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9. CONTINUOUS VERSION AND ITÔ INTEGRABILITY

The purpose of this lecture is to resolve two natural questions. The first one concerns a
characterization of processes that we can actually integrate in the above sense. Thanks to
Lemma 8.8 we know that all left-continuous processes Y P V are included, but the point
is to determine how large is the class of integrable processes in V . The second question
concerns the t-dependence of the integral

≥t
0 YsdBs. Note that we constructed the integral

for each t separately, and only modulo a null set, but if are to treat t
≥t

0 YsdBs : t P [0, 8)u
as a process then we need to establish some minimal regularity of the integrals as a
function of their upper limit.

We start by addressing the second question. For this we recall the following definition:

Definition 9.1 Let tFtut•0 be a filtration. A process tMt : t • 0u is a martingale if it is

adapted (i.e., @t • 0 : Mt is Ft-measurable), integrable (meaning @t • 0 : Mt P L1
) and

@t, s • 0 : E(Mt+s|Ft) = Mt a.s. (9.1)

We say that the martingale is continuous if t fiÑ Mt is continuous. A martingale is an

L2
-martingale if @t • 0 : Mt P L2

.

We then have:

Theorem 9.2 Suppose the Brownian filtration is such that F0 contains all P-null sets. For
each Y P V0

[[¨]] there exists a continuous L2-martingale tIt : t • 0u such that

@t • 0 : P
⇣

It =
ª t

0
Ys dBs

⌘
= 1 (9.2)

In particular, the process t
≥t

0 YsdBs : t • 0u of stochastic integrals admits a continuous version.

For the proof we need the following result from martingale theory:

Lemma 9.3 (Doob’s L2-inequality) Let tMt : t • 0u be a continuous L2-martingale. Then

@t • 0 @l ° 0 : P
⇣

sup
sP[0,t]

|Ms| ° l
⌘

§
1

l2 E(M2
t ) (9.3)

Proof. Fix t • 0 and l ° 0. We will use the fact that the statement is known for discrete-
time martingales. Indeed, given any set of points tti : i = 0, . . . , nu Ñ [0, t], which we
may assume to obey 0 = t0 † t1 † ¨ ¨ ¨ † tn § t, the process tMti u

n
i=1 is an L2-martingale.

The discrete-time Doob L2-inequality then reads

P
⇣

max
i=0,...,n

|Mti | ° l
⌘

§
1

l2 E(M2
tn) §

1
l2 E(M2

t ), (9.4)

where we also used that t fiÑ E(M2
t ) is non-decreasing. Refining the family of points to

increase to all rationals in [0, t] yields

P
⇣

sup
sP[0,t]XQ

|Ms| ° l
⌘

§
1

l2 E(M2
t ) (9.5)
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where the Monotone Convergence Theorem was used on the left-hand side to pass the
limit inside the probability. As M has continuous paths, the supremum in (9.5) equals
that in (9.3) and so we are done. ⇤

Proof of Theorem 9.2. Since Y P V0
[[¨]], for each n • 1 there is Y(n)

P V0 such that

[[Y(n)
´ Y]] § 2´n. (9.6)

Since [[rY]] • 2´k mint1, }rY}L2([0,k]ˆW)u, for n • rts this implies

}Y(n)
´ Y}L2([0,t]ˆW) § 2´n+rts (9.7)

Define

I(n)t :=
ª t

0
Y(n)

s dBs. (9.8)

Then t fiÑ I(n)t is continuous with I(n)t P L2 and Ft-measurable. We claim:

Lemma 9.4 I(n) is a martingale.

Proof. In light of the above, it remains to check the martingale property (9.1). Assum-
ing Y(n) is given by the right-hand side of (8.5), this boils down to showing that, for any
ti ° ti´1 • 0, any t, s • 0, any Zi P L2 that is Fti´1 -measurable,

E
�
Zi(Bti^(t+s) ´ Bti´1^(t+s))

ˇ̌
Ft

�
= Zi(Bti^t ´ Bti´1^t) (9.9)

For t • ti this is immediate from the fact that all of the random variables on the left are
Fti -measurable, while for t § ti´1 we first condition on Fti´1 and then realize that this
conditional expectation vanishes, as does the right-hand side. For t P (ti´1, ti) we can
move Zi out of the conditional expectation. Then we write the Brownian increment on
the left as

(Bti^(t+s) ´ Bt) + (Bt ´ Bti´1) (9.10)

The conditional expectation (given Ft) of the first term in the parentheses vanishes
thanks to Definition 8.1(3), while the second term is Ft-measurable and thus unaffected
by taking this conditional expectation. Noting that, for this range of t, also the increment
on the right equals Bt ´ Bti´1 , we get (9.9). ⇤

Returning to the proof of Theorem 9.2, we now observe that Doob’s L2-martingale
inequality along with Itô isometry and (9.7) show, for any m • n, that

P
⇣

sup
sP[0,t]

|I(n)s ´ I(m)
s | ° 2´n/2

⌘
§ 2nE

⇥
(I(n)t ´ I(m)

t )2⇤

= 2n
}Y(n)

´ Y(m)
}

2
L2([0,t]ˆW) § 4 ¨ 2´m^n+rts

(9.11)

For m := n + 1 this is summable on n and so, by the Borel-Cantelli lemma, the event on
the left occurs only finitely often a.s.
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To extract the desired conclusion from this, we set

It :=

$
’&

’%

lim
nÑ8 I(n)t on

£

N•1

!
sup

sP[0,N]

|I(n)s ´ I(n+1)
s | ° 2´n/2 i.o.(n)

)c

0 else,
(9.12)

and note that the limit exist on the event in the first alternative, which by the previous
reasoning is a full measure event.

