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21. UNIQUENESS AND LOCALILY

Having furnished criteria for existence of a strong solution, we now address uniqueness.
Along with that we also prove locality, which means that the solution depends only on
the part of the coefficients that it has“seen” so far.

21.1 Main statement.

An unfortunate feature of Theorem 20.3 is that its assumptions are often too restrictive.
Indeed, the setting does not even include the Bessel SDE, which is the only SDE we have
seriously considered so far. So before even beginning to discuss uniqueness of strong
solutions, we need to generalize the concept itself:

Definition 21.1 (Strong solution up to a stopping time) Assume a standard setting for

the SDE (20.7) with notations as in Definition 20.1. Given a finite stopping time T for the

underlying filtration tFtut•0, saying that tXt : t P [0, T]u is a strong solution to (20.7) up
to time T means

(1) tXT^t : t • 0u is continuous and adapted to tFtut•0,

(2) for all t • 0,

ª t

0
1tT°su

ˇ̌
a(s, Xs)

ˇ̌
ds † 8 ^

ª t

0
1tT°su

ˇ̌
s(s, Xs)

ˇ̌2ds † 8 a.s. (21.1)

(3) for all t • 0,

XT^t = X0 +
ª t

0
1tT°su a(s, Xs)ds +

ª t

0
1tT°sus(s, Xs) ¨ dBs a.s. (21.2)

where X0 on the right denotes the initial value prescribed in the standard setting.

In addition, given a R+ Y t+8u-valued random variable T, we say that tX : t P [0, T)u
is a strong solution up to a time T if there exists a sequence tTnun•1 of finite stopping

times such that

@n • 1 : Tn § Tn+1 (21.3)
and

T = lim
nÑ8 Tn (21.4)

and such that, for each n • 1, tXt : t P [0, Tn]u is a strong solution up to time Tn.

In the first part require T to be finite in order to allow for XT to be defined. This is
mended in the second part. Note that tT ° tu =

î
n•0tTn ° tu so T is a stopping time in

this case as well. Taking T := 8 and Tn := n we easily check that the above subsumes
the concept of a strong solution from Definition 20.1. We can also take T deterministic,
which then defines give the concept of “a strong solution up to a fixed time.”

Theorem 21.2 (Uniqueness and locality) Assume a standard setting with same filtered prob-
ability space and Brownian motion, but two pairs of coefficients (a, s) and (ã, s̃) satisfying
(20.18–20.19). Let D Ñ Rd be non-empty open with

@t • 0 @x P D : a(t, x) = ã(t, x) ^ s(t, x) = s̃(t, x) (21.5)
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If tXt : t P [0, T]u is a strong solution up to (stopping) time T to SDE (20.7) with coefficients
(a, s) and t rXt : t P [0, rT]u is a strong solution up to (stopping) time rT to SDE (20.7) with
coefficients (ã, s̃) but possibly different initial value, then for

t := T ^ rT ^ inf
 

t • 0 : Xt R D _ rXt R D
(

(21.6)

we have
@t • 0 DC(t) † 8 : E

⇣
sup

s§t^t

ˇ̌
Xs ´ rXs|

2
⌘

§ C(t)E
�
|X0 ´ rX0|

2� (21.7)

In particular,

P(X0 = rX0) = 1 ñ P
⇣

@t • 0 : Xt^t = rXt^t

⌘
= 1 (21.8)

Proof. The argument is actually very similar to that used in the construction of a strong
solution. Indeed, suppose X and rX are two strong solutions and write tr := t ^ B(0, r)
for any r ° 0 where B(0, r) := tx P Rd : |x| † ru Then

@t • 0 : Xtr^t ´ rXtr^t = X0 ´ rX0 + At + Mt (21.9)

where, this time,

At :=
ª t

0
1ttr°su

⇥
a(s, Xs) ´ a(s, rXs)

⇤
ds (21.10)

and

Mt :=
ª t

0
1ttr°su

⇥
s(s, Xs) ´ s(s, rXs)

⇤
¨ dBs (21.11)

where we used that, on ttr ° su, we have Xs, rXs P D and so ã(s, Xs) = a(s, rXs) and
s̃(s, Xs) = s(s, rXs). Using the inequality (a + b + c)2

