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23. “ABSTRACT NONSENSE” THEORY OF YAMADA AND WATANABE

In this section we present a theory of Yamada and Watanabe that connects weak and
strong solutions and links these with concept of pathwise uniqueness. The theory relies
on facts from abstract theory of measure — hence the phrase in the title.

23.1 Uniqueness in law.

The failure of pathwise uniqueness in the Tanaka SDE noted in Proposition 22.7 is actu-
ally rather spectacular. To see this, consider a standard Brownian motion X on a prob-
ability space (W,F , P) stared at zero (i.e, P(X0 = 0) = 1) and let ttnun•0 be a strictly
increasing sequence of stopping times for t rFX

t ut•0 with t0 := 0 and such that Xtn = 0
for all n • 1. For any sequence a = tanun•1 P t´1, 1u

N, define

@n • 1 @t P [tn´1, tn) : rX(a)
t := anXt (23.1)

The strong Markov property then shows that also t rX(a)
t : t • 0u is a standard Brownian

motion with ª t

0
sgn(Xs)dXs =

ª t

0
sgn( rX(a)

s )d rX(a)
s a.s. (23.2)

Writing Bt for the common value of integral (assuming continuous versions), the process
tBt : t • 0u is a standard Brownian motion such that

 
X(a) : a P t´1, 1u

N
(

(23.3)

are all distinct strong solutions to the Tanaka SDE dXt = sgn(Xt)dBt for the standard
setting given by the probability space (W,F , P), filtration t rFX

t ut•0, Brownian motion B
and the initial value X0 = 0. In particular, since at least one sequence of stopping times
as above can be produced — for instance, let tn+1 := inftt • tn + 1 : Xt = 0u — the
Tanaka equation admits a continuum of strong solutions in this standard setting.

The above also explains why a strong solution could not be produced on the space
with filtration t rF B

t ut•0. Indeed, in order to break the degeneracy (in a measurable way)
any time a purported solution hits zero we need “additional bits” — represented by
tanun•1 above — that are not captured by t rF B

t ut•0 in light of (23.2). Increasing the filtra-
tion to t rFX

t ut•0 solves the existence problem, but only at the cost of having the number
of solutions explode.

Notwithstanding the degeneracy, as we showed earlier, any weak solution X of the
Tanaka equation is a standard Brownian motion. This suggests an (apparently) weaker
notion of uniqueness than what we used so far:

Definition 23.1 (Uniqueness in law) We say that uniqueness in law occurs for an SDE

if for any two weak solutions X and rX to this SDE,

X0
law
= rX0 ñ tXt : t • 0u

law
= t rXt : t • 0u (23.4)

Here the equality in law of the stochastic processes X and rX is relative to the Wiener

space (C[0, 8),B(C[0, 8))), although equality of finite-dimensional distributions suf-

fices as well.
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The two weak solutions may be defined over completely unrelated probability spaces.
A somewhat unintuitive feature of the above definition is that the right hand side of (23.4)
does not include information about the underlying Brownian motions, but this is the
way the concept is used in the literature.

The Tanaka equation is a example of an SDE for which pathwise uniqueness fails but
uniqueness in law holds. There are equations in which both concepts fail; for instance

dXt = 1Rrt0u(Xt)dBt (23.5)

whose solutions are Xt := Bt as well as the process Xt := 1[0,8)r[t,t1](t)Bt for any two
stopping times t † t1 with Bt = Bt1 = 0. While pathwise uniqueness is intuitively
stronger than uniqueness in law, their comparison is unclear as inferring uniqueness in
law from pathwise uniqueness requires putting unrelated weak solutions on the same
probability space. That this can be done was shown by Yamada and Watanabe in 1971
using “abstract non-sense” arguments. The benefit of their method is that it leads to
further, and somewhat unexpected, useful consequences. For simplicity of notation, we
will only deal with R-valued solutions of SDEs driven by one-dimensional standard
Brownian motion.

