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25. GIRSANOV’S THEOREM

We will now move to another technique that can be used to remove, or modify, the drift
term in an SDE but that has other uses as well. This technique, whose ultimate formu-
lation bears Girsanov’s name, is based on the idea of “exponential change of measure”
which is a standard method to adjust the mean in large deviation theory. To illustrate
how exponential change of measure works in general, we note:

Lemma 25.1 (Exponential tilt) Let X1, . . . , Xn be independent and ji(l) := EelXi † 8 for
all l P R and all i = 1, . . . , n. For A P s(X1, . . . , Xn) and l = (l1, . . . , ln) P Rn, set

Pl(A) := E
✓

1A exp
! nÿ

i=1

⇥
liXi ´ log ji(li)

⇤)◆
(25.1)

Then (X1, . . . , Xn) remain to be independent under Pl with expectation

El(Xi) =
j1

i(li)

ji(li)
(25.2)

for all i = 1, . . . , n.

Proof. The product structure of Pl is verified directly from (25.1). For (25.2) the product
structure shows El(Xi) = ji(li)´1E(XielXi) = j1

i(li)/ji(li). ⇤
The point of the above lemma is that, since l fiÑ ji(l) is strictly convex (under the

assumption of having all exponential moments), its logarithmic derivative is strictly in-
creasing. It follows that, by tuning li appropriately, we can adjust the expectation of
each Xi to whatever value in the interior of the convex hull of the original support of Xi.
The title of the lemma brings up another name — “tilting” — for the above technique as
this is what the exponential factor — sometimes referred to as the “tilt” — does to the
initial distribution.

For general underlying random variables, a drawback of the “tilting” technique is
that is that varying li is inevitably accompanied by changes to the whole distribution
of the Xi’s. As our next lemma shows, this is not the case when Gaussian random vari-
ables are of concern as these are determined by only two parameters — the mean and
covariance structure.

Lemma 25.2 (Tilted Gaussian law) Let X = (X1, . . . , Xn) be a multivariate normal with
mean zero and covariance C = tCov(Xi, Xj)un

i,j=1. For l = (l1, . . . , ln) P Rn let

Pl(A) := E
�
1Ael¨X´ 1

2 l¨Cl
�

(25.3)

Then

X ´ Cl under Pl
law
= X under P (25.4)

Here “¨” denotes the Euclidean inner product in Rn.
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Proof. Let t P Rn. Then

El

�
et¨(X´Cl)� = E

�
et¨(X´Cl)+l¨X´ 1

2 l¨Cl
�

= E
�
e(l+t)¨X´ 1

2 (l+t)¨C(l+t)�e
1
2 t¨Ct = e

1
2 t¨Ct

(25.5)

Since the latter is the Laplace transform of N (0, C), the claim follows using the Curtiss
Theorem and the Cramér-Wold device. ⇤

The mean-zero restriction is made for convenience of expression; if the mean equals µ,
then replace X by X ´ µ above. While the underlying Gaussian nature allowed us to
treat a fully general case in one step, its special case of independent Gaussians could
have also be dealt with inductively, by integrating out one variable at the time. This
leads to another version of “exponential change of measure” which, this time, is very
close to the one we are ultimately aiming for.

Lemma 25.3 (Discrete-time Girsanov Theorem) Let X1, . . . , Xn be independent with Xi =
N (0, s2

i ) for all i = 1, . . . , n. For each k = 1, . . . , n, let lk : Rk´1
Ñ R be a Borel-measurable

function. (In particular, l1 is a constant.) Then

Pl(A) := E
✓

1A exp
" nÿ

k=1

h
lk(X1, . . . , Xk´1)Xk ´

1
2 lk(X1, . . . , Xk´1)

2s2
k

i*!
(25.6)

is a probability measure and
"

Xk ´

kÿ

j=1

lj(X1, . . . , Xj´1)s
2
j

*n

k=1
under Pl

law
= X under P (25.7)

Proof. For k = 1, . . . , n, let

Mk :=
kπ

j=1

elj(X1,...,Xj´1)Xj´ 1
2 lj(X1,...,Xj´1)2s2

j (25.8)

and set Fk := s(X1, . . . , Xk). We claim that tMku
n
k=1 is a martingale for filtration tFku

n
k=1

under P. To see this note that

E
�

Mk+1
ˇ̌
Fk

�
= MkE

�
el(X1,...,Xk)Xk+1´ 1

2 l(X1,...,Xk)
2s2

k+1
ˇ̌
Fk

�
(25.9)

where the expectation on the right equals one by the fact that we can regard l(X1, . . . , Xk)
as a constant under the conditional expectation. It follows that E(Mk) = 1 for all
k = 1, . . . , n and since

@A P Fn : Pl(A) = E
�
1A Mn

�
, (25.10)

we also get that Pl is a probability measure.
In order to prove (25.7), abbreviate

rXk := Xk ´

kÿ

j=1

lj(X1, . . . , Xj´1)s
2
j (25.11)
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and, given any t = (t1, . . . , tn) P Rn, let

Nk :=
kπ

j=1

etj¨ rXj´ 1
2 s2

j t2
j (25.12)

A calculation shows that

Nk Mk =
kπ

j=1

e[tj+lk(X1,...,Xj´1)]Xj´ 1
2 [tj+lj(X1,...,Xj´1)]2s2

j (25.13)

and so, by the same argument as above, also tNk Mku
n
k=1 is a martingale under P. It

follows that
1 = E(N0M0) = E(Nn Mn) = El(Nn) (25.14)

Using the explicit form of Nn, this can be written as

Elet¨ rX = e
1
2 t¨s2t = Eet¨X (25.15)

The Curtiss and Cramér-Wold theorems now imply the claim. ⇤
The ultimate result of this lecture is a continuous-time version of above lemma. The

main difference is that here we have to assume that the tilted measure is a probability,
rather than derive it as part of the proof.

