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7. WHITE NOISE AND THE PALEY-WIENER INTEGRAL

Another important source of motivation for the introduction of the stochastic integral
comes from modeling of noise in physical phenomena. Recall that a classical way to
describe the evolution of a quantity X is by relating its infinitesimal rate of change to its
value. This represents the evolution by the ODE

dXt

dt
= a(t, Xt) (7.1)

where a : [0, 8)ˆ R Ñ R is determined by the specific context. This equation is idealized
because in realistic situations, another term appears on the right-hand side reflecting
unpredictable, or outright random, influences of ambient environment, thus upgrading
(7.1) to the form

dXt

dt
= a(t, Xt) + Wt (7.2)

where rW = tWt : t P [0, 8)u is a “noise” process.
The exact nature of W is determined by the specific context, but the simplest require-

ments we could impose are that W be

(1) of zero mean, EWt = 0, to ensure that all deterministic effects are already ac-
counted by the first term on the right-hand side of (7.2), and

(2) independent at different times, @t ‰ s : Wt KK Ws, or at least uncorrelated @t ‰

s : Cov(Ws, Wt) = 0, to express that the noise is memoryless.

In order to solve the ODE, we then also need require that t fiÑ Wt is at least measur-
able and therein lies a problem: No process satisfying these requirements exists. (More
precisely, while the Kolmogorov Extension Theorem readily outputs a process satisfy-
ing (1-2) for any prescribed distribution for each Wt, as soon as these distributions are
non-degenerate, the sample paths of this process will fail to be measurable.)

7.1 Poisson point process.

There are several ways how to overcome this problem. One of these is to give up on
independence at different times and allow for non-trivial correlations. The other is to
interpret (7.2) only under an integral sign. Instead of a value attached to a point, W
then just needs to assign a value to each non-degenerate interval, or more generally, to
each measurable set of times and that so in an additive way. In short, W becomes a
signed measure.

One example of such an object is the compensated Poisson process. Recall the following
definition from 275B:

Definition 7.1 (Poisson point process) Let (X , S, µ) be a measure space with µ finite.

A Poisson point process on X with intensity measure µ is a collection tN(A) : A P Su

of random variables such that

A fiÑ N(A) is countably additive on S (7.3)
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and the following is true:

@n • 1 @A1, . . . , An P S disjoint : tN(Ai)u
n
i=1 are independent (7.4)

and

@A P S : N(A) = Poisson(µ(A)) (7.5)

In class we use a slightly weaker definition in which (7.3) is replaced by

@tAiuiPN P S : disjoint ñ N
⇣§

iPN

Ai

⌘
=

ÿ

iPN

N(Ai) a.s. (7.6)

where the implicit null event is allowed to depend on tAiuiPN. That weakening (7.3)
carries no gain or loss is seen from:

Lemma 7.2 Let K be Poisson with parameter µ(X ) and let tXiuiPN be i.i.d. X -valued with
law µ(¨)/µ(X ), independent of K. Then tN(A) : A P Su with

N(A) :=
Kÿ

i=1

1A(Xi) (7.7)

is a Poisson point process with intensity µ according to Definition 7.1.

Proof (sketch). Obviously, A fiÑ N(A) is countably additive (and thus a random measure,
in a suitable interpretation of that term). We thus have to check that (7.4) and (7.5) hold.
Let A P S. Using that N(A) is integer valued, given k P N, we compute

P
�

N(A) = k
�
=

8ÿ

n=0
P
�
K = n)P

✓ nÿ

i=1

1A(Xi) = k
◆

=
8ÿ

n=k

µ(X )n

n!
e´µ(X )

✓
n
k

◆⇣ µ(A)
µ(X )

⌘k⇣µ(Ac)
µ(X )

⌘n´k
(7.8)

Here we used that K and tXiuiPN are independent and then, in the second line, wrote
up the explicit probability mass function of K and use the fact that, due to tXiuiPN being
i.i.d., t1A(Xi)un

i=1 are i.i.d. with parameter µ(A)/µ(X ). The resulting expression is now
readily shown to equal 1

k! µ(A)ke´µ(A) giving us (7.5). The proof of (7.4) is analogous,
albeit notationally more involved. We leave the details to the reader. ⇤

Remark 7.3 The above construction allows us to define a PPP(µ) even if µ is only s-
finite. Indeed, s-finiteness means that X admits a partition into a countable family of
disjoint measurable sets of finite µ-measure. We now define N by (7.18) on each part of
the partition using its own K and Xi’s. The resulting random measure is then s-finite
using the same partition as µ.