23.2 Uniformizing map.

We start by defining a map that takes a weak solution X to its natural space, which is
the space of continuous R-valued functions C[0, 8). Since we want to keep track of the
standard Brownian motion and the initial value, we will actually use

X := R ˆ C[0, 8) ˆ C[0, 8) (23.6)

This is endowed with the product Borel s-algebra

S := B(R) b B
�
C[0, 8)

�
b B

�
C[0, 8)

�
(23.7)

For each t • 0 and each triplet (x0, b, x) P X , where x0 P R while b and x represent
elements of C[0, 8), let

rXt(x0, b, x) := xt ^ rBt(x0, b, x) := bt (23.8)

denote the canonical coordinate projection maps on X . Setting

@t • 0 : Gt := s
�rBs, rXs : s § t

�
(23.9)

defines a natural filtration tGtut•0 on (X , S). We will call (X , S) the canonical solution
space. We now observe:

Lemma 23.2 (Uniformizing map) Given a weak solution
⇣
(W,F , P), tFtut•0, B, X

⌘
(23.10)

set
@w P W : f(w) :=

�
X0(w), B(w), X(w)

�
(23.11)
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Then f is a F/S-measurable map of W into X and rP := P ˝ f is a probability measure
on (X , S). Moreover, we have

@t • 0 : f´1(Gt) Ñ Ft (23.12)

and the following holds: The process trBt : t • 0u under rP is a standard Brownian motion adapted
to tGtut•0 and ⇣

(X , S, rP), tGtut•0, rB, rX
⌘

(23.13)

is a weak solution of the SDE.

Proof. That f is a map W Ñ X is checked directly from the fact that every path of B
and X belong to C[0, 8). To prove F/S-measurability of f, it suffices to prove (23.12).
Here we note that, for s § t and A P B(R),

f´1�
trBs P Au

�
= tBs P Au P Ft (23.14)

and similarly f´1(t rXs P Au) P Ft. Now note that H := tC Ñ X : f´1(C) P Ftu is a s-
algebra containing all sets of the form trBs P Au and t rXs P Au for A P B(R) and s P [0, t],
and since Gt is the minimal s-algebra containing the latter sets, we have Gt Ñ H.

By the very definition of Gt, the processes rB and rX are adapted to tGtut•0. Writing rE
for expectation with respect to rP, the change of variables formula tells us that, for all
0 § s § t, all A P Gs and all h P C(R) bounded,

rE
�
h(rBt ´ rBs)1A

�
= E

�
h(Bt ´ Bs)1f´1(A)

�

= E
�
h(Bt ´ Bs)

�
P(f´1(A)

�
= E

�
h(Bt ´ Bs)

�rP(A)
(23.15)

where we used that, since B is a standard Brownian motion with respect to tFtut•0, the
increment Bt ´ Bs is independent of Fs and, by (23.12), thus also of f´1(A). It follows
that, under rP, the increment rBt ´ rBs is independent of Gs with rBt ´ rBs = N (0, t ´ s) and
so rB is a standard Brownian motion with respect to tGtut•0.

It remains to prove that (23.13) is a weak solution. Assume that the equation takes
the form dXt = a(t, Xt)dt + s(t, Xt)dBt. As rX0 ˝ f = X0, all we need to show that, for
each t • 0,

⇣ ª t

0
a(s, rXs)ds

⌘
˝ f =

ª t

0
a(s, Xs)ds a.s. (23.16)

and ⇣ ª t

0
s(s, rXs)d rBs

⌘
˝ f =

ª t

0
s(s, Xs)dBs a.s. (23.17)

For (23.16) the integrals are ordinary Lebesgue integrals for which the identity holds
pointwise (no “a.s.” is needed). The proof requires checking this for a being an indicator
of a set in B([0, 8)) b B(R) and then applying the Monotone Class Theorem.

