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5. PROPERTIES OF BROWNIAN PATHS

Having settled the question of uniqueness of Brownian motion, we can now explore the
properties of Brownian paths.

5.1 Brownian symmetries.

Our first observation concerns transformations of Brownian paths that produce again
Brownian paths.

Proposition 5.1 (Brownian symmetries) Let tBt : t P [0, 8)u be a standard Brownian mo-
tion. Then so is the process tWt : t P [0, 8)u where, for all t • 0,

(1) Wt := Bt+s ´ Bs, for a fixed s • 0,
(2) Wt := 1

a Ba2t, for a fixed a ‰ 0,
(3) W defined by

Wt :=

#
tB1/t, for t ° 0,
0, for t = 0,

(5.1)

on the event tlimtÓ0 tB1/t = 0u, and by Wt := 0 on the complement thereof.
We call the transformation B Ñ W as follows: (1) is a shift, (2) is a diffusive scaling and (3) is
the time inversion.

Proof. As to (1-2), it is easy to check that W has independent increments with the correct
law. Since the continuity of B implies the continuity of W, the claim follows.

For (3), let rWt be defined by the dichotomy in (5.1). First we claim that t rWt : t P [0, 8)u
has the finite-dimensional distributions of standard Brownian motion. For this we need:

Lemma 5.2 The conditions (2-3) in Definition 1.6 are equivalent to
(2’) tBt : t P [0, 8)u is (multivariate) Gaussian,
(3’) @t, s • 0 : E(Bt) = 0 ^ E(BsBt) = s ^ t

Leaving the easy proof of this to homework, we now observe that rW is (multivariate)
Gaussian with mean zero and

@t, s ° 0 : E
� rWs rWt

�
= ts

⇣1
t

^
1
s

⌘
= t ^ s. (5.2)

Since rW0 = 0, it follows that t rWt : t P [0, 8)u satisfies (1-3) of Definition 1.6. Next we
note that t fiÑ rWt is continuous on (0, 8). This implies

P
�

lim
tÓ0

rWt = 0
�
= P

✓ §

n•1

§

m•1

£

k•m

!
sup

tPQX(0,1/k)
| rWt| † 1/n

)◆
(5.3)

But the above equality of finite dimensional distributions implies that t rWt : t P Q X

(0, 8)u is equidistributed to tBt : t P Q X (0, 8)u, and so

P
⇣

sup
tPQX(0,1/k)

| rWt| † 1/n
⌘
= P

⇣
sup

tPQX(0,1/k)
|Bt| † 1/n

⌘
. (5.4)
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Using this in (5.3), we conclude

P
�

lim
tÓ0

rWt = 0
�
= P

�
lim
tÓ0

Bt = 0
�
= 1, (5.5)

where we also used continuity of t fiÑ Bt on [0, 8). It follows that the second alternative
in the definition of W occurs with zero probability and so W is indistinguishable from rW.
Having continuous paths, W is a standard Brownian motion, as desired. ⇤

One argument in the proof is worthy of separate claim:

Corollary 5.3 (SLLN for standard Brownian motion) For a standard Brownian motion
tBt : t P [0, 8)u,

lim
tÑ8

Bt

t
= 0 a.s. (5.6)

Proof. The claim is equivalent to limtÓ0 tB1/t = 0 which was shown to be a full measure
event in the previous proof. ⇤

Note that the SLLN implies (5.6) for t restricted to naturals. The claim (5.6) could then
be proved by noting that

lim
nÑ8

1
n

sup
n§t§n+1

|Bt ´ Bn| = 0 a.s. (5.7)

because, as needs to be checked the suprema are i.i.d. having a Gaussian tail (and thus
the first moment). The existence of the second moment allows us to infer (5.7) even
with 1

n replaced by 1?
n , but that scaling does not quite work for(5.6), as we will see in

Corollary 5.6 below.
We remark that additional symmetries exist for the d-dimensional Brownian motion,

which is an Rd-valued process with Cartesian coordinates

~Bt :=
�

B(1)
t , . . . , B(d)

t
�

(5.8)

where B(i) : i = 1, . . . , du are independent standard Brownian motions. For instance,
given any d ˆ d-orthogonal matrix U, the process U~Bt is again a d-dimensional Brownian
motion. In fact, the law of the Brownian motion is preserved even by the conformal
transforms of Rd, provided one is willing to re-parametrize time.

5.2 Sample path regularity.

As a next item of interest, we will review the known fact about the regularity of Brown-
ian sample paths. In Corollary 4.7 we noted that a.e. Brownian path is locally-uniformly
g-Hölder for every g † 1/2. To complement this we note:

Theorem 5.4 (Paley, Wiener and Zygmund 1933) Let g ° 1/2. Then for a.e. path tBt : t P

[0, 8)u of standard Brownian motion,

@t • 0 : lim sup
sÓt

|Bt ´ Bs|

|t ´ s|g
= 8 (5.9)

In short, a.e. Brownian path is nowhere g-Hölder and, in particular, nowhere differentiable.

