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8. STOCHASTIC INTEGRAL VIA ITÔ ISOMETRY

We will now move to define the stochastic integral in full scope of its validity. The main
novelty is the extension from integrals of the form

≥t
0 f (Bs)dBs to integrals of the form≥t

0 YsdBs, where Ys may depend on tBu : u § su not just Bs alone. From the construction
of the Paley-Zygmund integral we in turn draw the important idea to base the construc-
tion of the integral on L2-isometry rather than pointwise convergence that underlies the
Riemann or Lebesgue integration theory.

We start by a precise formulation of the phrase “Ys may depend on tBu : u § su.” This
needs the following concept:

Definition 8.1 Let tBt : t P [0, 8)u be a standard Brownian motion defined on a proba-

bility space (W,F , P). A collection of s-algebras tFtut•0 is a Brownian filtration if

(1) tFtut•0 is a filtration on (W,F ), meaning that

@0 § s § t : Fs Ñ Ft Ñ F (8.1)

(2) B is adapted to tFtut•0, meaning that

@t • 0 : Bt is Ft-measurable (8.2)

(3) B is Markov with respect to tFtut•0, meaning that

@t • 0 : s
�

Bt+s ´ Bt : s • 0
�

KK Ft (8.3)

Here we recall that s-algebras F and G are said to be independent, with notation F KK G,
if @A P F @B P G : P(A X B) = P(A)P(B). We call (3) a Markov property because
it ensures that a standard Brownian motion, if conditioned on Ft and reduced by the
value of Bt, is a again a standard Brownian motion.

Our next task is the precise definition of “simple processes” which are those where
we will easily agree on what the integral should evaluate to.

Definition 8.2 Given a filtration tFtut•0 on a probability space (W,F , P), a stochastic

process tYt : t P [0, 8)u on this space is said to be simple if there exist n P N, reals

0 =: t0 † t1 † ¨ ¨ ¨ † tn and random variables Z0, . . . , Zn satisfying

@i = 0, . . . , n : Zi P L8(W,F , P) ^ Zi is Fti´1-measurable (8.4)

with the proviso t´1 := 0 such that

@t • 0 : Yt = Z01t0u(t) +
nÿ

i=1

Zi1(ti´1,ti ](t) (8.5)

We write V0 for the class of simple processes.

We remark that Z0 will be irrelevant for the stochastic integral and so the restrictions
imposed on it are done only for formal reasons (such has having Y adapted to the fil-
tration). Calling the process “simple” is somewhat in conflict with the theory of the
Lebesgue integral. Indeed, there the attribute “simple” is reserved to functions that
are piecewise constant and measurable (and thus constant on measurable sets), while
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those constant on intervals are usually referred to as “step” functions. (Replacing sim-
ple functions by step functions is exactly what distinguishes Lebesgue integrability from
Riemann integrability.)

The definition of a stochastic integral
≥t

0 YsdBs for Y simple is now fairly intuitive:
multiply the value of the process on interval (ti´1 ´ ti] by the increment of the Brown-
ian motion over this interval, and add these over all of the intervals contained in [0, t]
taking only the corresponding portion of the interval containing t. A problem is that the
representation (8.5) of a simple process is not unique. We thus first note:

Lemma 8.3 For Y P V0 be given by (8.5) with a Brownian filtration associated with a Brownian
motion tBt : t P [0, 8)u. Then, for each t • 0, the expression on the right of

ª t

0
Ys dBs :=

nÿ

i=1

Zi(Bti^t ´ Bti´1^t) (8.6)

does not depend on the representation in (8.5). Moreover, the integral is linear in the sense that,
for all t • 0, all Y, Y1

P V0 and all a, b P R,
ª t

0
(aYs + bY1

s)dBs = a

ª t

0
Ys dBs + b

ª t

0
Y1

s dBs (8.7)

Proof (idea). As for the Riemann integral, independence of representation is shown by
finding a partition of [0, t] that is common for any two ways to express Y as in (8.5) and
then comparing the resulting expressions (8.6). The linearity (8.7) is checked similarly.
We leave the details to the reader. ⇤

Note that the definition (8.6) agrees with the quantity It( f , P) from (6.24) for Yt given
by (8.6) with Zi := f (Bti´1) and P determined by points t1, . . . , tn = t. The following
lemma then extends Lemma 6.6 to our (more general) setting:

Lemma 8.4 (Itô isometry) For all t • 0 and all Y P V0,

E
⇣ª t

0
Ys dBs

⌘2
�
= E

ª t

0
Y2

s ds
�

, (8.8)

where the integral on the right is in the Lebesgue (as well as Riemann) sense.