In view of our motivation to introduce the Poisson point process as a model of noise,
a slight problem with the above is that N does not have zero mean. This is fixed by:
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Definition 7.4 (Compensated Poisson process) Let tN(A) : A P Su be a Poisson point

process on X with finite intensity measure µ. Then t pN(A) : A P Su for

pN(A) := N(A) ´ µ(A) (7.9)

is the associated compensated Poisson process.

An example of the above setting is the homogeneous Poisson process tNt : t P [0, 8)u
from (3.24) where, abusing notation slightly, Nt = N([0, t]) for tN(A) : A P B([0, 8))u
a Poisson point process on [0, 8) with intensity given by the Lebesgue measure. The
compensated point process then evaluates on [0, t] to

pNt := Nt ´ t. (7.10)

Thanks to (7.4), the increments of pN over non-overlapping interval are independent with
zero mean, as desired.

The Poisson point process can be used to define other random objects. For instances,
given a PPP(µ) N and a function f : X Ñ R, the integral

Z :=
ª

f (x)N(dx) (7.11)

defines a so called compound Poisson random variable. (This uses that N is actually a ran-
dom measure. One needs to check that Z a measurable map of the underlying probabil-
ity space to R.) Typically, X = R and f (x) = x so we are “summing” the positions of
the sample points of N.

One can generalize this trick to define a stochastic process. Indeed, given a Poisson
point process on R ˆ [0, 8) with intensity given by a product of a finite measure µ and
the Lebesgue measure, we define

Zt :=
ª

Rˆ[0,t]
x N(dxdt) (7.12)

which (as discussed in 275B) is well defined and finite a.s. whenever
≥

|x|µ(dx) † 8. The
trajectory of t fiÑ Zt is then composed of jumps that “arrive” at random times that are
independent Exponentials with parameter µ(R) with the jumps distributed according
to the normalized measure µ. Note that t fiÑ Zt has right-continuous paths.

7.2 White noise.

The fact that t fiÑ Zt is not continuous may be undesirable in applications. As it turns
out, examples arising from the following constructions are somewhat better behaved
(see, for instance, Lemma 7.8):

Definition 7.5 (White noise) Let (X , S, µ) be a measure space with µ(X ) † 8. A

(Gaussian) white noise on (X , S, µ) is a multivariate Gaussian process tW(A) : A P Su

such that

@tAiuiPN P S : disjoint ñ

$
’&

’%

tW(Ai)ui=1 independent

W
⇣§

iPN

Ai

⌘
=

ÿ

iPN

W(Ai) a.s.
(7.13)
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and

@A P S : W(A) = N
�
0, µ(A)

�
(7.14)

We start by noting that textbook definitions often specify the above conditions by one
simple statement:

@A, B P S : E
⇥
W(A)

⇤
= 0 ^ E

⇥
W(A)W(B)

⇤
= µ(A X B) (7.15)

That such a Gaussian process can even be considered follows from the observation that

nÿ

i,j=1

aiajµ(Ai X Aj) =
ª ˇ̌

ˇ̌
nÿ

i=1

ak1Ai

ˇ̌
ˇ̌
2

dµ • 0 (7.16)

which implies that A, B fiÑ µ(A X B) is symmetric and positive semi-definite. Standard
arguments from linear algebra then show that tµ(Ai X Aj)un

i,j=1 is a covariance matrix of
an n-dimensional multivariate Gaussian.

We now easily check that a white noise according to Definition 7.5 is a Gaussian pro-
cess satisfying (7.15). To see that a description based on (7.15) is actually equivalent to
the above is now seen from:

Lemma 7.6 Suppose tW(A) : A P Su is a centered Gaussian process indexed by elements of
the s-algebra S such that (7.15) holds. Then

W(H) = 0 a.s. (7.17)

and for all tAnun•0 Ñ S (pairwise) disjoint,

W
⇣ §

n•1

An

⌘
=

ÿ

n•1

W(An) a.s. (7.18)

where the sum converges in L2 and a.s.

