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6. DISCOVERING STOCHASTIC INTEGRAL

This section presents calculations that naturally lead to the discovery of the stochastic
integral. The purpose of these is to motivate the definition of the stochastic integral
while noting the important differences with the ordinary integration theory.

6.1 Quadratic variation.

We have seen that Brownian paths are roughly 1/2 + o(1)-Hölder regular. This refers to
local behavior but our future applications need a way to characterize the regularity of
the path as a whole. For this we recall the following concepts:

Definition 6.1 A partition P of interval [0, t] is an ordered collection of points 0 =: t0 †

t1 † ¨ ¨ ¨ † tn := t. The mesh }P} of the partition P is then given by

}P} := max
i=1,...,n

|ti ´ ti´1| (6.1)

Given f : [0, 8) Ñ R and p • 0, the p-variation of f associated with partition P of

interval [0, t] is the quantity

V(p)
t ( f , P) :=

nÿ

i=1

ˇ̌
f (ti) ´ f (ti´1)

ˇ̌p (6.2)

We are generally interested in the behavior of the p-variation V(p)
t ( f , P) as the mesh

of P tends to zero. For p = 1 (in fact p § 1), this is aided by the fact that the p-variation
increases upon refinements of P. It thus makes sense to take a supremum over P which
we then refer to (for p = 1) as total variation. The supremum can be taken for all p • 1, of
course; if it turns out to be finite, we say that f is of bounded p-variation. (For p = 1, this is
simply referred to as being of bounded variation.) We call V(2)( f , P) quadratic variation.

As is readily checked, uniform Hölder continuity with exponent a P (0, 1] implies
boundedness of p-variation for all p with pa • 1. This suggests that p = 2 + o(1) is
the relevant case for standard Brownian motion. And, indeed, given a Brownian path
tBt : t P [0, 8)u, we have

EV(p)
t (B, P) =

nÿ

i=1

E
�
|Bti ´ Bti´1 |

p�

= E
�
|N (0, 1)|p�

nÿ

i=1

|ti ´ ti´1|
p/2

§ E
�
|N (0, 1)|p�t}P}

p´2
2

(6.3)

which implies V(p)
t (B, Pn) Ñ 0 in probability and L1 as }Pn} Ñ 0 for all p ° 2. For

p = 2 we have

EV(2)
t (B, P) = t (6.4)

and so tV(2)
t (B, P) : P = partition of [0, t]u is a tight family of random variables. A

natural question is whether V(2)
t (B, P) converges weakly along sequences of partitions

whose mesh tends to zero. This is addressed in:
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Proposition 6.2 Let tBt : t P [0, 8)u be a standard Brownian motion. For any sequence of
partitions tPnun•1 of [0, t], we have:

(1) }Pn} Ñ 0 implies V(2)
t (B, Pn) Ñ t in probability and L2,

(2)
∞

n•1 }Pn} † 8 implies V(2)
t (B, Pn) Ñ t a.s.

(3) tPnun•1 are nested and }Pn} Ñ 0 imply V(2)
t (B, Pn) Ñ t a.s.

Here tPnun•1 are said to be nested if Pn+1 contains all points of Pn, for each n • 1.

Proof. Using that the Brownian increments are independent Gaussians, we observe

Var
�
V(2)

t (B, P)
�
=

nÿ

i=1

Var
�
(Bti ´ Bti´1)

2�

= Var
�
N (0, 1)2�

nÿ

i=1

|ti ´ ti´1|
2

§ 3t}P}

(6.5)

In conjunction with (6.4) this gives L2-convergence V(2)
t (B, P) Ñ t. Invoking the Markov

inequality

P
�
|V(2)

t (B, P) ´ t| ° e
�

§
1
e2 Var

�
V(2)

t (B, P)
�

§
3t
e2 }P} (6.6)

we also get convergence in probability as }P} Ñ 0, thus proving (1). For (2) we note that
the summability of the mesh-sequence implies summability of the probabilities on the
left. Then a.s. convergence V(2)

t (B, P) Ñ t then follows via a standard argument based
on the Borel-Cantelli lemma.