Proof. Writing the square of a sum as a double sum, the left-hand side of (8.8) equals

nÿ

i,j=1

E
⇣

ZiZj(Bti^t ´ Bti´1^t)(Btj^t ´ Btj´1^t)
⌘

(8.9)

Recall that Zi is Fti´1 measurable. This means that, for each i † j, the expectation above
can be written as

E
⇣

ZiZj(Bti^t ´ Bti´1^t)E
�
(Btj^t ´ Btj´1^t)

ˇ̌
Ftj´1

�⌘
, (8.10)
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where we used that the terms Zi, Zj and Bti^t ´ Bti´1^t are all Ftj´1 -measurable. Since
condition (3) in the definition of Brownian filtration implies

E
�
(Btj^t ´ Btj´1^t)

ˇ̌
Ftj´1

� a.s.
= E(Btj^t ´ Btj´1^t) = 0, (8.11)

the expectation in (8.10) vanishes. A similar argument applies to the terms with i ° j
which means that (8.9) equals

nÿ

i=1

E
⇣

Z2
i (Bti^t ´ Bti´1^t)

2
⌘

(8.12)

Using again that Zi is Fti´1 measurable and that Bti^t ´ Bti´1 is independent of Fti´1 , the
expectation equals

E(Z2
i )E
�
(Bti^t ´ Bti´1^t)

2� = E(Z2
i )(t ^ ti ´ t ^ ti´1). (8.13)

The left-hand side of (8.8) thus equals the expectation of
nÿ

i=1

Z2
i (ti ^ t ´ ti´1 ^ t). (8.14)

This is now readily checked to equal
≥t

0 Y2
s ds. ⇤

In order to use the Itô isometry, we need to identify a suitable L2-space of stochastic
processes where the square-root of the right-hand side plays the role of L2-norm. The
minor problem is that the expression in (8.8) is for a fixed t, while we would like to work
with processes on all of [0, 8). We thus put forward:

Definition 8.5 Given a Brownian motion and a Brownian filtration tFtut•0 on a proba-

bility space (W,F , P), we write V for the class of processes tYt : t P [0, 8)u such that

(1) (w, t) fiÑ Yt(w) is jointly measurable, meaning that, as a map W ˆ [0, 8) Ñ R, it is

measurable with respect to the product s-algebra F b B([0, 8)),
(2) Y is adapted, meaning @t • 0 : Yt is Ft-measurable,

(3) Y is locally (jointly) square integrable, meaning

@t ° 0 : }Y}L2([0,t]ˆW) :=

 
E
ª t

0
Y2

s ds
�◆1/2

† 8. (8.15)

Note that condition (1) implies (via Fubini-Tonelli) that t fiÑ Yt(w) is Borel function
for each w P W. This will be quite useful in a number of arguments below. Condition (2)
is in turn an abstract formulation of the fact that Yt is independent of Bt+¨ ´ Bt which (as
noted above) is key for the formulation of the Itô integral. We now observe:

Lemma 8.6 V is a linear vector space with respect to pointwise addition and scalar multiplica-
tion. Moreoer, we have V0 Ñ V ; i.e., V contains all simple processes. In addition, defining

@Y P V : [[Y]] :=
ÿ

n•1

2´n�
}Y}L2([0,n]ˆW) ^ 1

�
, (8.16)
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the map Y, Y1
fiÑ [[Y ´ Y1]] is a pseudometric on V such that for all Y, Y1

P V ,

[[Y ´ Y1]] = 0 ô l b P
⇣ 

(t, w) P [0, 8) ˆ W : Yt(w) = Y1
t (w)

(⌘
= 0 (8.17)

where l is the Lebesgue measure on [0, 8). The ttY1
P V : [[Y ´ Y1]] = 0u : Y P Vu of equiva-

lence classes has the structure of a complete topological vector space.