Proof. Suppose that tW(A) : A P Su is centered Gaussian and (7.15) holds. Then

E
⇥
W(H)2⇤ = Var

�
W(H)

�
+

⇥
EW(H)

⇤2
= µ(H) + 0 = 0 (7.19)

we get (7.17). For (7.18), pick tAnun•1 disjoint and abbreviate

A :=
§

n•1

An (7.20)

Then (7.15) gives that tW(An)un•1 are independent, zero-mean with
ÿ

n•1

E
⇥
W(An)

2⇤ =
ÿ

n•1

µ(An) = µ(A) § µ(X ) † 8. (7.21)

The Paley-Zygmund Theorem on convergence of random infinite series (which drives
the proof, and is a special case, of the Kolmogorov 3-series Theorem) then implies that
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the sum on the right of (7.18) converges a.s. and in L2. Furthermore, the L2-convergence
permits us to write

E
⇣

W(A)´
ÿ

n•1

W(An)
⌘2

�

= E
⇥
W(A)2⇤

´ 2
ÿ

n•1

E
⇥
W(A)W(An)

⇤
+

ÿ

m,n•1

E
⇥
W(An)W(Am)

⇤

= µ(A) ´ 2
ÿ

n•1

µ(A X An) +
ÿ

m,n•1

µ(An X Am)

= µ(A) ´ 2
ÿ

n•1

µ(An) +
ÿ

n•1

µ(An) = µ(A) ´

ÿ

n•1

µ(An) = 0

(7.22)

thus proving a.s. equality in (7.17) ⇤
Our next task will be the existence of such a process:

Lemma 7.7 A white noise process exists for each finite measure space (X , S, µ).

Proof. As note above, tµ(A X B)uA,BPS is a covariance kernel. This means that one
can define the finite dimensional distributions of tW(Ai) : i = 1, . . . , nu, for any choice
of A1, . . . , An P S, as the law of a multivariate centered normal with covariance matrix
tµ(Ai X Aj)un

i,j=1. Since the same covariance is used, these finite-dimensional distribu-
tions are automatically consistent and so (being defined on R, which is standard Borel
under Euclidean metric) the Kolmogorov Extension Theorem gives the existence of a
probability space and random variables tW(A) : A P Su with the desired Gaussian law.

Clearly, if A1, . . . , An P S are disjoint, then

@i ‰ j : Cov(W(Ai), W(Aj)) = µ(Ai X Aj) = 0 (7.23)

The fact that for multivariate Gaussians uncorrelated implies independent then gives
that W(A1), . . . , W(An) are independent. Lemma 7.6 then checks the second condition
in (7.13). The condition (7.14) was built into the definition of W. ⇤

As for the Poisson point process, the requirement of finiteness of µ is actually not
strictly necessary. Indeed, even if µ is infinite, the above definitely constructs W(A) for
each A P S with µ(A) † 8 with the “additivity mod null set” restricted to sets whose
total mass is finite. With that proviso in mind, we note the following example:

Lemma 7.8 Let W be a white noise process on measure space ([0, 8),B([0, 8)), l), where l
is the Lebesgue measure. Then tW([0, t]) : t P [0, 8)u has the finite-dimensional distributions
of standard Brownian motion.

Proof. It is clear that t fiÑ W([0, t]) is a Gaussian process with mean zero and

Cov
�
W([0, t]), W([0, s])

�
= l

�
[0, t] X [0, s]

�
= t ^ s. (7.24)

The claim now follows from Lemma 5.2. ⇤
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7.3 Paley-Wiener integral.

The identity (7.18) may appear to suggest that A fiÑ W(A) is a signed measure. Un-
fortunately, unlike the Poisson point process which is a measure proper, this is not the
case for the white noise since the implicit null set in (7.18) depends on tAnunPN. Still,
the absence of s-additivity does not prevent us from defining “integrals” with respect
to this “measure.” As in the ordinary Lebesgue integration theory, a starting point is to
define the integral of simple functions:

Lemma 7.9 Let tW(A) : A P Su be a white noise on a measure space (X , S, µ). For any
f : X Ñ R simple with representation f :=

∞n
i=1 ai1Ai set

ª
f dW :=

nÿ

i=1

aiW(Ai) (7.25)

Then the result does not depend on a representation (modulo modifications on null sets) and,
moreover, we have

E
✓⇣ª

f dW
⌘2

◆
=

ª
f 2dµ. (7.26)

Proof. The independence of the representation is a consequence of a.s. finite additivity of
A fiÑ W(A). The equality (7.26) is then proved via (7.15). ⇤

The key point of (7.26) is that it can be viewed as the statement that the map

f fiÑ

ª
f dW, (7.27)

defined presently just for simple functions, is an isometry from L2(µ) to L2 associated
with the underlying probability space. As a consequence we get:

Lemma 7.10 The map (7.27) extends continuously to all f P L2. The identity (7.26) continues
to hold for the extension.

The resulting “integral”
≥

f dW is called the Paley-Wiener integral. We emphasize that
this is generally not an integral in the ordinary sense, because W is not a signed measure.
But many of the properties of the integral remain in place, although proofs have to be
based on L2-calculus, rather than a.s. limit techniques.
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