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22. TANAKA EQUATION AND WEAK SOLUTIONS

In the previous lecture we discussed local solutions — or, more precisely, solutions de-
fined up to, and sometimes including, a stopping time — and established their existence
and uniqueness under the local Lipschitz property of the coefficients. Here we will an-
alyze a simple example where these conclusion fail, naturally leading us to the concept
of a weak solution.

22.1 Tanaka’s example.

Let us first formalize the concept of uniqueness established under the Lipschitz condi-
tions on the coefficients in Theorem 21.4:

Definition 22.1 (Pathwise uniqueness) We say that a strong solution up to stopping

time is unique in a pathwise sense (for a given standard setting) if for any strong solu-

tions tXt : t P [0, T]u and t rXt : t P [0, rT]u up to finite (stopping) times T and rT, respec-

tively,

P(X0 = rX0) = 1 (22.1)

implies

P
⇣

@t P [0, T ^ rT] : Xt = rXt

⌘
= 1 (22.2)

We will also say that a strong solution is globally pathwise unique if the above applies

for stopping times T = rT := n for all n • 1.

As for the strong solution, the concept of pathwise uniqueness is attached to a given
instance of the standard setting for the SDE of interest, although some treatments (such
as Karatzas-Shreve) allow the filtration for rX to be different from that for X.

While Theorem 21.4 works under the local Lipschitz assumption on the coefficients,
a natural question is whether strong solutions exist and are pathwise unique for other
coefficients as well. The answer is of course negative as this is not even true for ordinary
differential equations that are naturally included, by setting s = 0, in our class of SDEs.
But how about equations of the form

dXt = s(t, Xt)dBt (22.3)

which take us as far as an SDE can be from an ODE? As it turns out, this is not the case
either but the corresponding analysis is more subtle.

As already observed before, with each stochastic process tYt : t • 0u defined on a
probability space (W,F , P) one can associate a natural filtration tF

Y
T ut•0, where

@t • 0 : F
Y
t := s(Ys : s § t) (22.4)

be the least s-algebra that makes all random variables in tYs : s § tu measurable. For
reasons that have been discussed earlier, this is usually not enough for the purposes of
stochastic analysis, so writing

N :=
 

A P F : P(A) = 0
(

(22.5)
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for the class of P-null sets, we enlarge the natural filtration to the augmented filtration
t rFY

t ut•0 by setting

@t • 0 : rFY
t := s

�
N Y F

Y
t
�

(22.6)

A key point for us is that, if B is a standard Brownian motion, then t rF B
t ut•0 remains to

be a Brownian filtration. With these in hand, we now claim:

Proposition 22.2 (Tanaka SDE) Consider a standard setting with a probability space (W,F , P)
supporting a Brownian motion tBt : t • 0u, the augmented Brownian filtration t rF B

t u and initial
value X0 := 0. Then the Tanaka SDE

dXt = sgn(Xt)dBt (22.7)

where

sgn(x) :=

#
1 if x • 0
´1 if x † 0

(22.8)

does not admit a strong solution.

That this should be the case is witnessed by an attempt to construct a solution via
gluing together pieces of B. Notice that the SDE dictates that, the process X moves
exactly as an increment of path B while non-negative and as increment of path ´B when
it is negative. This shows that Xt := X0 + Bt is a definitely a solution up to the stopping
time t0 := infts • 0 : X0 + Bs = 0u and continues to be even if the “next” excursion
of t fiÑ Bt ´ Bt from zero lies “above” zero. The problem is when that excursion lies
“below” zero because then, if X were to remain non-negative then the SDE asks it to
“follow” the increment of B which would make it negative, while if X were to become
negative immediately after t = t, then the SDE asks it to “follow” the negative of the
increment of B, which would make it positive.

A problem with this reasoning is that the notion of “next” excursion of the Brownian
motion is not meaningful; indeed, the Brownian motion will see (countably) infinitely
many such excursion in any interval of positive length after time t0. We will thus have
to proceed using methods stochastic calculus instead.

22.2 Tanaka’s formula and proof of Proposition 22.2.

The proof of Proposition 22.2 is based on a lemma that is of independent interest for a
later discussion of Brownian local time:

Lemma 22.3 (Tanaka formula) Let B denote a standard Brownian motion. Then

@t • 0 :
1
2e

ª t

0
1t|Bs|†euds P

›Ñ
eÓ0

|Bt| ´ |B0| ´

ª t

0
sgn(Bs)dBs (22.9)

If tenun•1 are positive with
∞

n•1 en † 8, the limit takes place a.s. along this sequence.

