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3. CONTINUITY CRITERIA

Having discussed tools for proving existence of stochastic processes with given distribu-
tion, here we will address the conditions under which that stochastic processes admits a
continuous version. We start with some general observations.

3.1 Countability curse and version of a process.

Looking back at the definition of the standard Brownian motion, the Kolmogorov Ex-
tension Theorem gives us a family of random variables tBt : t P [0, 8)u with prescribed
finite dimensional distributions; i.e., (1-3) of Definition 1.6. However, there seems to be
no information concerning part (4); namely, the continuity of t fiÑ Bt.

As we will now explain, this question in fact cannot be resolved in the framework of
product measure spaces. Recall that, given a family of random variables tXt : t P Tu

taking values in measurable space (X , S),

s(Xt : t P T) := s
⇣ 

tXt P Au : t P T, A P S
(⌘

(3.1)

is the smallest s-algebra in the underlying probability space that makes all of these mea-
surable. Next note the following general fact:

Lemma 3.1 (Countability curse) For any stochastic process tXt : t P Tu,

s(Xt : t P T) =
§

SÑT
countable

s(Xt : t P S) (3.2)

This statement, whose easy proof is left to homework, implies that any event measur-
able with respect to s(Xt : t P T) is determined by at most a countable number of Xt’s.
Applying this in the context of product spaces, we get:

Corollary 3.2 Let tXt : t P [0, 8)u be an R-valued stochastic process realized via canonical
coordinate projections on (R[0,8),B(R)b[0,8)). Then

 
t fiÑ Xt is continuous

(
R s

�
Xt : t P [0, 8)

�
(3.3)

In fact, for any A P s(Xt : t P [0, 8)) we have

A Ñ
 

t fiÑ Xt is continuous
(

ñ A = H (3.4)

The product s-algebra F that arises in the proof of the Kolmogorov Extension The-
orem coincides with s(Xt : t P T) and so (3.3) shows that the continuity of sample
paths t fiÑ Xt cannot even be asked within the product space framework.

The reason for adding the clauses (3.4) to the statement is that one might perhaps
hope that the event “B is continuous” is equivalent to a measurable set — meaning that
it can be written as the union of a measurable set and a subset of a P-null set. Then (3.4)
would force tB is continuousu to be a null set under the completion P̄ of P, which would
be quite discouraging for our endeavors. However, as we will note in Lemma 3.5, for
Brownian motion constructed via the Kolmogorov Extension Theorem this alternative
does not occur and the set tB is continuousu is not measurable even under P̄.
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The problem arises from the uncountable nature of the underlying index set. In order
to present a solution, we turn back to the example (2.36) which shows that a continuous
process over an uncountable index set can be changed, or modified, to make it discontin-
uous without altering its finite-dimensional distributions. This leads to:

Definition 3.3 Given two processes X = tXt : t P Tu and Y = tYt : t P Tu on the same

probability space, we say that Y is a version (or a modification) of X if

@t P T : P(Xt = Yt) = 1 (3.5)

As is easy to check, all versions of a given process have the same finite dimensional
distributions. Clearly, when T is countable, two versions are equal everywhere with
probability one, and so they are indistinguishable thus making the concept of a version
uninteresting. As shown in (2.36), this is quite different for T uncountable.

3.2 Kolmogorov-Čenstov Theorem.

The point of the above remarks is that we can turn the apparent deficiency of uncount-
able index sets to our favor by asking: What conditions on the finite dimensional dis-
tributions ensure the existence of a continuous version? A natural guess is to require
suitable continuity/regularity of the law of |Xt ´ Xs| in the limit as s Ñ t. This leads to
criteria an early example of which is:

Theorem 3.4 (Kolmogorov-Čenstov) Let X = tXt : t P [0, 8)u be an R-valued stochastic
process such that

DC, a, b ° 0 @t, s • 0 : E
�
|Xt ´ Xs|

a�
§ C|t ´ s|

1+b (3.6)

Then X admits a continuous version rX that obeys

@g P (0, b/a) @t0 ° 0 : sup
0§s†t§t0

| rXt ´ rXs|

|t ´ s|g
† 8. (3.7)

In short, rX is locally g-Hölder for every g P (0, b/a).

Proof. We start with some simple estimates. Let a, b, C be as in (3.7) and pick g P (0, b/a).
The Markov inequality shows

P
�
|Xt ´ Xs| ° l

�
§

1
la E

�
|Xt ´ Xs|

a�
§

C
la |t ´ s|

1+b (3.8)

Hence we get, for each integer n • 1,

P
�
|Xt+2´n ´ Xt| ° 2´gn�

§ C2´n2´n(b´ga) (3.9)

The union bound then gives

P
⇣

max
k=1,...,2n

|Xk2´n ´ X(k´1)2´n | ° 2´gn
⌘

§

2nÿ

k=1

P
�
|Xk2´n ´ X(k´1)2´n | ° 2´gn�

§ C
2nÿ

k=1

2´n2´n(b´ga) = C2´n(b´ga) (3.10)
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Thanks to b ° ga, this is summable on n • 1. The Borel-Cantelli lemma now yields an
integer-valued random variable n0 with

P(n0 † 8) = 1 (3.11)

and such that

@n • n0 @k = 1, . . . , 2n : |Xk2´n ´ X(k´1)2´n | § 2´gn. (3.12)

We will now show how this statement implies the existence of a version of X satisfying
(3.8) for t0 := 1.

