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24. METHODS FOR SOLVING SDES

We will now move to discussing methods for solving SDEs. In one of these we also
establish a general theorem for change of variables in stochastic integrals.

24.1 Reduction to ODE.

The first method is based on reduction to an ordinary differential equation (ODE) as-
suming the dispersion is a constant (which we set to 1 for simplicity).

Lemma 24.1 (Reduction to ODE) Consider the SDE

dXt = a(t, Xt)dt + dBt (24.1)

Then X is a strong solution if and only if

Vt := Xt ´ Bt (24.2)

is a stochastic process with absolutely continuous paths whose weak (a.k.a. Lebesgue) derivative
satisfies the ODE

dVt

dt
= a(t, Vt + Bt) (24.3)

for Lebesgue-a.e. t • 0. In particular, if (24.3) has a solution for every B, then so does (24.1).

Proof. Being a solution to the SDE means that

@t • 0 : Xt = X0 +
ª t

0
a(s, Xs)ds + Bt (24.4)

This is equivalent to V satisfying

Vt = V0 +
ª t

0
a(s, Vs + Bs)ds (24.5)

which, in particular, means that t fiÑ Vt is absolutely continuous and thus Lebesgue
differentiable with the derivative satisfying the above ODE. ⇤

We remark that, by Carathéodory’s generalization of Peano existence theorem, (24.3)
will have a solution as long as x fiÑ a(t, x) is continuous for each t • 0, t fiÑ a(t, x) is mea-
surable for each x P R and t fiÑ |a(t, x)| is dominated by a locally Lebesgue integrable
function (of t) on each compact set of x. (This uses that t fiÑ Bt is continuous.)

The reduction to an ODE is advantageous for numerical schemes because it effectively
circumvents Itô integrals which, in light of Theorem 11.10, need to be simulated very
carefully. Note that, besides the Bessel SDE (16.4), the class of equations (24.1) includes
the Langevin equation,

dXt = ´rH(Xt)dt +
?

2 dBt (24.6)
where H : Rd

Ñ R is a C1-function and B is a d-dimensional standard Brownian motion.
An important feature of this SDE is the following:

Lemma 24.2 Let H P C1(Rd) be such that e´H(x)
P L1(Rd) and let µ be the Borel probability

measure on Rd given by
µ(dx) := Ce´H(x)dx (24.7)
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for a suitable normalizing constant C. If tXt : t • 0u solves the SDE (24.6), then

law of X0 = µ ñ @t • 0 : Xt
law
= X0 (24.8)

In short, µ is a stationary distribution for the SDE (24.6).

Leaving the proof of this to homework we note that the Langevin equation arose
originally in physics as an equation for the velocity of a particle that changes through
random influences (represented by the dBt-term) while being subject to friction due to
contact with ambient fluid. In this case H is quadratic and the equation boils down to

dVt = ´gVtdt + dBt (24.9)

Langevin’s original formulation was the equation dVt
dt = gVt + Wt where W stands for

the “noise” — which we now interpret precisely using white noise process.
A common use of Langevin evolution governed by the SDE (24.6) is often the oppo-

site to what one might expect. Indeed, instead of solving the equation for the sake of
studying the motion of a particle in a gradient force field, it is actually often used to
study measure µ itself.

24.2 Coordinate change.

Attempts to solve equations such as (24.6) naturally point to another method for solving
SDEs which is based on a coordinate change. A deficiency of this method is that we need
to assume that the coefficients do not depend explicitly on time and that, for practical
reasons, it is more or less restricted to one-dimensional processes.

Consider an R-valued process X solving the SDE

dXt = a(Xt)dt + s(Xt)dBt (24.10)

The point of the method is to eliminate the drift term by instead looking at the process
f ˝ X, for some f P C2(R). Indeed, assuming that X obeys (24.10), the Itô formula gives

d f (Xt) = f 1(Xt)dXt +
1
2

f 2(Xt)dxXyt

=
h

a(Xt) f 1(Xt) +
1
2

s(Xt)
2 f 2(Xt)

i
dt + f 1(Xt)s(Xt)dBt

(24.11)

Setting the term in the large bracket to zero leads to an ODE for f 1 which is solved by

f 1(x) = exp
!