The convergence in (3) will be inferred from martingale convergence. We need a
lemma whose statement is more scary that the proof:

Lemma 6.3 Let Z1, . . . , Zn P L2 be independent with symmetric law, @i § n : Zi
law
= ´Zi,

and let I1, . . . , Im be non-empty disjoint sets such that t1, . . . , nu =
îm

j=1 Ij. Then for any
s-algebra G satisfying

s

✓⇣ ÿ

iPIj

Zi

⌘2
: j = 1, . . . , m

◆
Ñ G Ñ s

✓⇣ÿ

iPI
Zi

⌘2
: I Ñ Ij for some j P t1, . . . , mu

◆
(6.7)

we have

E
✓⇣ nÿ

i=1

Zi

⌘2
ˇ̌
ˇ̌G

◆
=

mÿ

j=1

⇣ÿ

iPIj

Zi

⌘2
(6.8)

Proof. Left to homework. ⇤
We now pick a sequence of nested partitions tPnun•1 where the points of Pn will be

denoted as ttn
i u

k(n)
i=0 . For n § N set

Gn,N := s
⇣
(Btr

i
´ Btr

i´1
)2 : i = 1, . . . , k(r), r = n, . . . , N

⌘
(6.9)
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Lemma 6.3 then implies

V(2)
t ( f , Pn) = E(B2

t |Gn,N) (6.10)

Taking N Ñ 8 with the help of the Levy Forward Theorem gives

V(2)
t ( f , Pn) = E(B2

t |Gn) (6.11)

where
Gn := s

⇣ §

N•n
Gn,N

⌘
= s

⇣
(Btr

i
´ Btr

i´1
)2 : i = 1, . . . , k(r), r • n

⌘
(6.12)

Lévy Backward Theorem then gives a.s. convergence of Vt( f , Pn) as n Ñ 8. (Note that
none of these require that the mesh of the partition tends to zero.) In light of part (1) of
the claim, if }Pn} Ñ 0 the a.s. limit must equal t, as desired. ⇤

A natural follow-up question is what happens with the corresponding quadratic vari-
ation of functions of the Brownian path. We start by looking at V(2)(B2, P). A calculation
shows

V(2)
t (B2, P) =

nÿ

i=1

(B2
ti

´ B2
ti´1

)2

=
nÿ

i=1

4B2
ti´1

(Bti ´ Bti´1)
2 +

nÿ

i=1

4Bti´1(Bti ´ Bti´1)
3 +

nÿ

i=1

(Bti ´ Bti´1)
4

(6.13)

The reason for separating terms this way is that, by the defining properties of standard
Brownian motion, Bti´1 is independent of Bti ´ Bti´1 , and in fact of Btk ´ Btk´1 for all k • i.
This allows us to estimate the L1-norm of the second term on the right by

E|Bt|

nÿ

i=1

E
�
|Bti ´ Bti´1 |

3�
§ E|Bt| t E

�
|N (0, 1)|3

�
}P}

1/2 (6.14)

The L1-norm of the last term on the right of (6.13) is in turn bounded by a constant
times }P}. These terms thus tend to zero in probability as }P} Ñ 0. For the first term
we in turn write

nÿ

i=1

4B2
ti´1

(Bti ´ Bti´1)
2 =

nÿ

i=1

4B2
ti´1

|ti ´ ti´1| +
nÿ

i=1

4B2
ti´1

h
(Bti ´ Bti´1)

2
´ |ti ´ ti´1|

i
(6.15)

The second term on the right has mean zero and variance equal to

nÿ

i=1

16E
�

B4
ti´1

�
Var

�
(Bti ´ Bti´1)

2�

§ 16t4 E
�
|N (0, 1)4�Var

�
N (0, 1)2�

nÿ

i=1

|ti ´ ti´1|
2 (6.16)

where the bound on the right uses the scaling property of Brownian increments. The
quantity on the right is order }P} and thus decays to zero as }P} Ñ 0. Since the first
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term on the right of (6.15) is the Riemann sum, we have proved that, for any sequence
tPnun•1 of partitions of [0, t],

}Pn} Ñ 0 ñ V(2)
t (B2, Pn)

P
›Ñ
nÑ8

ª t

0
4B2

s ds (6.17)

More interesting that this conclusion is the mechanics of the underlying calculation. The
key point is to arrange terms to isolate increments over non-overlapping intervals. The
Brownian increments are handled according to the infinitesimal-calculus “rules”

(dBt)
2 = dt ^ dBt dt = 0 ^ (dt)2 = 0 (6.18)

Using these, we readily generalize the above calculations to the form:

Lemma 6.4 Let tBt : t P [0, 8)u be standard Brownian motion. Then for any f P C1(R), any
t • 0 and any sequence tPnun•1 of partitions of [0, t],

}Pn} Ñ 0 ñ V(2)
t ( f ˝ B, Pn)

P
›Ñ
nÑ8

ª t

0
f 1(Bs)

2 ds (6.19)

We leave the proof of this lemma to homework. Note that, unlike for the linear case
treated in Proposition 6.2, the limiting quadratic-variation process is generally random.