We leave the (straightforward) proof of this lemma to homework exercise. The im-
portant consequence of Lemma 8.4 is then:

Corollary 8.7 Denote by V0
[[¨]] is the closure of V0 in V under the above topology. Then for

each t • 0, the map Y fiÑ
≥t

0 YsdBs extends continuously to all Y P V0
[[¨]]. In particular, for all

t • 0, (8.8) holds for all Y P V0
[[¨]] and (8.7) holds a.s. for all Y, Y1

P V and all a, b P R.

Proof. Thanks to the underlying metric structure of V factored by the equivalence classes
of processes for which the right-hand side (8.17) applies, it suffices to check that if
tY(n)

un•1 is Cauchy in the sense that [[Y(n)
´ Y(m)]] Ñ 0 as n, m Ñ 8, then for each t • 0

the sequence of integrals t
≥t

0 Y(n)dBsun•1 is Cauchy in L2. This follows from (8.8) and
(8.16). As the extension is based on L2-limits, the isometry (8.8) remains in force. The
additivity (8.7) is proved similarly. ⇤

A natural question is now what processes otherthan the simple ones belong to the
closure V0

[[¨]] in V . We will answer this in full completeness later, but for now we contend
ourselves with:

Lemma 8.8 Let Y P V have left-continuous paths. Then Y P V0
[[¨]].

Proof. Suppose first that Y P V is bounded, meaning Dc ° 0 : supt•0 |Yt| § c a.s., with
left-continuous paths. Define, for each integer n • 1,

Y(n)
t := Y01t0u(t) +

4nÿ

k=0

Yk2´n 1(k2´n,(k+1)2´n](t) (8.18)

Then Y(n)
P V0 and, since Y(n)

t = Y2nr2nts´2´n , the left continuity shows

@t • 0 : Y(n)
t ›Ñ

nÑ8 Yt (8.19)

The Bounded Convergence Theorem now implies }Y(n)
´ Y}L2([0,t]ˆW) Ñ 0 for each t • 0

and, consequently, Y(n)
Ñ Y in V . Hence Y P V0

[[¨]].
Next assume that Y P V is just left continuous and define, for each M ° 0,

rY(M)
t := YT ^ M _ (´M). (8.20)

Then rY(M) is bounded and left-continuous and so rY(M)
P V0

[[¨]] by the previous argument.
A calculation shows

}rY(M)
´ rY}

2
L2([0,t]ˆW) § E

ª t

0
Y2

s 1t|Ys|°muds (8.21)
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which tends to zero as M Ñ 8 by the Dominated Convergence Theorem. Hence we get
Y P V0

[[¨]] as desired. ⇤
Lemma 8.8 implies that all continuous Y P V are Itô integrable. In particular, this

includes processes of the form Ys := f (Bs) where f P C(R) is — using Fubini-Tonelli
and Definition 8.5(1) — such that s fiÑ E[ f (Bs)2] is locally Lebesgue integrable. This
alone is already an extension of Corollary 6.7 with more yet to come.

Since we already have a decent class of integrable processes, a question is: Can the
integral be actually ever computed? As usual in other integration theories, this is not
expected to apply to more than a handful of cases so we may as well start looking at
particular examples. One strategy that works is to convert the stochastic integral to an
ordinary Riemann or Stieltjes integral as in:

Lemma 8.9 Let f : [0, t] Ñ R be of bounded variation (meaning supP V(1)
t ( f , P) † 8).

Prove that ª t

0
f (s)dBs = f (t)Bt ´ f (0)B0 ´

ª t

0
Bs d f (s) a.s.

where the latter is a Stieltjes integral. In fact, the same holds even if f is of bounded p-variation
(meaning supP V(p)

t ( f , P) † 8) for some p P [1, 2).

We leave the proof of this statement to homework. Another way to proceed is to
invoke the Itô formula that we already proved in Lemma 6.5. Indeed, (6.26) implies that,
for all f P C1(R) we have

ª t

0
f (Bs)dBs = F(Bs) ´ F(B0) ´

1
2

ª t

0
f 1(Bs)ds (8.22)

where F : R Ñ R is any antiderivative of f , i.e., F P C1(R) such that F1 = f . For the
special case f (x) = x, this yields

ª t

0
BsdBs =

1
2
(B2

t ´ t) (8.23)

Similarly we can compute stochastic integrals of
≥t

0 Bn
s dBs, although the computation

will get the harder the larger n • 1 gets. A unified approach to these integrals will be
presented later.

Further reading: Section 3.1 in Øksendal
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