Denote
Dn := tk2´n : k = 0, . . . , 2´n

u (3.13)
and observe that if s, t P Dn obey s † t, then there exist s1, t1

P Dn´1 such that s § s1
§

t1
§ t and |s ´ s1

| § 2´n and |t ´ t1
| § 2´n. For these points we get

|Xt ´ Xs| § |Xt1 ´ Xs1 | + |Xt ´ Xt1 | + |Xs ´ Xs1 |. (3.14)

Given any d ° 0, (3.13) then shows

@n • n0 : max
s,tPDn

|s´t|†d

|Xt ´ Xs| § 2 ¨ 2´gn + max
s,tPDn´1
|s´t|†d

|Xt ´ Xs|. (3.15)

The maximum on the right will be trivially zero if d † 2´n+1. Iterating (3.16) we thus get

@d P (0, 2´n0) : sup
t,sPîn°n0

Dn

|Xt ´ Xs| § 2
ÿ

n : 2´n§d

2´gn
§

2
1 ´ 2´g

dg (3.16)

It follows that, on tn0 † 8u, the process t fiÑ Xt restricted to D :=
î

n•1 Dn is g-Hölder
continuous. In particular, the limit in

rXt :=

$
&

%
lim

sÑt, sPD
Xt, on tn0 † 8u,

X0, on tn0 = 8u,
(3.17)

exists and the resulting process obeys (3.8) with t0 := 1. Finally, note that, by (3.7) again,

P
�
|Xt ´ Xs| ° e

�
§

C
ea |t ´ s|

1+b
›Ñ
sÑt

0 (3.18)

Applying (3.18) along with Fatou’s lemma then shows

@e ° 0 : P
�
| rXt ´ Xt| ° e

�
= 0 (3.19)

and so rX is indeed a version of X on [0, 1].
It remains to extend the above construction to [0, 8). For this we decompose the

positive reals into the union
î

n•1(
n
2 + [0, 1]). In each of the intervals on the right we

have a version rX of the process that obeys the corresponding formulation of (3.8). In
light of (3.18), these versions coincide with one another on the overlap of this interval
a.s. and so they extend to a version on all of [0, 8). ⇤
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3.3 Remarks.

We proceed with some remarks. First we note the following elementary consequence of
the existence of a continuous version of a process on a product space:

Lemma 3.5 Let tXt : t P [0, 8)u be an R-valued stochastic process realized on the product
space (R[0,8),B(R)b[0,8)) via coordinate projections, Xt(w) := w(t). Assume that X admits
a continuous version. Then for any A P s(Xt : t P [0, 8)),

 
t fiÑ Xt is continuous

(
Ñ A ñ P(A) = 1. (3.20)

Proof. By Lemma 3.1, there is a countable S Ñ [0, 8) such that A P s(Xt : t P S). We may
assume without loss of generality that S is dense in [0, 8). Note that the premise of the
claim reads

Ac
Ñ
 

t fiÑ Xt is NOT continuous
(

(3.21)
If w P Ac is such that t fiÑ w(t) is uniformly continuous on S X [0, n] for each n • 1, then
w̃t(t) := limsÓt, sPS w(t) exists and equals w(t) for each t P S. Since w P Ac and Ac

P FS
imply that any modification of w outside S also belongs to Ac, we get w̃ P Ac. But w̃ is
continuous, in contradiction with (3.21).

It follows that

Ac
Ñ

§

n•1

 
t fiÑ Xt is NOT uniformly continuous on S

(
(3.22)

But the process X admits a continuous version rX that agrees with X on S with probability
one (since S is countable). Replacing X by rX in the events on the right of (3.23) yields an
empty set (because rX is always continuous). Hence P(Ac) = 0 as desired. ⇤

Next let us make some remarks on the statement of Theorem 3.4 and its proof. First
we note that the observation (3.19) shows that X conforms to:

Definition 3.6 (Stochastic continuity) A process tXt : t P Tu taking values in a metric

space (X , $) is said to be stochastically continuous at t P T if

@e ° 0 : lim
sÑt

P
�
$(Xt, Xs) ° e

�
= 0 (3.23)

Here “s Ñ t” refers to convergence in the index set T.

While (3.7) implies stochastic continuity, it is clearly stronger. We also note that the
fact that the exponent on the right of (3.7) exceeds one is essential for the result. This is
seen from the example of a Poisson process tNt : t P [0, 8)u defined as

Nt := sup
!

m • 0 :
mÿ

k=1

Zk § t
)

(3.24)

where Z1, Z2, . . . are i.i.d. Exponential(1) random variables. This process takes only in-
teger values and so is discontinuous. It thus fails to obey (3.7), which can also be seen
directly by noting that Nt ´ Ns is Poisson(t ´ s) for any 0 § s † t and so, for any a ° 0,

E
�
|Nt ´ Ns|

a�
• P(Nt ´ Ns • 1) = 1 ´ e´(t´s) (3.25)

Preliminary version (subject to change anytime!) Typeset: January 12, 2024



MATH 275D notes 16

where the right-hand side decays linearly in t ´ s as s Ò t. We will of course use the
theorem in the positive direction to prove existence of a continuous version of stochastic
processes of interest; particularly, the standard Brownian motion.

The Kolmogorov-Čenstov theorem generalizes quite readily to processes indexed by
t P Rd — for instance, to a process called the Brownian sheet. Here the 1 + b exponent in
(3.7) needs to be replaced by d+ b. However, the proof relies too strongly on the “rectan-
gular” geometry of the underlying index set. Other approaches exist, based on careful
entropy counting and/or the method of generic chaining, that avoid these by “finding”
a relevant geometric structure as part of the proof. These turn out to be quite useful in
applications but we unfortunately do not have time to discuss them here.

Further reading: Section 2.2B in Karatzas-Shreve
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