6.2 Itô integral from Itô formula.

Building on the previous calculations, we will now explore the process t fiÑ f (Bt) further.
Fix a partition P = t0 = t0 † t1 † ¨ ¨ ¨ † tn = tu of [0, t]. Assuming f P C2(R), Taylor’s
Theorem gives

f (Bt)´ f (B0) =
nÿ

i=1

⇥
f (Bti) ´ f (Bti´1)

⇤

=
nÿ

i=1

f 1(Bti´1)(Bti ´ Bti´1) +
1
2

nÿ

i=1

f 2(Bti´1)(Bti ´ Bti´1)
2

+
nÿ

i=1

✓ª 1

0

h
f 2�qBti´1 + (1 ´ q)Bti

�
´ f 2(Bti´1)

i
(1 ´ q)dq

◆
(Bti ´ Bti´1)

2

(6.20)
Denoting by

osc f (A, d) := sup
 

| f (x) ´ f (x1)| : x, x1
P A ^ |x ´ x1

| † d
(

(6.21)

the oscillation of f on A over distances less than d, the term in the square brackets under
the integral in (6.20) can be bounded by

osc f 2
⇣

B([0, t]), oscB
�
[0, t], }P}

�⌘
(6.22)

In light of continuity of B, the inner oscillation tends to zero as }P} Ñ 0. The outer
oscillation then does as well since f 2 is continuous and B([0, t]) is compact. Since the
last term in (6.20) is at most the product of (6.22) and V(2)

t (B, P), which is tight, this term
tends to zero in probability as }P} Ñ 0.
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The sum in the second term on the right of (6.20) is treated as in (6.15) thus replacing
it with the Riemann sum

nÿ

i=1

f 2(Bti´1)|ti ´ ti´1| (6.23)

In light of the continuity of f 2
˝ B, the sum converges to the Riemann integral

≥t
0 f 2(Bs)ds.

Since the left-hand side of (6.20) does not depend on P, also the first term on the right
must converge in probability. This proves:

Lemma 6.5 Given f : R Ñ R and a sample tBt : t P [0, 8)u of standard Brownian motion,
for each partition P = t0 = t0 † t1 † ¨ ¨ ¨ † tn = tu of [0, t] set

It( f , P) :=
nÿ

i=1

f (Bti´1)(Bti ´ Bti´1) (6.24)

Then for each f P C2(R) and each t • 0 there exists a random variable It( f 1) such that for any
sequence of partitions tPnun•1 as above,

}Pn} Ñ 0 ñ It( f 1, Pn)
P

›Ñ
nÑ8 It( f 1) (6.25)

Moreover, we then have

f (Bt) = f (B0) + It( f 1) +
1
2

ª t

0
f 2(Bs)ds (6.26)

where the integral on the right is a Riemann integral.

The limiting object is called the Itô integral after K. Itô, who developed these ideas in
early 1940s in wartime Japan. To make a closer connection with (6.23), we write this in
the integral notation as ª t

0
f (Bs)dBs := It( f ) (6.27)

The identity (6.26) is then known as the Itô formula. Note that the Fundamental Theo-
rem of Calculus does not hold with this integral due to the appearance of the second
derivative term — referred to as the Itô term.

Replacing f by its antiderivative, the above lemma asserts the convergence It( f , P) Ñ

It( f ) as }P} Ñ 0 for all f P C1(R). Requiring continuous differentiability is actually an
overkill; just plain continuity and boundedness suffice. To prove this, we note:

Lemma 6.6 For all t • 0, all bounded functions f P C(R) and all partitions P = t0 = t0 †

t1 † ¨ ¨ ¨ † tn = tu of [0, t],

E
�

It( f , P)2� = E
✓ nÿ

i=1

f (Bti´1)
2
|ti ´ ti´1|

◆
. (6.28)

Proof. Write the square of It( f , P) as a double sum and notice that, as before, all but the
diagonal terms vanish under expectation. ⇤

Hereby we get:
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Corollary 6.7 For all bounded f P C(R) and t • 0 there exists a random variable It( f ) such
that for any sequence of partitions tPnun•1 as above,

}Pn} Ñ 0 ñ It( f , Pn)
P

›Ñ
nÑ8 It( f ) (6.29)

Proof. Given e ° 0, find M ° 0 such that

P
�

sup
0§u§t

|Bu| ° M
�

† e. (6.30)

(This is possible because the Brownian motion is continuous and thus locally bounded.)
For each f P C(R) we then find fe P C1(R) such that

sup
xP[´M,M]

ˇ̌
f (x) ´ fe(x)

ˇ̌
†

?
e } f } (6.31)

and
} fe} § 2} f } (6.32)

where } ¨ } denotes the supremum norm over all of R. (We are not justifying this step as
that is standard in analysis.) From (6.28) we then get

E
⇣ˇ̌

It( f , P)´It( fe, P)
ˇ̌2⌘

= E
�

It( f ´ fe, P)2�

= E
✓ nÿ

i=1

( f ´ fe)(Bti´1)
2
|ti ´ ti´1|

◆

§ } f ´ fe}
2tP

�
sup

0§u§t
|Bu| ° M

�
+ t sup

xP[´M,M]

ˇ̌
f (x) ´ fe(x)

ˇ̌2

(6.33)

By our choices above, there exists a constant C ° 0 depending only on f and t such that
the right-hand side is at most Ce, regardless of P.