For (23.16) we first check directly that equality holds for s := 1[a,b]ˆA for any 0 †

a † b † 8 and any A P B(R). We then note that, on the (full measure) event where
s fiÑ Ys := s(s, Xs) belongs to L2([0, t], l), with l denoting the Lebesgue measure, Y
can be approximated (in this L2) by finite linear combinations of functions of the form
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s fiÑ 1[a,b](s)1A(Xs). Lemma 11.7 then ensures that this approximation carries over to the
Itô integrals thus proving equality (23.17) on a set of full measure. ⇤

23.3 Coupling.

The uniformizing map allows us to push any weak solution (B, X) onto the canonical
solution space so that, trivially,

(B, X) under P law
= (rB, rX) under rP (23.18)

Our next task is to “uniformize” two weak solutions at the same time but, to make
comparisons meaningful, we need to do it so that the initial value of the solutions and
the driving Brownian motion coincide in the target space of the map. The idea here is to
use conditioning with the help of the following concept:

Definition 23.3 (Regular conditional probability) Given a probability space (X , S, P)
and a s-algebra G Ñ S, a regular conditional probability given G is a map

PG : X ˆ S Ñ [0, 1] (23.19)

such that

(1) @x P X : A fiÑ PG(x, A) is a probability measure on (X , S),
(2) @A P S : x fiÑ PG(x, A) is G-measurable,

(3) @A P S : PG(¨, A) = E(1A|G) P-a.s.

One way to restate (1-3) above is by saying that a regular conditional probability
(RCP) is a random measure that expresses (a suitable version of) the conditional ex-
pectation E(¨|G) as a regular expectation. We leave it to the reader to verify that, just as
the conditional expectation, an RCP is unique modulo a modification on a null set.

The existence of RCP is not guaranteed in general but it holds in standard Borel spaces
— i.e., measure spaces on completely metrizable separable topological spaces endowed
with their Borel sets — of which (X , S) is an example. This allows us to proceed as
follows: Let "⇣

(W(i),F (i), P(i)), tF
(i)
t ut•0, B(i), X(i)

⌘)

i=1,2
(23.20)

be two solutions to some (possibly different) SDEs such that

X(1)
0

law
= X(2)

0 (23.21)

Let rP(1), resp., rP(2) be the push-forward of the laws P(1), resp., P(2) onto (X , S) by the
uniformizing map (23.11). Denoting

G := s
⇣§

t•0
Gt

⌘
(23.22)

for Gt as in (23.9), let P(1)
G

, resp., P(2)
G

be RCP of P(1), resp., P(2) given G. Since G does not
restrict the third “coordinate” of X , part (2) of Definition 23.3 ensures that the RCPs do
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not depend on this coordinate. Suppressing that coordinate from notation, we now set

@A1, A2 P S : Q(A1 ˆ A2) :=
ª ✓ π

i=1,2

rP(i)
G

�
(x0, b), Ai

�◆
µ(dx0)PW(db) (23.23)

where µ is the common law of X(1)
0 and X(2)

0 and PW is the Wiener measure. The moti-
vation for this definition is gleaned from:

Lemma 23.4 (Coupling) The set function Q extends uniquely to a probability measure on
(X ˆ X , S b S) and defines a coupling of rP(1) and rP(2) in the sense that

@A P S : Q(A ˆ X ) = P(1)(A) ^ Q(X ˆ A) = P(2)(A) (23.24)

In addition, writing (rB(1), rX(1)), resp., (rB(1), rX(1)) for the corresponding processes (rB, rX) in the
first, resp., second term of the product space X ˆ X , we have

Q
⇣

rX(1)
0 = rX(2)

0 ^ @t • 0 : rB(1)
t = rB(2)

t

⌘
= 1 (23.25)

Proof. It is easy to check that Q is finitely additive on the semi-algebra S := tA1 ˆ

A2 : A1, A2 P S) on X ˆ X , and the argument underlying the proof of Fubini-Tonelli
theorem based on the Monotone Convergence Theorem shows that Q is also countably
additive on S . The Hahn-Kolmogorov and Dynkin’s p/l-Theorem ensure existence of
a unique extension to a probability measure on s(S) = S ˆ S.

