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9. CONTINUOUS VERSION AND ITO INTEGRABILITY

The purpose of this lecture is to resolve two natural questions. The first one concerns a
characterization of processes that we can actually integrate in the above sense. Thanks to
Lemma 8.8 we know that all left-continuous processes Y € V are included, but the point
is to determine how large is the class of integrable processes in V. The second question
concerns the t-dependence of the integral Sé Y;dB;. Note that we constructed the integral
for each f separately, and only modulo a null set, but if are to treat { S(t) Y;dBs: t € [0,00)}
as a process then we need to establish some minimal regularity of the integrals as a
function of their upper limit.

We start by addressing the second question. For this we recall the following definition:

Definition 9.1 Let {F;}>0 be a filtration. A process {M;: t > 0} is a martingale if it is
adapted (i.e., Vt > 0: M; is F;-measurable), integrable (meaning V't > 0: M; € L!) and

Vt,s = 0: E(Mt+s|]:t) = M; a.s. (91)

We say that the martingale is continuous if t — M; is continuous. A martingale is an
Lz-martingale ifVt=0: M; e L2

We then have:

Theorem 9.2 Suppose the Brownian filtration is such that Fo contains all P-null sets. For
each’Y € VOH there exists a continuous L>-martingale {I;: t > 0} such that

t
Vt>0: P(It :f stBs> =1 9.2)
0

In particular, the process {SS Y;dB;: t = 0} of stochastic integrals admits a continuous version.
For the proof we need the following result from martingale theory:

Lemma 9.3 (Doob’s L?-inequality) Let {M;: t > 0} be a continuous L*-martingale. Then

1

Wt > 0VA > 0: P(sup M| >A) < E(M}) (9.3)

s€(0,¢]

Proof. Fix t = 0 and A > 0. We will use the fact that the statement is known for discrete-
time martingales. Indeed, given any set of points {t;: i = 0,...,n} < [0, ], which we
may assume to obey 0 = tg < t; < -+ < t, < t, the process {M},}""_, is an L>-martingale.
The discrete-time Doob L?-inequality then reads

1 2 1 2
P( max [My| > 1) < E(ME) < 1;E(MY), (9.4)
where we also used that t — E(M?) is non-decreasing. Refining the family of points to
increase to all rationals in [0, ¢] yields
1

32 E(M?) (9.5)

P( sup |M;| > A) <
s€[0,t]nQ
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where the Monotone Convergence Theorem was used on the left-hand side to pass the
limit inside the probability. As M has continuous paths, the supremum in (9.5) equals
that in (9.3) and so we are done. 0

Proof of Theorem 9.2. Since Y € V", for each n > 1 there is Y(™) € V) such that
[y —y] <27 (9.6)

Since [Y] = 2% min({1, ||1N/HL2([O,HXQ)}, for n > [t] this implies

YO =Y 20,0y <271 9.7)
Define
t
"= J Y™ 4B, (9.8)
0

(n)

Then t — It(n) is continuous with I;" € L2 and F;-measurable. We claim:

Lemma 9.4 ") is a martingale.

Proof. In light of the above, it remains to check the martingale property (9.1). Assum-
ing Y(") is given by the right-hand side of (8.5), this boils down to showing that, for any
ti>t;1>0,any t,s > 0, any Z; € L? that is F;,_,-measurable,

E(Zi(Bi’i/\(t-l-S) - BtHA(Hs)) ’]:t) - Zi(Btmt - Bti—l/\t) (9~9)

For t > t; this is immediate from the fact that all of the random variables on the left are
Ji-measurable, while for t < t;_; we first condition on F;,_, and then realize that this
conditional expectation vanishes, as does the right-hand side. For t € (t;_1,t;) we can
move Z; out of the conditional expectation. Then we write the Brownian increment on
the left as

(Bia(t4s) — Bt) + (Bt — By,_,) (9.10)

The conditional expectation (given F;) of the first term in the parentheses vanishes
thanks to Definition 8.1(3), while the second term is F;-measurable and thus unaffected
by taking this conditional expectation. Noting that, for this range of ¢, also the increment
on the right equals B; — By, |, we get (9.9). O

Returning to the proof of Theorem 9.2, we now observe that Doob’s L?>-martingale
inequality along with It6 isometry and (9.7) show, for any m > n, that

P( sup IV~ "] > 27772) < 2"E[(1]") ~ 1"))?]
s€[0,] (9.11)