The Chebyshev inequality converts the above to

P
⇣ˇ̌

It( f , P) ´ It( fe, P)
ˇ̌

° d
⌘

§
C
d2 e (6.34)

We will now perform a variation on the 3e argument. First note that, for any 0 † ẽ † e
the above shows

P
⇣ˇ̌

It( fe, P) ´ It( fẽ, P)
ˇ̌

° d
⌘

§
2C
d2 e (6.35)

Given a sequence of partitions tPnun•1 with }Pn} Ñ 0, we know that It( fe, Pn) Ñ It( fe)
in probability for each e ° 0. With the help of Fatou’s lemma (which works for conver-
gence in probability by way of representing it as a.s. convergence along a subsequence),
the above then gives

P
⇣ˇ̌

It( fe) ´ It( fẽ)
ˇ̌

° d
⌘

§
2C
d2 e (6.36)

Setting en := 8´n, ẽ := 8´n´1 and d := 2´n then shows

P
⇣ˇ̌

It( fen) ´ It( fen+1)
ˇ̌

° 2´n
⌘

§ 2C2´n. (6.37)
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This is summable on n • 1 and so, by Borel-Cantelli, the event occurs only for finitely
many n a.s. It follows that It( f ) := limmÑ8 It( fem) exists.

To conclude the desired convergence from this, observe that

P
⇣ˇ̌

It( f , Pn) ´ It( f )
ˇ̌

° 3d
⌘

§ P
⇣ˇ̌

It( f , Pn) ´ It( fem , Pn)
ˇ̌

° d
⌘

+ P
⇣ˇ̌

It( fem , Pn) ´ It( fem)
ˇ̌

° d
⌘
+ P

⇣ˇ̌
It( fem) ´ It( f )

ˇ̌
° d

⌘ (6.38)

Taking n Ñ 8 followed by m Ñ 8 then makes all three terms on the right vanish.
Since d was arbitrary, the claim follows. ⇤

As we shall see later, the statement of Corollary 6.7 is not the end of the story as the
stated limit exists in considerably larger generality. But the mechanics of the proof is
based on the same idea; namely, an extension via the Itô isometry. This will in fact be
the principal tool in our treatment of the general stochastic integral later.

We finish this section by noting that the stochastic integral f fiÑ It( f ), although akin
to the Riemann-Stieltjes integral, does not exist in the ordinary sense. The easiest way
to see this is to replace the “left endpoint rule” by a different rule (which does not make
a difference when the integral exists in classical sense). The following lemma will be
relegated to a homework exercise:

Lemma 6.8 Fix q P [0, 1] and let tBt : t P [0, 8)u be a standard Brownian motion. For
any f : R Ñ R, t • 0 and a partition P = t0 = t0 † t1 † ¨ ¨ ¨ † tn = tu of [0, t] set

I(q)t ( f , P) :=
nÿ

i=1

f (B(1´q)ti´1+qti
)(Bti ´ Bti´1) (6.39)

Assuming f P C1(R) with f , f 1 bounded, for any sequence of partitions tPnun•1, we then have

}Pn} Ñ 0 ñ I(q)t ( f , Pn)
P

›Ñ
nÑ8

ª t

0
f (Bs)dBs + q

ª t

0
f 1(Bs)ds (6.40)

Here the first integral on the right is as in (6.27).

For the “mid point rule”, q := 1/2, the limit object on the right is called the Stratonovich
integral. This integral can be defined directly from the Itô integral as

ª t

0
f (Bs) ˝ dBs :=

ª t

0
f (Bs)dBs +

1
2

ª t

0
f 1(Bs)ds (6.41)

The choice q = 1/2 ensures that the Fundamental Theorem of Calculus is restored,

f (Bt) ´ f (B0) =
ª t

0
f (Bs) ˝ dBs, (6.42)

thus making the Stratonovich integral attractive in certain situations (such as analysis
on manifolds) where the Itô term wrecks havoc in calculations. The Stratonovich in-
tegral also arises naturally in solutions of stochastic differential equations obtained by
approximating standard Brownian motion by smoothed-out versions thereof. (Indeed,
the FTC holds in these and thus survives the limit as all approximations are taken away.)
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Still, the Stratonovich integral is not good for theory development and so we will work
mostly with the Itô integral in the sequel.

Further reading: Chapter 3 of Øksendal
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