§ 3a2 + 3b2 + 3c2 we get

sup
s§t^tr

|Xs ´ rXs|
2

§ 3|X0 ´ rX0|
2 + 3 sup

s§t
A2

s + 3 sup
s§t

M2
s (21.12)

Denoting

gr(t) := E
⇣

sup
s§t^tr

ˇ̌
Xs ´ rXs|

2
⌘

(21.13)

the estimates (20.36–20.37) then show

gr(t) § 3E
�
|X0 ´ rX0|

2�+ 3K2(t + 4)
ª t

0
gr(s)ds (21.14)

We now invoke:

Lemma 21.3 (Gronwall inquality, simple version) Let g : [0, 8) Ñ [0, 8) be Lebesgue
integrable on compact intervals and such that, for some t0 ° 0 and a, b • 0,

@t § t0 : g(t) § a + b

ª t

0
g(s)ds (21.15)

Then
@t § t0 : g(t) § aebt (21.16)
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Proof. Let ã ° a. Then (21.15) along with continuity of the right-hand side show
g(t) §

1
2 (a + ã) for t • 0 small. The continuity of t fiÑ ãebt then gives t1 := suptt P

[0, t] : g(t) § ãebt
u P (0, t0]. Using this bound in (21.15) shows g(t) § a + ã[ebt

´ 1]
for t § t1 implying, in particular, that g(t1) † ãe´bt1 . But that contradicts the definition
of t1 unless t1 = t0, and so g(t)e´bt

§ ã for all t P [0, t0]. Taking ã Ó a we get (21.16). ⇤
Using this along with tr Ò t and the Monotone Convergence Theorem we get

@t • 0 : E
⇣

sup
s§t^t

ˇ̌
Xs ´ rXs|

2
⌘
= lim

rÑ8 gr(t) § 3e3K2(t+4)tE
�
|X0 ´ rX0|

2� (21.17)

Setting C(t) := 3e3K2(t+4)t yields (21.7). For (21.7) we note that P(X0 = rX0) = 1 implies
gr(t) = 0 for all r † 8. Hence P(@t § tr : Xt = rXt) = 1. Taking r Ñ 8 then gives
P(@t § t : Xt = rXt) = 1 as desired. ⇤

Theorem 21.2 expresses the intuitive fact that, as long as a solution is generally unique,
it will coincide with the solution for another pair of coefficients in the set where the
coefficients coincide provided, of course, that solution is started from the same initial
value. This is the statement of locality for the solutions of SDEs.

We now claim the following extension of Theorems 20.3 and 21.2:

Theorem 21.4 Assume a standard setting for SDE (20.7) with initial value X0 and let D Ñ Rd

be non-empty open and such that
P(X0 P D) = 1 (21.18)

Suppose that there are non-empty bounded open sets tDnun•1 with @n • 1 : Dn Ñ Dn+1 and
D =

î
n•1 Dn for which the following holds: There is x0 P D1 and, for each n • 1, there is

Kn P (0, 8) such that

@t • 0 @x, y P Dn :
ˇ̌
a(t, x) ´ a(t, y)

ˇ̌
+

ˇ̌
s(t, x) ´ s(t, y)

ˇ̌
§ Kn|x ´ y| (21.19)

and
@t • 0 :

ˇ̌
a(t, x0)

ˇ̌
+

ˇ̌
s(t, x0)

ˇ̌
§ Kn (21.20)

Then there exists an a.s. positive stopping time T and a strong solution tXt : t P [0, T)u to (20.7)
up to time T with initial value X0 such that, setting

tn := inftt • 0 : Xt R Dnu (21.21)

we have
T = lim

nÑ8 tn (21.22)

Moreover, if tXt : t P [0, rT]u is a strong solution to (20.7) up to a finite stopping time rT, then

P(X0 = rX0) = 1 (21.23)

implies

P
⇣

@t P [0, T ^ rT) : Xt = rXt

⌘
= 1 (21.24)

In short, X is the unique strong solution until the first “exit” from D.
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As we will see in the proof, for the stopping times tTnun•1 in Definition 21.1 we can
take the sequence ttnun•1. We write the word “exit” in quotes because T may not really
be an exit time from D. Indeed, even if T is finite, the solution may simply blow up
to infinity at T, or oscillate wildly as t increases to T with no limit value at t = T.
Notwithstanding, X is continuous on [0, tn] whenever tn † 8. It is these considerations
that explain why Definition 21.1 needs to be stated as it is. The condition (21.18) is
needed to ensure that T ° 0 a.s.

