (10.24)

and, in light of absolute continuity of the law of B + f with respect to that of B, also

sup
n•1

exp
"ª

t

0
gPn

(s)d(B + f )s ´ 1
2

ª
t

0
gPn

(s)2ds

*
† 8 a.s. (10.25)

Noting that the explicit form of gPn
gives

ª
t

0
gPn

(s)d f (s) =
ª

t

0
gPn

(s)2ds, (10.26)

this becomes

sup
n•1

exp
"ª

t

0
gPn

(s)dBs +
1
2

ª
t

0
gPn

(s)2ds

*
† 8 a.s. (10.27)

Since F integrates to one, it has to be non-zero on a set of non-zero measure. On this set
we then also have

inf
n•1

exp
"ª

t

0
gPn

(s)dB ´ 1
2

ª
t

0
gPn

(s)2ds

*
° 0 a.s. (10.28)
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As this implies that, for at least one path of B, the exponential in (10.27) remains uni-
formly bounded while that in (10.28) remains uniformly positive, dividing one by the
other cancels the stochastic integral and gives

A := sup
n•1

ª
t

0
gPn

(s)2ds † 8 (10.29)

This is now a statement about a sequence of deterministic functions of one real variable,
from which we will derive the claim using analysis.

We start with the proof of absolute continuity of f . Let [a1, b1], . . . , [ak, bk] be disjoint
intervals with endpoint in

î
n•1 Pn. Define

h(s) :=

#
sgn( f (bi) ´ f (ai)), if s P [ai, bi] for some i = . . . , k,
0, else.

(10.30)

Once n is so large that all a1, . . . , ak, b1, . . . , bk P Pn, we have
kÿ

i=1

ˇ̌
f (bi) ´ f (ai)

ˇ̌
=

ª
h(s)gPn

(s)ds (10.31)

The right-hand side is bounded using the Cauchy-Schwarz inequality with the result
ª

h(s)gPn
(s) §

✓ ª
t

0
gPn

(s)2ds

◆1/2✓ª
h(s)2ds

◆1/2

(10.32)

Since the last integral equals
∞

k

i=1 |bi ´ ai|, we thus get
kÿ

i=1

ˇ̌
f (bi) ´ f (ai)

ˇ̌
§

?
A

✓ kÿ

i=1

|bi ´ ai|
◆1/2

(10.33)

Given e ° 0 we now set d := e2/A and observe that then
∞

k

i=1 |bi ´ ai| † d implies∞
k

i=1 | f (bi) ´ f (ai)| † e. As this works for all collections of intervals with endpoints in a
dense subset of [0, t], we have shown f P AC[0, t].

The absolute continuity ensures that f is Lebesgue differentiable with f
1 P L

1([0, t])
and f (u) =

≥
u

0 f
1(s)ds valid for all u P [0, t] due to f (0) = 0. One might be tempted

to invoke the Lebesgue differentiation theorem to claim gPn
Ñ f

1 a.e., but the problem
here is that the intervals come from a sequence of partitions which is not compatible
with the standard statement of the Lebesgue differentiation theorem. We proceed by a
probabilistic argument.

Let U be uniform on [0, t] and let Gn := s(tu § U § su : u, s P Pn, u † su. Then, as
shown by a direct calculation,

gPn
(U) = E

�
f

1(U)
ˇ̌
Gn

�
(10.34)

Since tGnunPN is increasing, the Lévy Forward Theorem along with s(
î

n•1 Gn) = s(U)
gives gPn

(U) Ñ f
1(U) a.s. Fatou’s lemma turns this into

E
�

f
1(U)2� § lim inf

nÑ8 E
�

gPn
(U)2� § sup

n•1
E
�

gPn
(U)2� (10.35)
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Since the expectation with respect to U is 1/t-multiple of the integral of the function
on [0, t], the claim now follows from (10.29). ⇤

To summarize the above developments, we state:

Theorem 10.4 (Cameron and Martin, 1944) Consider the standard Brownian motion B on

the Wiener space such that B0 = 0. Then for all f : [0, 8) Ñ R and all t ° 0,

f P AC[0, t] ^ f (0) = 0 ^ f
1 P L

2([0, t]) (10.36)

is equivalent to

P(B + f P ¨)|
F B

t

! P(B P ¨)|
F B

t

(10.37)
and, in fact, also to these measures being mutually equivalent. Under these circumstances,

dP(B + f P ¨)|
F B

t

dP(B P ¨)|
F B

t

= exp
"ª

t

0
f

1(s)dBs ´ 1
2

ª
t

0
f

1(s)2ds

*
(10.38)

almost surely with respect to the Wiener measure.

This result by R.H. Cameron and W.T. Martin, which appeared under the title “Trans-
formations of Weiner Integrals Under Translations” in Annals of Mathematics, Vol. 45,
No. 2 (1944), pp. 386-396, started a slew of developments in the theory of Gaussian
processes, and later also martingales, that are either referred to by the names of these
authors or by Girsanov’s. We will discuss these in the forthcoming lectures.
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