´2
ª x

x0

a(u)
s(u)2 du

)
(24.12)

where x0 is arbitrary — albeit with a natural choice being the initial value of X. Assum-
ing the integral exists at least locally, since f 1

° 0, one more integration gives us a strictly
increasing function that can be regarded as a coordinate transformation on R. We now
formulate the conclusion with all conditions spelled out as follows:
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Lemma 24.3 (Coordinate change) Consider the SDE (24.10) for R-valued process X. As-
sume that, for an interval (a, b) Ñ R,

x fiÑ
a(x)

s(x)2 P L1,loc(a, b) (24.13)

and that, given any x0 P (a, b),

f (x) :=
ª x

x0

exp
!

´2
ª v

x0

a(u)
s(u)2 du

)
dv (24.14)

obeys f (x) Ñ ´8 as x Ó a and f (x) Ñ +8 as x Ò b. Then X solves (24.10) with initial
value X0 = x0 if and only if the process tZt : t • 0u, with Zt := f (Xt) solves the SDE

dZt = s̃(Zt)dBt for s̃(z) := f 1
˝ f ´1(z) s ˝ f ´1(z) (24.15)

with initial value Z0 = f (x0). In particular, Xt P (a, b) for all t • 0.

Proof. Assume X is a solution to (24.10). Under (24.13), f P C1(R) with f 1 abso-
lutely continuous. The Itô formula still applies in this case (see Lemma 22.4) up to
t := inftt • 0 : Xt R (a, b)u. The computation (24.11) then shows that Z indeed obeys
(24.15). Since f ´1(R) = (a, b) we get t = 8, as claimed.

Conversely, if Z is a solution to (24.15), then setting Xt := h(Zt) for h P C1(R) with h1

absolutely continuous gives

dXt = h1(Zt)s̃(Zt)dBt +
1
2

h2(Zt)s̃(Zt)
2dt (24.16)

For h := f ´1 we get h1(z)s̃(z) = s ˝ h(z) and

h2(z)s̃(z)2 =
⇣ 1

f 1 ˝ h

⌘1
(z)s̃(z)2 =

´1
f 1 ˝ h(z)3 f 2

˝ h(z) s̃(z) = ´
f 2

˝ h(z)
f 1 ˝ h(z)

s ˝ h(z)2

(24.17)
Using also that (24.14) solves the ODE

a(x) f 1(x) +
1
2

s(x)2 f 2(x) = 0 (24.18)

on Ran(h) = (a, b), we get h2(z)s̃(z)2 = 2 a ˝ h(z). Plugging these observations in
(24.16), we get (24.10). ⇤

The coordinate change works even in higher dimensions. Indeed, here the ODE
(24.18) becomes

mÿ

i,j=1

sij(x)
B

2 f
BxiBxj

+
mÿ

i=1

ai(x)
B f
Bxi

(x) = 0 (24.19)

The problem here is that such equations have many general solutions and work is thus
needed to choose one that defines a proper coordinate transform of Rm

Ñ Rm. A slight
exception is the case of m = 2 where one can sometimes cast the problem using complex
variables which makes the equation effectively one-dimensional.
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24.3 Time change.

The coordinate change as well as other general considerations lead us to another class
of interesting SDEs:

dXt = s(Xt)dBt (24.20)
We will now present a method for solving these which is based on re-parametrizing the
time and that so even depending on the path of the underlying Brownian motion. For
this we need a result allowing us to perform a time change inside stochastic integrals.

Theorem 24.4 (Change of variables in Itô integral) Given a probability space supporting a
Brownian motion tBt : t • 0u that is adapted to a filtration tFtut•0 with F0 containing all null
sets, let tZt : t • 0u be a jointly-measurable, adapted process such that

@t • 0 : Ut :=
ª t

0
Z2

s ds † 8 a.s. (24.21)

and
lim
tÑ8

Ut = 8 a.s. (24.22)

Denote T(u) := inf
 

t • 0 : Ut • uu † 8 and recall from Theorem 15.1 that that T(u) is a
stopping time for tFtut•0 satisfying T(u) † 8 for all u † 8 with T(u) Ñ 8 as u Ñ 8 a.s.
and that the process

@u • 0 : rBu :=
ª T(u)

0
ZsdBs (24.23)

is a standard Brownian motion adapted to the filtration tFT(u)uu•0. Then, given a left-continuous
process tYt : t • 0u adapted to tFtut•0, the process tYT(u) : u • 0u is also left-continuous,
adapted to tFT(u)uu•0, the identity

@u • 0 :
ª u

0
Y2

T(v) dv =
ª T(u)

0
Y2

s Z2
s ds (24.24)

holds and, assuming these integrals are finite a.s. for all u • 0, we have

@u • 0 :
ª u

0
YT(v) d rBv =

ª T(u)

0
YsZs dBs a.s. (24.25)

with the stochastic integrals well defined and finite a.s.