That Theorem 21.4 extends Theorems 20.3 and 21.2 is seen by setting Dn := Rd (and
thus also D = Rd) for all n • 1 and noting that then tn = 8 for all n • 1, and thus
T = 8, by continuity of the solutions. The solution X will not use the values of the
coefficients of the equation for the spatial arguments outside D but rX may, and so we
keep assuming the standard setting on all of Rd. We bundle the uniqueness clause with
the existence of the solution because the uniqueness argument is what actually drives
the whole proof.

21.2 Proof of Theorem 21.4.

The proof of Theorem 21.4 is based on the argument that is standard in classical ODE
theory: Construct local solutions and then, by showing that they must coincide on their
common domain, patch these together to get a maximal solution. For the construction of
suitable local solutions — which will be those until the first exit from Dn — we will rely
on Theorem 20.3 but for this we need to address the problem that a uniform Lipschitz
bound on the coefficients a and s applies only on Dn. Here we will use:

Lemma 21.5 (Extension of Lipschitz function) Let (X , r) be a metric space, A Ñ X non-
empty and f : A Ñ R a function such that

@x, y P A :
ˇ̌
f (x) ´ f (y)

ˇ̌
§ r(x, y) (21.25)

Define
@x P X : h(x) := sup

zPA

⇥
f (z) ´ r(x, z)

⇤
(21.26)

Then h(x) P R for all x P X and we have

@x P A : h(x) = f (x) (21.27)

and
@x, y P X :

ˇ̌
h(x) ´ h(y)

ˇ̌
§ r(x, y) (21.28)

Proof. Since A ‰ H, we have h(x) P (´8, 8]. In order to rule out that h(x) is infinite,
note that (21.25) along with the triangle inequality imply

@z, z1
P A @x P X : f (z) ´ r(x, z) § f (z1) + r(x, z1) (21.29)

Hence, for each x P X ,
h(x) § inf

zPA

⇥
f (z) + r(x, z)

⇤
(21.30)

and so h(x) † 8 as well. (The function defined by the supremum could be another
candidate for h.) Since h(x) † 8, for each e ° 0 there is ze P A such that h(x) §
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f (ze) ´ r(x, ze) + e. Then for any y P X , using ze to get an lower bound on h(y) shows

h(x) ´ h(y) § f (ze) ´ r(x, ze) + e ´
⇥

f (ze) ´ r(y, ze)
⇤

= r(y, ze) ´ r(x, ze) + e § r(x, y) + e
(21.31)

where the triangle inequality was used in the last step. Taking e Ó 0 and using symmetry
between x and y then shows (21.28).

It remains to prove that h is an extension of f . Here the choice z := x for x P A in
(21.26) shows h(x) • f (x) while taking z1 := x in (21.29) and optimizing over z P A on
the left-hand side gives h(x) § f (x). Hence we get the equality (21.27). ⇤

The key part of the proof of Theorem 21.4 is the content of:

Lemma 21.6 Assuming the setting of Theorem 21.4, for each n • 1 there exists a process
tX(n)

t : t • 0u such that (1-3) in Definition 21.1 hold for (X, T) replaced by (X(n), Tn) where

Tn := n ^ inftt • 0 : X(n)
t R Dnu (21.32)

Moreover, we have

@n • 1 : P
⇣

Tn § Tn+1 ^ @t P [0, Tn] : X(n+1)
t = X(n)

t

⌘
= 1 (21.33)

Proof. For each t • 0 and x P Rd define a(n)(t, x) by setting, for each i = 1, . . . , d,

a(n)i (t, x) := sup
zPDn

⇥
ai(t, z) ´ Kn|x ´ z|

⇤
(21.34)