= 21 = YO gy < 427

For m := n 4 1 this is summable on n and so, by the Borel-Cantelli lemma, the event on
the left occurs only finitely often a.s.
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To extract the desired conclusion from this, we set

lim It(") on ﬂ sup ]IS(”) - IS(HH)\ > 27n/2 i.o.(n)}C
I; .= n—0 N>1 s€[0,N] (9.12)

0 else,

and note that the limit exist on the event in the first alternative, which by the previous
reasoning is a full measure event.
The limit in (9.12) is actually locally uniform, since each I (1) is continuous, also the

limit process I is continuous. The construction of the It6 integral gives It(n) — Sé Y,dB;
in L2 and so we get (9.2)aswellas I; € L2. Since F; contains all P-null sets, and thus also
the set on which the second alternative in (9.12) applies, the process I is adapted. Passing
in the limit in the defining property (9.1), Lemma 9.4 implies that I is a continuous L2-
martingale as claimed. O

As to the other question discussed above, here we simply claim:
Theorem 9.5 Using the setting and notation defined above,
Voll=vy (9.13)
In particular, Sé YdB; is defined as in Corollary 8.7 forall Y € V and all t > 0.

Proof. Let Y € V. We need to show that Y can be approximated by a sequence of pro-
cesses from Vp. In Lemma 8.8 we used the values of Y at dyadic rationals to give a good
approximation for Y left-continuous. Here we will use a similar idea but for dyadic ratio-
nals shifted by a random value so that a.e. shift actually produces a good approximation.
The proof is thus an example of a probabilistic method which is a way to demonstrate ex-
istence of an object by showing that a sample from a natural probability measure yields
a desired object with probability one.

Moving to the actual argument, for technical reasons we first extend t — Y; to all reals
by setting Y; = 0 for all ¢+ < 0. Define, for each integer n > 1 and reals t,h > 0,

ru(t,h) :==27"2"(t—h)|+h (9.14)
Then t — r,(t, h) takes only values in 27"Z + h and obeys
F=27"<ry(t,h) <t (9.15)

Note also that i — r,(t, h) is a piecewise linear (but discontinuous) periodic function
with period 27". In particular, for each integer n > 1,

2—71

flf(rn(t,h))dh —on [ (= n)an 9.16)
0

0
holds for each Borel f: R — [0,%0) and each ¢t > 0. This identity drives the proof of:

Lemma 9.6 Forall T >0,
T 1
— 2 R
E JO dt L di Yy =Y, o2 — 0 9.17)
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Proof. Fix T > 0. We first claim that, whenever Sg Y7dt < o0, we have
T
Y, =Y, ,2dt — 0 9.18
[ v ©.18)

This holds because, for each w € (), the map t — Y;(w) — being measurable and square
integrable on [0, T] thanks to Y € V — can be approximated in L2([0, t]) by a sequence of
bounded continuous functions for which the claim holds by the Bounded Convergence
Theorem. (This argument is generally used to prove that the shift-map is continuous
in LY for every p € [1,0).)

Since the quantity in (9.18) is bounded by 4 Sg Y7dt, which has finite expectation by
Y € V, the Dominated Convergence Theorem yields

T
E|l |Y;—Y._,|*dt — 0 9.19
|| e-viapar 9.19)

Noting that (9.16) along with Fubini-Tonelli gives

2" T
f dtf dh [Ys =Y, o P :z"J (EJ |Yt—Yt_h|2dt)dh, (9.20)
0 0

the claim follows by plugging (9.19) on the right-hand side. O

Moving back to the main line of the proof of Theorem 9.5, using Lemma 9.6 along with
the Cantor diagonal argument we now find an increasing sequence of integers {1 }reN
such that

vk e N: Ef dtJ dh Y =Y, ol <47 (9.21)

The Markov inequality along with Fubini-Tonelli implies

k
A<{h e [0,1]: EL dt|Ye =Yy, (o l* > 2—k}) <27k (9.22)

where A is the Lebesgue measure on [0, 1]. The Borel-Cantelli lemma now implies that,
for Lebesgue-a.e h € [0,1],

k—0o0

holds for all m > 1
In order to conclude the proof, pick any / in the full-measure set such that (9.23) holds.

The discrete nature of r,(t, 1) then implies that ank(t,h) € Vp and (9.23) gives Y € VOH'
This proves the claim. O

Further reading: Section 3.1 in Jksendal, Section 3.2B in Karatzas-Shreve
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