Proof. As T(0) = 0, also FT(0) contains all null sets and so both filtrations allow us to
select adapted continuous versions. Since s fiÑ Ys is left continuous, and so is u fiÑ T(u),
the process u fiÑ YT(u) is left-continuous and thus jointly measurable. In order to prove
(24.24), note that for Ys := 1(a,b](s), this boils down to

ª u

0
Y2

T(v) dv = l
�
tv • 0 : v † u ^ a † T(v) § bu

�
= Ub ^ u ´ Ua ^ u

=
ª b^T(u)

0
Z2

s ds ´

ª a^T(u)

0
Z2

s ds =
ª T(u)

0
Y2

s Z2
s ds

(24.26)
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based on the equivalence T(v) ° a ô Ua † v and the facts that UT(u) = u by continuity
of U. Additivity then extends (24.24) to all simple processes. Since left-continuous Y can
be approximated in L2 by simple processes, we get (24.24) in the stated generality.

The approximation arguments for Itô integrals reduce (24.25) to Y simple and, by
additivity, Y of the form Ys := 1(0,a](s). In this case the left-integral equals

ª u

0
YT(v) d rBv =

ª u

0
1(0,Ua](v)d rBv = rBu^Ua =

ª T(u)^a

0
Zs dBs (24.27)

thus equating it with the integral on the right. ⇤
As stated above, the change of variables might seem somewhat confusing. It is often

better to implement it using the formal calculus rules:

du = Z2
t dt

d rBu = Zt dBt
(24.28)

which then change the integral of interest as
ª t(u)

0
YsZs dBs =

ª u

0
Yt(u) dBu (24.29)

We also mention that the assumption of left-continuity can be weakened to the assump-
tion of progressive measurability.

We can now move to the solution of the SDE (24.20). The main idea is as follows:
Since X is a local martingale, it is a time change of Brownian motion. So we may try
to start by defining X as a Brownian motion which then needs to be time-changed so
that the process B on the right hand side of (24.20) becomes a Brownian motion. This
naturally leads to:

Theorem 24.5 Let s : R Ñ R be Borel measurable and such that

@M • 0 :
ª

[´M,M]

1
s(x)2 dx † 8 (24.30)

Let tWt : t • 0u be a Brownian motion started from x P R. Then

@t • 0 : Ut :=
ª t

0

1
s(Ws)2 ds † 8 a.s. (24.31)

and so, for T(u) := inftt • 0 : Ut • uu,

Bu :=
ª T(u)

0

1
s(Ws)

dWs (24.32)

is a standard Brownian motion for which

Xu := WT(u) (24.33)

solves the SDE dXu = s(Xu)dBu with initial value X0 = x.
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Proof. We start by noting that the local integrability requirement (24.30) ensures the a.s.
finiteness of Ut for every t • 0. For this let rtM := inftt • 0 : |Wt ´ x| • Mu. Then
Fubini-Tonelli and the fact that the probability density of Ws is bounded by s´1/2 tell us

E
⇣

1trtM°tu

ª t

0

1
s(Ws)2 ds

⌘
§

ª t

0
E
⇣ 1

s(Ws)2 1t|Ws´x|§Mu
⌘

ds

§

ª t

0

ds
?

s

ª M

´M

1
s(x + y)2 dy (24.34)

This is finite which proves Ut † 8 a.s. on
î

M•1trtM ° tu. By continuity of W the latter
event is of full measure, thus proving Ut † 8 a.s.

With (24.31) in hand, we now observe that, thanks to the recurrence of standard Brow-
nian motion and the strong Markov property, U8 := limtÑ8 Ut equals the sum of an
infinite number of i.i.d. copies of the random variable

ª tx

0

1
s(Ws)2 ds (24.35)

where tx := inftt • 1 : Wt = xu. This random variable is positive with positive proba-
bility (in fact, a.s.) and so U8 = 8 a.s. It follows that the process in (24.32) is a standard
Brownian motion by Theorem 15.1. Theorem 24.4 in turn shows

ª u

0
s(WT(v))dBv =

ª T(u)

0
s(Ws)

1
s(Ws)

dWs =
ª T(u)

0
dWs = WT(u) (24.36)