Proof. The last two terms on the right-hand side coincide with the first two terms of the
Itô formula for f (Bt), where f (z) := |z|, because f 1(z) = sgn(z) for z ‰ 0. However,
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this f is not in C2(R) and so the Itô formula cannot be used. That being said, it turns out
that it can be used for f replaced by

fe(x) :=

#
e
2 +

x2

2e if |x| § e

|x| if |x| ° e
(22.10)

Indeed, f 1
e exists on R with

@x P R : f 1
e(x) :=

#
x
e if |x| § e

sgn(x) if |x| ° e
(22.11)

and even f 2
e exists away from x = ˘e with

@x ‰ ˘e : fe(x) =
1
e

1(´e,e)(x) (22.12)

This puts fe within the scope of:

Lemma 22.4 Let B = tBt : t • 0u be a standard Brownian motion. For all f P C1 with f 1

absolutely continuous,

@t • 0 : f (Bt) = f (B0) +
ª t

0
f 1(Bs)dBs +

1
2

ª t

0
f 2(Bs)ds a.s. (22.13)

where f 2 is (any representative) of the Lebesgue derivative of f 1.

Postponing the proof of this lemma until a later section, we thus have

fe(Bt) = fe(B0) +
ª t

0
f 1
e(Bs)dBs +

1
2e

ª t

0
1t|Bs|†euds (22.14)

We now want to take the limit as e Ó 0. For this observe that

@x P R : |x| § fe(x) § |x| _ e (22.15)

and so
@x P R : lim

eÓ0
fe(x) = |x| (22.16)

In particular fe(Bt) Ñ |Bt| and fe(B0) Ñ |B0| pointwise and so, in order to prove the
claim, we thus need to show that

ª t

0
f 1
e(Bs)dBs

P
›Ñ
eÓ0

ª t

0
sgn(Bs)dBs (22.17)

For this we note that, by Itô isometry and the fact that

@x P R :
ˇ̌
fe(x) ´ sgn(x)

ˇ̌
§ 1(´e,e)(x) (22.18)

we have

E
✓ˇ̌

ˇ
ª t

0
f 1
e(Bs)dBs ´

ª t

0
sgn(Bs)dBs

ˇ̌
ˇ
2
◆
= E

ª t

0

ˇ̌
fe(Bs) ´ sgn(Bs)

ˇ̌2ds

§ E
ª t

0
1t|Bs|†euds =

ª t

0
P
�
|Bs| † e

�
ds § 2e

ª t

0

1
?

s
ds (22.19)
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where we used Fubini-Tonelli to exchange the expectation with the integral over s and
then noted that the probability density of Bs is bounded by 1?

s . Since the integral is
convergent for all t • 0, the right-hand side tends to zero as e Ó 0 thus proving that
the convergence in (22.17) takes place even in L2. The second clause then follows by
combining (22.19) with Chebyshev’s inequality and the Borel-Cantelli lemma. ⇤

We are now ready to give:
Proof of Proposition 22.2. Suppose, aiming at a contradiction, that the Tanaka equation
admits a strong solution tXt : t • 0u with some initial value X0. Then

@t • 0 : Xt = X0 +
ª t

0
sgn(Xs)dBs (22.20)

This implies

@t • 0 : xXyt =
ª t

0
sgn(Xs)

2ds =
ª t

0
ds = t (22.21)

Lévy’s characterization of standard Brownian motion (see Theorem 14.6) then tells us
that X is a standard Brownian motion.

Itô calculus for semimartingales in turn tells us that
ª t

0
sgn(Xs)dXs =

ª t

0
sgn(Xs)

2dBs =
ª t

0
dBs = Bt a.s. (22.22)

while the Tanaka formula from Lemma 22.3 gives
ª t

0
sgn(Xs)dXs = |Xt| ´ |X0| ´ lim

nÑ8
1

2en

ª t

0
1t|Xs|†enuds a.s. (22.23)

where the choice en := 1/n2 ensures that the convergence is a.s.
The upshot of these estimates is that Bt is expressed as a function of t|Xs| : s § tu

almost surely. This shows that B is adapted to the filtration t rF |X|
t ut•0 meaning that

@t • 0 : rF B
t Ñ rF |X|

t (22.24)

But the fact that X a strong solution for the stated setting means that

@t • 0 : rFX
t Ñ rF B

t (22.25)

whereby we conclude
@t • 0 : rFX

t Ñ rF |X|
t (22.26)

To see that this is absurd, we note:

Lemma 22.5 For X a standard Brownian motion with X0 = 0,

@t ° 0 : tXt ° 0u R rF |X|
t (22.27)

Indeed, as tXt ° 0u P rFX
t , Lemma 22.5 shows that (22.26) is false. We conclude that no

strong solution to the Tanaka equation with X0 = 0 exists as claimed. ⇤
We owe the reader:

Preliminary version (subject to change anytime!) Typeset: March 11, 2024



MATH 275D notes 122

Proof of Lemma 22.5. While this is intuitive, the proof requires analysis. Fix t ° 0 and let