The identity (23.24) is then checked readily from (23.23) so it remains to prove (23.25).
For this note that Definition 23.3(3) implies

@i = 1, 2 @A P G : P(i)
G
( ¨ , A) = 1A P(i)-a.s. (23.26)

Taking A1 := t rX(1)
0 ° au and A2 := t rX(2)

0 § au in (23.23) then shows

Q
� rX(1)

0 ° a • rX(2)
0

�
=

ª
1tx0°au1tx0§auµ(dx0)PW(db) = 0 (23.27)

Taking as union over all a P Q shows rX(1)
0 § rX(2)

0 Q-a.s. and, by symmetry, rX(1)
0 = rX(2)

0
Q-a.s. The argument for equality of the processes rB(1) and rB(2) is similar; we just have
to prove rB(1)

t = rB(2)
t Q-a.s. for all t P Q X [0, 8) and invoke continuity afterwards. ⇤

The previous lemma makes no use of the fact that (23.20) are weak solutions of an
SDEs; all we needed was that B(1) and B(2) are standard Brownian motions and that
(23.21) was true. We thus also observe:

Lemma 23.5 Suppose (23.20) are weak solutions to (possibly different) SDEs and that (23.21)
holds. Writing G

(1)
t := s( rX(i)

s , rB(i)
s : s § t), let

@t • 0 : Gt := s
�
G
(1)
t Y G

(2)
t

�
(23.28)

Then "⇣
(X ˆ X , S b S, Q), tGtut•0, rB(i), rX(i)

⌘*

i=1,2
(23.29)
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are weak solutions of the corresponding SDEs with rX(i) law
= X(i) for both i = 1, 2.

Proof. The processes rB(1) and rX(1) are adapted to tG
(1)
t ut•0 and thus also to tGtut•0.

Since Q reduces to rP(1) on the first “coordinate” in X ˆ X , the fact that, thanks to
Lemma 23.4, rX(1) under rP(1) satisfies (2) and (3) in Definition 20.2 carries over to process
under Q in the product space. The other process is handled analogously. ⇤

23.4 Main conclusions.

We are now ready to harvest the fruits of our hard labor. Our first result addresses the
connection between the two concepts of uniqueness of solutions defined above:

Theorem 23.6 Pathwise uniqueness implies uniqueness in law.

Proof. Suppose we have two weak solutions of an SDE. Lemmas 23.4 and 23.5 then allow
us to realize these on the same probability space — namely, the product space X ˆ X .
By pathwise uniqueness, we then have

rX(1) = rX(2) a.s. and thus also rX(1) law
= rX(2) (23.30)

Since rX(i) law
= X(i) for both i = 1, 2, we conclude that X(1) law

= X(2), as desired. ⇤
The second result is both useful and conceptually interesting:

Theorem 23.7 Assume that a weak solution exists and pathwise uniqueness holds for an SDE.
Then there exists Borel c : R ˆ C[0, 8) Ñ C[0, 8) (with the value of c(x, f ) at s • 0 denoted
as cs(x, f )) such that for any probability space (W,F , P) supporting a standard Brownian mo-
tion B and a Brownian filtration tFtut•0, we have

@t • 0 : s(cs : s § t) Ñ s
⇣

tx0 P A1u, tbs P A2u : s § t ^ A1, A2 P B(R)
⌘

(23.31)

and also that
X := c(X0, B) (23.32)

is a strong solution to the SDE for the standard setting ((W,F , P), tFtut•0, B, X0).

Proof. Consider a weak solution X on the probability space (W,F , P) with filtration
tFtut•0 and Brownian motion denoted by B. Pick a version PG of regular conditional
probability given G, for G as in (23.22) where Gt is as in (23.9). For each a P R, t • 0,
x0 P R and b P C[0, 8), abbreviate

jt,a(x0, b) := rPG
�
(x0, b), t rXt § au

�
(23.33)

where rP, resp., rX is the probability, resp., the solution on the canonical solution space.
We will need two observations about this object:

Lemma 23.8 For all a P R,

jt,a(X0, B) P t0, 1u P-a.s (23.34)
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Proof. Use Lemma 23.4 to uniformize and couple the solution with itself on X ˆ X .
Writing rX(1), resp, rX(2) for the two solutions, pathwise uniqueness implies

rX(1) = rX(2) Q-a.s. (23.35)

and so a calculation similar to (23.27) shows

0 = Q
� rX(1)

t † a § rX(2)
t

�

=
ª

rPG
�
(x0, b), t rXt § au

�h
1 ´ rPG

�
(x0, b), tXt § au)