Preliminary version (subject to change anytime!) Typeset: January 19, 2024



MATH 275D notes 22

Proof. Fix g P (1/2, 1) and let ` be an integer satisfying `(g ´ 1/2) ° 1. If t P [0, 1/2] is
such that the limes superior in (5.9) is finite, then for some C P (0, 8) and d0 P (0, 1/2),

@d P (0, d0) : |Bt+d ´ Bt| § Cdg (5.10)

For all integer n • 1 satisfying (`+ 1)2´n
† d0, all j = 1, . . . , ` and k := r2nts we then

have
|B(k+j)2´n ´ B(k+j´1)2´n | § |B(k+j)2´n ´ Bt| + |B(k+j´1)2´n ´ Bt|

§ 2C[(`+ 1)2´n]g = 2C(`+ 1)g 2´ng,
(5.11)

where we used that (k + j)2´n
´ t § (`+ 1)2´n. Denoting, for integers m, n, k • 1,

A(m)
n,k,j :=

 
|B(k+j)2´n ´ B(k+j´1)2´n | § m2´ng

(
(5.12)

we have thus proved
"

Dt P [0, 1/2] : lim sup
sÓt

|Bt ´ Bs|

|t ´ s|g
† 8

*
Ñ

§

m•1

#
2n§

k=1

£̀

j=1

A(m)
n,k,j i.o.(n)

+
(5.13)

where “i.o.(n)” means “for infinitely many n.”
We will now show that the event on the right-hand side of (5.13) has vanishing prob-

ability. For this note that, using that N (0, s2) = sN (0, 1),

P
�

A(m)
n,k,j

�
= P

�
|N (0, 2´n)| § m2´ng

�

= P
�
|N (0, 1)| § m2´n(g´1/2)�

§ 2m2´n(g´1/2)
(5.14)

where the inequality relies on the fact that the probability density of N (0, 1) is every-
where less than one. The stationarity and independence of Brownian increments along
with the union bound then give

P
⇣ 2n§

k=1

£̀

j=1

A(m)
n,k,j

⌘
§ 2n⇥2m2´n(g´1/2)⇤` = (2m)g2´n[`(g´1/2)´1] (5.15)

By our choice of `, the right-hand side is summable on n and so the Borel-Cantelli lemma
shows that the probability that this event occurs for infinitely many n is zero. In light
of the inclusion (5.13) this proves the claim for t P [0, 1/2]. Using the stationarity of
increments, the conclusion extends readily to all t • 0. ⇤

We remark that the previous proof provides a blueprint of many other regularity re-
sults for Brownian paths. Indeed, we are trying to prove/disprove a property of paths at
a continuum of t’s. Covering the favorable set of paths by a discrete collection of events
based, quite typically, on dyadic rationals, we achieve countability which then permits
to complete the calculation using the union bound, the Borel-Cantelli lemma and some
problem-specific calculations. This proof-strategy often causes the statement to contain
a certain inexplicit caveat: Instead of worrying first about whether the event on the left
of (5.13) is measurable (is it not, actually?), we rather assert (and prove) that its defining
property does not occur on a measurable set of full measure.

Notice that Theorem 5.4 can be interpreted as saying that a “typical” random path
is nowhere differentiable, where the word “typical” is in the sense of measure (more
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precisely, the Wiener measure). Another way to express “typicality” is via the notion
of category; indeed, a standard application of the Baire Category Theorem is that the set
of nowhere differentiable functions is co-meager (a.k.a. second category or “large” in
the sense of category) among all continuous functions on [0, 1]. Each of these results
provides a proof of existence of nowhere differentiable functions, a result that was con-
sidered a challenge in certain days (that is, until Weierstrass’ example from 1878).

Combining Corollary 4.7 with Theorem 5.4 we conclude that g = 1/2 + o(1) is the
correct Hölder exponent of Brownian paths. A question is: Can the o(1) correction be
controlled or refined? The answer is in the affirmative, but the proofs are lengthy so we
only contend ourselves with the statements of the salient conclusions.

We start with the behavior at a typical point on a Brownian path:

Theorem 5.5 (Law of Iterated Logarithm, Khinchin 1933) Let tBt : t P [0, 8)u be a stan-
dard Brownian motion. Then for all t • 0,

lim sup
sÓt

|Bt ´ Bs|b
|t ´ s| log log 1

|t´s|
=

?

2 a.s (5.16)

We emphasize that the implicit null set in (5.16) depends on t. That this represents
behavior at “typical” points we note (or prove in homework) that the set of t • 0 for
which equality holds is a Borel set of full Lebesgue measure.

Thanks to the Brownian shift symmetry, it suffices to prove (5.16) at t = 0. The time
inversion symmetry then converts this to a statement about the maximal growth rate of
Brownian path at large times:

Corollary 5.6 Let tBt : t P [0, 8)u be a standard Brownian motion. Then

lim sup
tÑ8

Bta
t log log t

=
?

2 a.s. (5.17)

In this formulation, the conclusion extends also to suitably normalized random walks
— more precisely, those is the domain of attraction of the Brownian motion.

While Khinchin’s Law of the Iterated Logarithm desribes the maximal path oscillation
at typical times, it does not capture the worst-case regimes. This is the content of the next
two theorems:

Theorem 5.7 (Lévy modulus of continuity, Lévy 1937) Let tBt : t P [0, 8)u be a standard
Brownian motion. Then

lim sup
dÓ0

sup
t,s•0

0†|t´s|†d

|Bt ´ Bs|a
d log(1/d)

=
?

2 a.s. (5.18)

Theorem 5.8 (Dvoretzky 1963, Davis 1983) Let tBt : t P [0, 8)u be a standard Brownian
motion. Then

inf
t•0

lim sup
sÓt

|Bt ´ Bs|a
|t ´ s|

= 1 a.s. (5.19)
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In conclusion, a.e. Brownian path contains points at which the oscillation over interval
of size d grows proportionally to

a
d log(1/d) — we call these the fast points — as well

as points where the path oscillates only proportionally to
?

d — we call these the slow
points. Even more is known; for instance, the Hausdorff dimension of the set of fast
points with proportionality constant at least l P (0,

?

2). Similarly for the set of slow
points where the oscillation grows at least as a

?

d, for any a • 1. The book by P. Mörters
and Y. Peres discusses these, along with detailed proofs.

Further reading: Section 2.9 of Karatzas-Shreve
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