Gt :=
 

A P rF : E(Xt1A) = 0
(

(22.28)

Using that Xt P L1 and E(Xt) = 0, the additivity of the integral implies that Gt is a s-
algebra. We now observe that, for any B P B(R) and any s § t, the reflection symmetry
of Brownian paths implies

E
�
X11t|Xs|PBu

�
= 0 (22.29)

thus showing that t|Xs| P Bu P Gt. It follows that F |X|
t Ñ Gt which, in light of (22.6) and

N Ñ Gt, proves rF |X|
t Ñ Gt. To get the claim, notice that

E
�
Xt1tXt°0u

�
° 0 (22.30)

holds t ° 0. Hence we get tXt ° 0u R Gt and so tXt ° 0u R rF |X|
t . ⇤

Notice that the assumption that sgn(x)2 = 1 was used crucially in the proof. That this
matters even for the statement, define

sign(x) :=

$
’&

’%

1 if x ° 0
´1 if x † 0
0 if x = 0

(22.31)

Then
Xt := X0 + sign(X0)Bt^t0 (22.32)

where
t0 := inf

 
s • 0 : X0 + sign(X0)Bt^t0 = 0u (22.33)

obeys dXt = 1tt0°tusign(X0)dBt which in light of the fact that sign(Xt) = sign(X0) on
the event tt0 ° tu shows that it is a strong solution to the SDE dXt = sign(Xt)dBt.

22.3 Weak solutions.

While the absence of a strong solution to Tanaka’s equation may be disappointing, note
that a solution can still be produced. Indeed, let X be a standard Brownian motion
started from X0 and, inspired by (22.22), set

Bt :=
ª t

0
sgn(Xt)dXt (22.34)

The Itô calculus then tells us that
ª t

0
sgn(Xt)dBt =

ª t

0
sgn(Xt)

2dXt =
ª t

0
dXt = Xt ´ X0 (22.35)

thus showing that the pair (X, B) satisfies the Tanaka SDE and is thus a strong solution
on the probability space carrying the standard Brownian motion X. In fact, the only
important difference compared to the setting of Proposition 22.2 is the filtration, which
needs to be at least as large as t rFX

t ut•0 here. So, all that was needed to get a strong
solution was to enlarge the filtration!

The solution we just presented falls under a general framework of:
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Definition 22.6 (Weak solution) A weak solution of the SDE (20.7) is a four-tuple

⇣
(W,F , P), tFtut•0, B, X

⌘
(22.36)

where (W,F , P) is a probability space, B = tBt : t • 0u is a standard Brownian motion,

tFtut•0 is a Brownian filtration and X is a strong solution to the SDE for the standard

setting determined by (W,F , P), tFtut•0 and B.

An important difference compared to the strong solution is that the standard setting is
now part of the solution. Note that the concept of pathwise uniqueness still makes sense
here except that, in order to claim its validity for the weak solution, we have to examine
all possible standard settings for which a strong solution exists. Also here the Tanaka
SDE serves as an interesting counterexample:

Proposition 22.7 Suppose (X, B) is a pair of Brownian motions on a probability space such
that, under a Brownian (w.r.t. B) filtration tFtut•0, X is a solution to the Tanaka SDE. Let

t := inftt • 1 : Xt = 0u (22.37)

and for each t • 0 define

rXt :=

#
Xt if t § t

´Xt if t ° t
(22.38)

Then rX is also a solution to the Tanaka SDE under the same filtration and Brownian motion and,
since t † 8 a.s., rX ‰ X. In short, pathwise uniqueness does not hold for the Tanaka equation.

Proof. The process rX is clearly continuous, so we have to check that it is adapted. This
follows from

t rXt P Au =
⇣

tXt P Au X tt § tu
⌘

Y

⇣
tXt P ´Au X tt § tu

⌘
(22.39)

and the fact that tXt P ˘Au P Ft when A P B(Rd) by the fact that X is adapted, and that
tt § tu P Ft by the fact that t is a stopping time.

Since rX is a Brownian motion, we have sgn( rXs) = [2 ¨ 1tt°su ´ 1] sgn(Xs) for Lebesgue
a.e. s • 0. Hence we get

ª t

0
sgn( rXs)dBs =

ª t

0

⇥
2 ¨ 1tt°su ´ 1

⇤
sgn(Xs)dBs

= 2
ª t^t

0
sgn(Xs)dBs ´

ª t

0
sgn(Xs)dBs

= 2(Xt^t ´ X0) ´ (Xt ´ X0) = rXt ´ rX0,

(22.40)

where in the second to last equality we used that X is a solution to the Tanaka SDE for the
underlying Brownian motion given by B. This shows that rX is a solution to the Tanaka
SDE over the same standard setting as X. Pathwise uniqueness fails in this example. ⇤

Further reading: Karatzas-Shreve, Section 5.3
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