Theorem 25.4 (Girsanov 1960) Assume a Brownian motion B and a Brownian filtration
tFtut•0 are given. For Y P V

loc and t • 0 set

Mt := exp
!ª t

0
YsdBs ´

1
2

ª t

0
Y2

s ds
)

(25.16)

and let
@A P Ft : rP(A) := E

�
1A Mt

�
(25.17)

If EMt = 1, then rP is a probability measure and
"

Bs ´

ª s

0
Yudu : s P [0, t]

*
under rP (25.18)

is a standard Brownian motion.

We start by a lemma that reveals why the assumption EMt = 1 is important:

Lemma 25.5 For M as in Theorem 25.4, if EMt = 1 then tMs^t : s • 0u is a martingale.

Proof. First note that, by the Itô formula,

dMt = Mt
�
YtdBt ´

1
2Y2

t dt) +
1
2

MtY2
t dt = MtYtdBt (25.19)

and so tMs : s • 0u is a local martingale. Letting

tn := inf
"

u • 0 :
ˇ̌
ˇ
ª u

0
YsdBs

ˇ̌
ˇ • n

*
(25.20)
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the process tMs^tn : s • 0u is bounded by en and is thus a martingale with EMs^tn =
EM0 = 1. The Optional Stopping Theorem then shows

@s • 0 : E
�

Mt^tn

ˇ̌
Fs

�
= Mt^s^tn a.s. (25.21)

As tn Ñ 8 P-a.s. as n Ñ 8 by the fact that Y P V
loc, we have Mu^tn Ñ Mu pointwise

a.s. Fatou’s lemma then shows

@s • 0 : E(Mt^s) § 1 (25.22)

while its conditional version gives

@s • 0 : E(Mt|Fs) § Mt^s a.s. (25.23)

But the expectation of the left hand side equals EMt = 1 which in conjunction with
(25.22) forces EMt^s = 1 for all s • 0. It follows that Mt^s^tn Ñ Mt^s both pointwise
and in the mean, which implies that the convergence takes place in L1. Using this (25.21)
shows that tMs^t : s • 0u is a martingale, as claimed. ⇤

We are now ready to give:
Proof of Theorem 25.4. In order to prove (25.18), we will invoke a continuous-time version
of the argument (25.12–25.15) but, since integrability is no longer automatic, we will rely
on characteristic functions instead of Laplace transforms. Abbreviate

rBs := Bs ´

ª s

0
Yudu (25.24)

Given any Z P V bounded, set

Ns := exp
!

i
ª s

0
Zsd rBs +

1
2

ª s

0
Z2

s ds
)

(25.25)

The Itô formula again gives

dMsNs = MsNs(Ys + iZs)dBs (25.26)

and so tMsNs : s • 0u is a local martingale.
Let tn be as in (25.20). Then for all s • 0 and n • 1,

E
�

Mt^tn Nt^tn

ˇ̌
Fs

�
= Ms^t^tn Ns^t^tn a.s. (25.27)

Since the proof of Lemma 25.5 shows that tMs^t^tn : n • 1u is uniformly integrable, the
fact that tNs : s § tu is bounded also implies that tMs^t^tn Ns^t^tn : n • 1u is uniformly
integrable. This upgrades pointwise convergence to L1-convergence and so we get

@s • 0 : E(MtNt |Fs) = Ms^tNs^t a.s. (25.28)

Applying this to s = 0 shows

1 = E(M0N0) = E(MtNt) = rE(Nt) (25.29)

For the choice

Zt :=
nÿ

j=1

lj1(tj´1,tj](s) (25.30)
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where 0 = t0 † t1 † ¨ ¨ ¨ † tn = t and l1, . . . , ln P R, this becomes

rE
✓

exp
!

i
nÿ

j=1

lj(rBtj ´ rBtj´1)
)◆

= exp
!

´
1
2

nÿ

j=1

l2
j (tj ´ tj´1)

)
(25.31)

Using the Cramér-Wold device we get that, under rP, the process rB has the same finite-
dimensional distributions as B under P. Since rB is continuous, it is a standard Brownian
motion as claimed. ⇤

The above proof is somewhat subtle because it works under the minimal possible
conditions. Indeed, a slight upgrade of Lemma 25.3 gives the statement for all Y sim-
ple without the proviso EMt = 1 (which comes automatically in this case) so another
strategy to address the general case could rely on approximation of Y by simple pro-
cesses. The problem here is that, while the L2([0, t])-convergence

≥t
0[Y

(n)
s ´ Ys]2ds Ñ 0 in

probability implies that the associated exponential martingales M(n)
t converge to Mt in

probability (see Lemma 11.7), we need M(n)
t Ñ Mt in L1 which entails uniform integra-

bility for which we have no direct argument.

Further reading: Karatzas-Shreve, Section 3.5
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