�i
µ(dx0)PW(db) (23.36)

Since u(1 ´ u) = 0 implies u = ˘1, the claim follows. ⇤

Lemma 23.9 For all t • 0 and all a ° 0,

P
⇣

tXt ° au X
 

jt,a(X0, B) = 1
(⌘

= 0 (23.37)

and
P
⇣

tXt § au X
 

jt,a(X0, B) = 0
(⌘

= 0 (23.38)

Proof. Since jt,a(X0, B) is G-measurable and rPG(¨, A) is a version of rE(1A|G), where rE
is the expectation with respect to the probability rP pushed onto the canonical solution
space by the uniformizing map. For the first probability we then get

P
�
tXt ° au X tjt,a(X0, B) = 1

�
= rP

�
t rXt ° au X tjt,a( rX0, rB) = 1

�

= rE
⇣

rPG
�

¨

ˇ̌
t rXt ° au

�
1tjt,a( rX0,rB)=1u

⌘

= E
⇣⇥

1 ´ jt,a(X0, B)
⇤
1tjt,a(X0,B)=1u

⌘
= 0

(23.39)

The second probability is handled similarly. ⇤
The above lemmas imply that, denoting

yt(x0, b) := inf
 

a P Q : jt,a(x0, b) = 1
(

(23.40)

for each t • 0 we have
Xt = yt(X0, B) P-a.s. (23.41)

where the restriction to a rational in (23.40) is needed to overcome confluence of un-
countably many null sets and/or lack of measurability. In particular, since t fiÑ Xt is
continuous by assumption, the infimum on the right is locally uniformly continuous on
the rationals meaning that the total variation in t over [0, T],

V(1)
T

�
y(x0, b), e

�
:= sup

t,sPQX[0,T]
|t´s|†e

ˇ̌
yt(x0, b) ´ ys(x0, b)

ˇ̌
(23.42)

obeys
lim
eÓ0

V(1)
T

�
y(X0, B), e

�
= 0 P-a.s. (23.43)

for all T • 1.
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Moving, finally, towards the construction of the desired map, consider the sets

rN1 :=
£

aPQ

!
(x0, b, x) P X : jG

�
(x0, b), tXt § au

�
R t0, 1u

)
(23.44)

and
rN2 :=

£

n•1

!
(x0, b, x) P X : lim

eÓ0
V(1)

n
�
y(x0, b), e

�
° 0

)
(23.45)

and, writing f for the uniformizing map, set N1 := f´1( rN1) and N2 := f´1( rN2). The
above observations guarantee

N1, N2 P G ^ P(N1 Y N2) = 0 (23.46)

Setting, for any t • 0, x0 P R and b P C[0, 8),

ct(x0, b) :=

#
yt(x0, b) on X r ( rN1 Y rN2)

x0 on rN1 Y rN2
(23.47)

we get a continuous map t fiÑ ct(x0, b) such that, for each t • 0,

(x0, b) fiÑ ct(x0, b) is B(R) b B(C[0, t])/B(R)-measurable (23.48)

where B(C[0, t]) is the sub-s-algebra of B(C[0, 8)) on the right-hand side of (23.31).
Writing c(x0, b) for the function t fiÑ ct(x0, b), since B(C[0, 8)) is generated by sets of
the form t f P C[0, 8) : f (t) P Au for A P B(R), it follows that

(x0, b) fiÑ c(x0, b) is B(R) b B(C[0, 8))/B(C[0, 8))-measurable (23.49)

and that (23.31) holds
In light of (23.41) and (23.46), Xt = ct(X0, B) P-a.s. holds for each t P Q. Since both X

and c(X0, B) are continuous, this implies X = c(X0, B) a.s. We now check that, for any
standard setting with initial value X0 and B a standard Brownian motion, t fiÑ ct(X0, B)
is a strong solution. ⇤

We have thus shown that, under the condition of pathwise uniqueness, if there is at
least one weak solution, that and every other solution can be described by a solution map.

Further reading: Karatzas-Shreve, Section 5.3CD
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