The limit in (9.12) is actually locally uniform, since each I(n) is continuous, also the
limit process I is continuous. The construction of the Itô integral gives I(n)t Ñ

≥t
0 YsdBs

in L2 and so we get (9.2) as well as It P L2. Since F0 contains all P-null sets, and thus also
the set on which the second alternative in (9.12) applies, the process I is adapted. Passing
in the limit in the defining property (9.1), Lemma 9.4 implies that I is a continuous L2-
martingale as claimed. ⇤

As to the other question discussed above, here we simply claim:

Theorem 9.5 Using the setting and notation defined above,

V0
[[¨]]
= V (9.13)

In particular,
≥t

0 YdBs is defined as in Corollary 8.7 for all Y P V and all t • 0.

Proof. Let Y P V . We need to show that Y can be approximated by a sequence of pro-
cesses from V0. In Lemma 8.8 we used the values of Y at dyadic rationals to give a good
approximation for Y left-continuous. Here we will use a similar idea but for dyadic ratio-
nals shifted by a random value so that a.e. shift actually produces a good approximation.
The proof is thus an example of a probabilistic method which is a way to demonstrate ex-
istence of an object by showing that a sample from a natural probability measure yields
a desired object with probability one.

Moving to the actual argument, for technical reasons we first extend t fiÑ Yt to all reals
by setting Yt = 0 for all t † 0. Define, for each integer n • 1 and reals t, h • 0,

rn(t, h) := 2´nt2n(t ´ h)u + h (9.14)

Then t fiÑ rn(t, h) takes only values in 2´nZ + h and obeys

t ´ 2´n
§ rn(t, h) § t (9.15)

Note also that h fiÑ rn(t, h) is a piecewise linear (but discontinuous) periodic function
with period 2´n. In particular, for each integer n • 1,

ª 1

0
f
�
rn(t, h)

�
dh = 2n

ª 2´n

0
f (t ´ h)dh (9.16)

holds for each Borel f : R Ñ [0, 8) and each t • 0. This identity drives the proof of:

Lemma 9.6 For all T ° 0,

E
ª T

0
dt

ª 1

0
dh |Yt ´ Yrn(t,h)|

2
›Ñ
nÑ8 0 (9.17)
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Proof. Fix T ° 0. We first claim that, whenever
≥T

0 Ys
t dt † 8, we have

ª T

0
|Yt ´ Yt´h|

2 dt ›Ñ
hÓ0

0 (9.18)

This holds because, for each w P W, the map t fiÑ Yt(w) — being measurable and square
integrable on [0, T] thanks to Y P V — can be approximated in L2([0, t]) by a sequence of
bounded continuous functions for which the claim holds by the Bounded Convergence
Theorem. (This argument is generally used to prove that the shift-map is continuous
in Lp for every p P [1, 8).)

Since the quantity in (9.18) is bounded by 4
≥T

0 Ys
t dt, which has finite expectation by

Y P V , the Dominated Convergence Theorem yields

E
ª T

0
|Yt ´ Yt´h|

2 dt ›Ñ
hÓ0

0 (9.19)

Noting that (9.16) along with Fubini-Tonelli gives

E
ª T

0
dt

ª 1

0
dh |Yt ´ Yrn(t,h)|

2 = 2n
ª 2´n

0

⇣
E

ª T

0
|Yt ´ Yt´h|

2 dt
⌘

dh, (9.20)

the claim follows by plugging (9.19) on the right-hand side. ⇤
Moving back to the main line of the proof of Theorem 9.5, using Lemma 9.6 along with

the Cantor diagonal argument we now find an increasing sequence of integers tnkukPN

such that

@k P N : E
ª k

0
dt

ª 1

0
dh |Yt ´ Yrnk (t,h)

|
2

§ 4´k (9.21)

The Markov inequality along with Fubini-Tonelli implies

l

✓!
h P [0, 1] : E

ª k

0
dt |Yt ´ Yrnk (t,h)

|
2

° 2´k
)◆

§ 2´k, (9.22)

where l is the Lebesgue measure on [0, 1]. The Borel-Cantelli lemma now implies that,
for Lebesgue-a.e h P [0, 1],

E
ª m

0
dt |Yt ´ Yrnk (t,h)

|
2

›Ñ
kÑ8

0 (9.23)

holds for all m • 1.
In order to conclude the proof, pick any h in the full-measure set such that (9.23) holds.

The discrete nature of rn(t, h) then implies that Yrnk (t,h)
P V0 and (9.23) gives Y P V0

[[¨]].
This proves the claim. ⇤

Further reading: Section 3.1 in Øksendal, Section 3.2B in Karatzas-Shreve
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