Writing (24.33), the process X indeeds solves the desired SDE. ⇤
The above theorem, albeit rather straightforward, is not even close to the end of the

story. The first question that naturally springs in mind is uniqueness. The Tanaka
equation — to which Theorem 24.5 applies, being modeled on our analysis thereof
— shows that pathwise uniqueness cannot generally be expected, so the question is
whether uniqueness in law might hold. Here we note that, if s(x0) = 0 for some x0 P R,
then Xt = x0 is a solution. However, whenever (24.30) applies and Xt is the solution
with X0 = x1 ‰ x0 constructed in Theorem 24.5, then setting

rXt :=

#
Xt if t † tx0

x0 if t • tx0

(24.37)

where tx0 := inftt • 0 : Xt = x0u gives us another solution that, since tx0 † 8 a.s., will
be different in law from X. Taking t1

x0
:= inftt • tx + 1 : Xt = x0u, we can even set

rX1
t :=

#
Xt if t † tx0 _ t ° t1

x0

x0 if tx0 § t § t1
x0

(24.38)

and still get a solution. There are two ways to prevent such situations:
(1) x0 P R with s(x0) = 0 will not be hit by a solution started away from x0, or
(2) x0 can be hit but then the solution must get stuck there forever.

As a result of such considerations, one then gets a full characterization of existence of a
weak solution and uniqueness in law:
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Theorem 24.6 (Engelbert and Schmidt) Let s : R Ñ R be Borel measurable and set

I(s) :=
£

e°0

"
x P R :

ª

(´e,e)

1
s(x + y)2 dy = 8

*
(24.39)

and
Z(s) :=

 
x P R : s(x) = 0

(
(24.40)

Then a weak solution to
dXt = s(Xt)dBt (24.41)

exists and is unique for every initial value if and only if I(s) = Z(s).

To see that this is quite intuitive note that, in light of the time-change via (24.31), the
divergence of the integral of y fiÑ s(x + y)´2 over (0, e) means that no solution can
reach x in finite time from the right, while the divergence on (´e, 0) means the same for
solutions from the left. Somewhat harder is to convince oneself that, even when one of
these integral diverges, a solution started from x has to remain at x forever.

24.4 Time change and reduction to ODE.

As our final technique we combine the methods of time change and reduction to ODE
as follows. Consider the SDE

dXu = a(u, Xu)du + s(u, Xu)dBu (24.42)

Introducing the time change (u, B) Ñ (t, rB) where

du(t) = Z2
t dt

dBu(t) = Zt d rBt
(24.43)

brings the SDE to the form

dXu(t) = a
�
u(t), Xu(t)

�
Z2

udu + s
�
u(t), Xu(t)

�
Zud rBu (24.44)

We now set Zu := s(u(t), Xu(t))
´1 to rewrite this as

dXu(t) =
a(u(t), Xu(t))

s(u(t), Xu(t))2 du + d rBu (24.45)

This is turned into an ODE by passing to Vt := Xu(t) ´ rBu; another ODE is that arising
from the differential formula for u(t). Hereby we get:

Theorem 24.7 Suppose that (u, x) fiÑ s(u, x) is continuous and let rB be a standard Brownian
motion. Assume that t fiÑ (Ut, Vt) is a solution to the system of ODEs

dUt

dt
=

1
s(Ut, Vt + rBt)2

^
dVt

dt
=

a(Ut, Vt + rBt)

s(Ut, Vt + rBt)2
(24.46)
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with initial values (U0, V0) := (0, x0), for some x0 P R. Suppose that Ut † 8 for all t • 0 and
with Ut Ñ 8 as t Ñ 8. Then, setting T(u) := inftt • 0 : Ut • uu, the process

Bu :=
ª T(u)

0

1
s(Ut, Vt + rBt)2

dt (24.47)

is a standard Brownian motion and

Xu := VT(u) + rBT(u) (24.48)

is a global (weak) solution to the SDE (24.42) with X0 = x0.

The proof of this theorem uses time change as indicated in the calculation above. The
conditions ensure that Theorem 24.4 can be used as stated. The upshot of the theorem is
that, for a fairly generic class of SDEs, a full-fledged SDE theory is actually not required.
Note also that a solution to (24.46) will typically exist for all Brownian paths, not just
a full-measure set thereof. Finally, working with ODE is easier when one wishes to
compute the solutions numerically.

Further reading: Karatzas-Shreve, Section 5.5AB
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