Similarly, define s(n)(t, x) by setting, for each i = 1, . . . , d and j = 1, . . . , m,

s(n)
ij (t, x) := sup

zPDn

⇥
sij(t, z) ´ Kn|x ´ z|

⇤
(21.35)

Thanks to Lemma 21.5 and the assumptions (21.19–21.20), a(n) and s(n) now satisfy sim-
ilar bounds on all of Rd, albeit perhaps with worse constants. Moreover, the continuity
of a(t, ¨) and s(t, ¨) on Dn permits us to restrict the suprema above to just z P Dn X Qd

without changing the result. This shows that both a(n) and s(n) are Borel measurable.
Since the boundedness of D ensures that X01tX0PDu P L2, Theorem 20.3 can be applied

to construct a strong solution tX(n)
t : t • 0u to SDE (20.7) with coefficients a(n) and s(n)

and initial value X01tX0PDu. Explicitly, X(n) is a continuous adapted process such that

@t • 0 :
ª t

0

ˇ̌
a(n)(s, X(n)

s )
ˇ̌
ds † 8 ^

ª t

0

ˇ̌
s(n)(s, X(n)

s )
ˇ̌2ds † 8 a.s. (21.36)

and

@t • 0 X(n)
t = X01tX0PDu +

ª t

0
a(n)(s, X(n)

s )ds +
ª t

0
s(n)(s, X(n)

s )dBs a.s. (21.37)

Redefine X(n) on tX0 R Dnu by setting

X(n)
t := X0 on tX0 R Dnu (21.38)
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The known properties of the integral then show that X(n) obeys (21.1–21.2).
The processes X(n) and X(n+1) solve the SDE (20.7) with coefficients that coincide

in Dn. By Theorem 21.2, these solutions coincide up to the smaller of their first exit
times from Dn. This gives (21.33) as desired. ⇤

We are now ready to give:
Proof of Theorem 21.4. Define Tn by (21.32). On the complement of the union of the
implicit null sets in (21.33), set

@t P [Tn´1, Tn) : Xt := X(n)
t (21.39)

where T0 := 0 for the sake of this definition, and let Xt := X0 otherwise. Thanks to
Lemma 21.6, X then obeys (1-3) in Definition 21.1 for each n • 1. In light of the second
part of Definition 21.1 and the fact that Tn coincides with tn from (21.21), this proves the
existence part of the claim.

Concerning uniqueness, let t rXt : t P [0, rT]u be another strong solution up to a finite
stopping time rT with rX0 = X0 a.s. Since a(n) = a and s(n) = s on Dn,Theorem 21.2 gives

P
⇣

@t P [0, Tn ^ rT) : rXt = X(n)
t

⌘
= 1 (21.40)

In light of (21.39) and Tn Ò T, this proves (21.24). ⇤

21.3 Existence of Bessel processes.

As a consequence of Theorem 21.2, we conclude:

Corollary 21.7 Let d P R. Then each X0 ° 0, the Bessel SDE

dXt =
d ´ 1
2Xt

dt + dBt (21.41)

admits a unique strong solution tXt : t P [0, t0)u where

t0 := lim
eÓ0

te where te := inftt • 0 : |Xt| § eu (21.42)

Moreover, if t0 † 8, then this solution extends continuously to t = t0 by setting Xt0 := 0.

Proof. The function x fiÑ
d´1
2x is uniformly Lipschitz on Dn := tx P R : |x| ° 1/nu for

each n • 1 and so the solution exists on D :=
î

n•1 Dn = R r t0u. If t0 † 8 then
Xte = e Ñ 0 which vanishes in the limit as e Ó 0. ⇤

We conclude that the d-dimensional Bessel process exists uniquely for all d P R up
to the first hitting time of zero where, of course, uniqueness can be violated. We will
see later that SDE techniques are actually not needed for this conclusion, but this is a
different part of the story.

Further reading: Karatzas-Shreve, Section 5.2

Preliminary version (subject to change anytime!) Typeset: March 9, 2024


